Institutional-Repository, University of Moratuwa.  

Improved maximum power point tracking of solar pv systems for faster and accurate convergence

Show simple item record

dc.contributor.author Wanigasekara, DC
dc.contributor.author Hettiarachchi, UM
dc.contributor.author Weerasinghe, WPTS
dc.contributor.author Ranasinghe, ERIACC
dc.contributor.editor Prasad, WD
dc.contributor.editor Abeysooriya, R
dc.date.accessioned 2022-11-16T09:15:06Z
dc.date.available 2022-11-16T09:15:06Z
dc.date.issued 2019-07
dc.identifier.citation **** en_US
dc.identifier.uri http://dl.lib.uom.lk/handle/123/19533
dc.description.abstract The maximum power of a PV module represents variations due to temperature, irradiation and load. In the conventional mode maximum power point tracking algorithms are applied to maximize efficiency, reliability by constantly extracting maximum power. The conventional methods that mentioned in literature have several disadvantages in terms of efficiency, accuracy and flexibility specifically under varying weather conditions. It is mainly because of non-linearity in PV module current-voltage characteristics as well as DC-DC converters. Under this project new intelligent control methods for maximum power point tracking will be tested. Basically, fuzzy logic-based hill climbing method will be proposed and tested to obtain faster and accurate converging to the maximum power point during steady state and varying weather conditions. This artificial intelligence approach would simplify exiting methods and provide with proper modeling of nonlinear systems. In achieving this goal, maximum power point system consisting PV module, buck, boost, buck-boost converter, fuzzy logic controller is designed and simulated using Mat lab Simulink and experimentation studies would be carried out. In the latter stage, it is proposed to extend this project by combining fuzzy logics and neural networks so that the system can identify its maximum power point by itself through self-learning rather implementing only an algorithm as in conventional methods. en_US
dc.language.iso en en_US
dc.publisher Engineering Research Unit, Faculty of Engiennring, University of Moratuwa en_US
dc.title Improved maximum power point tracking of solar pv systems for faster and accurate convergence en_US
dc.type Conference-Abstract en_US
dc.identifier.faculty Engineering en_US
dc.identifier.department Engineering Research Unit, University of Moratuwa en_US
dc.identifier.year 2019 en_US
dc.identifier.conference ERU Symposium 2019 en_US
dc.identifier.place Moratuwa, Sri Lanka en_US
dc.identifier.proceeding Proceedings of the ERU Symposium 2019 en_US
dc.identifier.email [email protected] en_US
dc.identifier.email [email protected] en_US
dc.identifier.email [email protected] en_US
dc.identifier.email [email protected] en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record