Institutional-Repository, University of Moratuwa.  

Selecting a suitable variable combination to predict stock prices using support vector machines

Show simple item record

dc.contributor.author Indikadulle, P.
dc.contributor.author Hendahewa, D.
dc.contributor.author Perera, N.
dc.contributor.author De Meraal, D.
dc.contributor.author Perera, S.
dc.contributor.author Rathnayake, S.
dc.date.accessioned 2021-12-06T05:37:00Z
dc.date.available 2021-12-06T05:37:00Z
dc.date.issued 2021-12-03
dc.identifier.uri http://dl.lib.uom.lk/handle/123/16843
dc.description.abstract With technological development, trading in stock markets has become more accessible to the general public. However, owing to the highly volatile nature of stock prices, stock price predictions remain a challenging task. Literature shows Support Vector Machines as a promising technique. This paper aims at identifying the best variable combination to predict the stock prices using Support Vector Machines along with the application of forward filling and linear interpolation as data filling methods and random search and grid search as hyper parameter optimization methods. After the individual evaluation of all models, data filling method of linear interpolation, hyper parameter optimization method of grid search and independent variable combinations with adjusted close price are found to give better results for prediction of stock prices. en_US
dc.language.iso en en_US
dc.publisher Business Research Unit (BRU)
dc.subject Support Vector Machines en_US
dc.subject Forward filling en_US
dc.subject Linear interpolation en_US
dc.subject Random search en_US
dc.subject Grid search en_US
dc.title Selecting a suitable variable combination to predict stock prices using support vector machines en_US
dc.type Conference-Full-text en_US
dc.identifier.faculty Business en_US
dc.identifier.department Department of Decision Sciences en_US
dc.identifier.year 2021 en_US
dc.identifier.conference International Conference on Business Research en_US
dc.identifier.place Moratuwa en_US
dc.identifier.pgnos 1-8p. en_US
dc.identifier.proceeding 4th International Conference on Business Research - ICBR 2021 en_US
dc.identifier.email [email protected] en_US
dc.identifier.email [email protected] en_US
dc.identifier.email [email protected] en_US
dc.identifier.email [email protected] en_US
dc.identifier.email [email protected] en_US
dc.identifier.email [email protected] en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record