
63

References

[1] Becker J. D. (1969), The modeling of simple analogic and inductive processes

in a semantic memory system. Proceedings UCA1-69, Washington DC, pp.

655-668.

[2] Boden M. A. (1992), The Creative Mind. Abacus.

[3] Bohan A., O’Donoghue D. (2000), LUDI: A Model for Geometric Analogies

using Attribute Matching. AICS-2000 11th Artificial Intelligence and

Cognitive Science Conference.

[4] Cianciolo A. T., Sternberg R. J. (2008), Intelligence: A brief history. MA:

Blackwell.

[5] Ditchburn R. W. (1991), "Historical Introduction," in Light, NY: Dover

Publication, Inc., Chapter 1, Sec 1.14,1.16, 1.18, pp. 10-14.

[6] Dreisiger P. (2008), Artificial Working Memory: A Psychological Approach.

In Proceedings of the 16th School of Computer Science & Software

Engineering Research Conference, Yanchep, WA, pp. 14–23.

[7] Evans T. G. (1964), A heuristic program to solve geometric-analogy

problems. AFIPS 64 (Spring) Proceedings of the April, spring joint computer

conference, pp. 21-23.

[8] Falkenhainer B., Forbus K. D., Gentner D. (1989), The structure-mapping

engine. Artificial Intelligence, 41(1), pp. 1-63.

[9] Falkenhainer, B., Forbus, K., Gentner, D. (1986), The Structure-Mapping

Engine. Proceedings of AAAI '86, PA: Philadelphia.

[10] Forbus K., Ferguson R., Gentner D. (1994), Incremental Structure-Mapping.

16th Cognitive Science Society, pp. 313-318.

[11] Forbus K., Gentner D., Law K. (1995), MAC/FAC: A Model of Similarity-

based Retrieval. Cognitive Science, 19(2), pp. 141-205.

[12] Forbus K., Oblinger D. (1990), Making SME Greedy and Pragmatic.

Cognitive Science Society, 12, pp. 61- 68.

[13] French R. M. (1995), "The architecture of Tabeltop" in The subtlety of

sameness: A theory and computer model of analogy-making. The MIT Press,

Chapter 3.

64

[14] French R. M. (2002), The computational modeling of analogy-making. Trends

in Cognitive Sciences, 6(5), pp. 200-205.

[15] Gentner D. (1983), Structure-Mapping: A Theoretical Framework for

Analogy. Cognitive Science, 7(2), pp. 155-170.

[16] Gentner D. (1983), Structure-mapping: A theoretical framework for analogy.

Cognitive Science, 7(2), pp. 155–170.

[17] Gentner D., Forbus K. D. (1991), MAC/FAC: A model of similarity-based

Retrieval. Cognitive Science, 19, pp. 141--205.

[18] Hart, W.D. (1996) "Dualism", in A Companion to the Philosophy of Mind, ed.

Samuel Guttenplan, Oxford: Blackwell, pp. 265-7.

[19] Hoffman R. R. (1995), Monster Analogies. AI Magazine, 16(3), pp. 11-35.

[20] Hofstadter D. R., Mitchell M. (1995), "The copycat project: A model of

mental fluidity and analogy-making". in Hofstadter, D. and the Fluid

Analogies Research group, Fluid Concepts and Creative Analogies. Chapter 5,

pp. 205-267.

[21] Holyoak K. J., Thagard P. (1989), Analogical Mapping by Constraint

Satisfaction, Cognitive Science, 13, pp. 295-355.

[22] Holyoak K., Gentner, D., Kokinov, B. (2001), "The place of analogy in

cognition" in The Analogical Mind: Perspectives from Cognitive Science,

Cambridge, MA: MIT Press, pp. 1–19.

[23] Hummel J. E. Holyoak, K. J. (1996), LISA: A Computational Model of

Analogical Inference and Schema Induction. Cognitive Science Society, 16,

pp. 352-357.

[24] Hummel J. E., Holyoak K. J. (1997), Distributed Representation of Structure:

A Theory of Analogical Access and Mapping. Psychological Review, 104(3),

pp. 427-466.

[25] James W. (1950), “Chapter xiii: Discrimination and Comparison”, in The

Principles of Psychology, Vol. 1, London: Dover Publications, pp.530.

[26] Jayatilleke K. N. (1978), The Contemporary Relevance of Buddhist

Philosophy. BPS Online Edition (2009).

[27] Keane M. T., Brayshaw M. (1988), "Indirect Analogical Mapping: A

Computational Model of Analogy”, in Third European Working Session on

Machine Learning. Ed. D. Sleeman, London Pitman

65

[28] Keane M. T., Ledgeway T., Duff S. (1994), Constraints on Analogical

Mapping: A comparison of Three Models. Cognitive Science, 18, pp. 387-438.

[29] Keane M., Brayshaw M. (1988), “The Incremental Analogical Machine: A

computational model of analogy”, in D. Sleeman (Ed.), Third European

Working Session on Machine Learning, London: Pitman.

[30] Kokinov B. (1988), “Associative memory-based reasoning: How to represent

and retrieve cases”, in T. O’Shea & V. Sgurev (eds.) Artificial Intelligence III:

Methodology, systems, and applications, Amsterdam: Elsevier pp. 51-58.

[31] Kokinov B. N. (1994), "A Hybrid Model of Reasoning by Analogy”, in K.

Holyoak & J. Barnden (eds.), Analogical Connections, Advances in

Connectionist and Neural Computation Theory, 2.

[32] Kokinov B., Grinberg M., Petkov G., Kiryazov K. (2008), "Anticipation by

Analogy" in The Challenge of Anticipation, Springer, pp. 185-213.

[33] Kokinov, B. and French, R. M. (2003) “Computational Models of Analogy-

making”, in Nadel, L. (Ed.) Encyclopedia of Cognitive Science. London,

Nature Publishing Group, 1, pp. 113 - 118.

[34] Krawczyka D. C., Holyoakb K. J., Hummelb J. E. (2005), The One-to-One

Constraint in Analogical Mapping and Inference. Cognitive Science, 29, pp.

797–806.

[35] Legg S., Hutter M. (2007), A Collection of Definitions of Intelligence.

Frontiers in Artificial Intelligence and Applications, 157, pp. 17-24.

[36] McCarthy J. (1960), Recursive functions of symbolic expressions.

Communications of the ACM, 3(4), pp 184-195.

[37] McCarthy J. (1962), LISP 1.5 Programmer's Manual, MIT.

[38] Minsky M. L. (1961), Steps toward artificial intelligence, Proceedings of the

IRE, 49(1), pp. 8-30.

[39] Nersessian N.J. (2008), Creating Scientific Concepts. Cambridge, MA: MIT

Press.

[40] Petrov A., Kokinov, B. (1998), “Mapping and access in analogy-making:

Independent or interactive? A Simulation Experiment with AMBR”, in K.

Holyoak, D. Gentner, & B. Kokinov (Eds.), Advances in analogy research:

Integration of theory and data from the cognitive, computational, and neural

sciences, Sofia: NBU Press, pp. 124-134.

66

[41] Piyadassi Thera (1972), The Psychological Aspect of Buddhism, The Wheel

Publication, Kandy, Sri Lanka.

[42] Piyadassi Thera (2008), Dependent Origination (Paṭicca Samuppāda). BPS

Online Edition.

[43] Rotha G., Dicke U. (2005), Evolution of the brain and intelligence. Trends in

Cognitive Sciences, 9(5), pp. 250-257.

[44] Russell S. J. and Norvig P. (2009). Artificial Intelligence: A Modern Approach

(3rd Edition). Prentice Hall Press, pp. 18-19.

[45] Rzevski G., Skobelev P. (2007), Emergent Intelligence in Large Scale Multi-

Agent Systems. International Journal of Education and Information

Technology, 1(2), pp. 64-71.

[46] Thagard P. (2010), "Cognitive Science", The Stanford Encyclopedia of

Philosophy (Summer 2010 Edition), Edward N. Zalta (ed.), [online],

Available: http://plato.stanford.edu/archives/sum2010/entries/cognitive-

science/

[47] Thagard P., Holyoak K. J., Nelson, G., Gochfeld, D. (1990), Analogue

Retrieval by Constraint Satisfaction. Artificial Intelligence, Elsevier Science

Publishers B.V. (North-Holland), 46, pp. 259-310.

[48] Thoreau H. D. (1962), “VIII September 1851” in The Journal of Henry D.

Thoreau, Vol. 2, NY: Dover publication, pp. 463.

[49] Tomai E., Lovett A., Forbus K. D., Usher J. (2005), A structure mapping

model for solving geometric analogy problems, In Proceedings of the 27th

Annual Conference of the Cognitive Science Society, Stresa, Italy, pp. 2190-

2195.

[50] Turing A. (1990), “Computing Machinery and Intelligence” in The Philosophy

of Artificial Intelligence by Boden M., Oxford University Press, pp. 40-66.

[51] Veale, T. (1998). ’Just in Time’ Analogical Mapping, An Iterative-Deepening

Approach to Structure-Mapping, in the proceedings of ECAI’98, the

Thirteenth European Conference on Artificial Intelligence, Brighton, UK.

67

Appendix A:

Java Agent DEvelopment (JADE) Framework

A.1 Introduction

This appendix provides sufficient and necessary information about JADE framework.

JADE is a software framework to make easy the development of multi-agent

applications in compliance with the FIPA specifications. JADE can then be

considered a middle-ware that implements an efficient agent platform and supports

the development of multi agent systems. JADE agent platform tries to keep high the

performance of a distributed agent system implemented with the Java language. In

particular, its communication architecture tries to offer flexible and efficient

messaging, transparently choosing the best transport available and leveraging state-of-

the-art distributed object technology embedded within Java runtime environment.

JADE uses an agent model and Java implementation that allow good runtime

efficiency, software reuse, agent mobility and the realization of different agent

architectures. Following sub sections described the power associated with JADE to

fulfil the identified needs in agent development.

A.2 FIPA Specifications

The Foundation for Intelligent Physical Agents (FIPA) is an international non-profit

association of companies and organisations sharing the effort to produce

specifications for generic agent technologies. FIPA does not just promote a

technology for a single application domain but a set of general technologies for

different application areas that developers can integrate to make complex systems

with a high degree of interoperability.

FIPA has identified the roles of some key agents necessary for managing the

platform, and describe the agent management content language and ontology. Three

mandatory roles were identified into an agent platform. The Agent Management

System (AMS) is the agent that exerts supervisory control over access to and use of

the platform; it is responsible for maintaining a directory of resident agents and for

handling their life cycle. The Agent Communication Channel (ACC) provides the

68

path for basic contact between agents inside and outside the platform. The ACC is the

default communication method, which offers a reliable, orderly and accurate message

routing service. The Directory Facilitator (DF) is the agent that provides yellow page

services to the agent platform.

The specifications also define the Agent Communication Language (ACL), used by

agents to exchange messages. FIPA ACL is a language describing message encoding

and semantics, but it does not mandate specific mechanisms for message

transportation. Since different agents might run on different platforms on different

networks, messages are encoded in a textual form, assuming that agents are able to

transmit 7-bit data. ACL syntax is close to the widely used communication language

KQML. However, there are fundamental differences between KQML and ACL, the

most evident being the existence of a formal semantics for FIPA ACL, which should

eliminate any ambiguity and confusion from the usage of the language. FIPA supports

common forms of inter-agent conversations through interaction protocols, which are

communication patterns followed by two or more agents. Such protocols range from

simple query and request protocols, to more complex ones, as the well-known

contract net negotiation protocol and English auctions.

A.3 JADE Runtime System

A running agent platform must provide several services to the applications: when

looking at the parts of the FIPA97 specification, is can be seen that these services fall

into two main areas, that is, message passing support with FIPA ACL and agent

management with life-cycle, white and yellow pages, etc.

A.3.1 Distributed Agent Platform

JADE complies with the FIPA97 specifications and includes all the system agents that

manage the platform that is the ACC, the AMS, and the default DF. All agent

communication is performed through message passing, where FIPA ACL is the

language used to represent messages.

69

While appearing as a single entity to the outside world, a JADE agent platform is

itself a distributed system, since it can be split over several hosts with one among

them acting as a front end for inter-platform IIOP communication. A JADE system is

made by one or more Agent Container, each one living in a separate Java Virtual

Machine and communicating using Java RMI. IIOP is used to forward outgoing

messages to foreign agent platforms. A special, Front End container is also an IIOP

server, listening at the official agent platform ACC address for incoming messages

from other platforms. Figure A.1 shows the architecture of a JADE Agent Platform.

Figure A.1: Software architecture of a JADE Agent Platform

A.3.2 Message Delivery Subsystem

FIPA agent communication model is peer-to-peer though multi-message context is

provided by interaction protocols and conversation identifiers. On the other hand,

JADE uses transport technologies such as RMI, CORBA and event dispatching which

are typically associated with reactive systems. Clearly, there is some gap to bridge to

map the explicitly addressed FIPA message-passing model into the request/response

communication model of distributed objects. This is why in JADE ordinary agents are

not distributed objects, but agent containers are.

70

A software agent, in compliance to FIPA agent model, has a globally-unique identifier

(GUID), that can be used by every other agent to address it with ACL messages;

likewise, an agent will put its GUID into the :sender slot of ACL messages it sends

around. So, JADE must figure out receiver location by simply looking at: receiver

message slot. Since a FIPA97 GUID resembles an email address, it has the form:

<agent name> @ <platform address>, it is fairly easy to recover the agent name and

the platform address from it. When an ACL message is sent to a software agent, three

options are given:

 Receiver on the same container of the same platform: Java events are used, the

ACLMessage is simply cloned.

 Receiver on a different container of the same platform: Java RMI is used, the

message is serialised at sender side, a remote method is called and the message

is un-serialised at receiver side.

 Receiver on a different platform: IIOP is used, the ACLMessage is converted

into a String and marshalled at sender side, a remote CORBA call is done and

an un-marshalling followed by ACL parsing occurs at receiver side.

A.3.3 Address Management and Caching

JADE tries to select the most convenient of the three transport mechanisms above

according to agents location. Basically, each container has a table of its local agents,

called the Local-Agent Descriptor Table (LADT), whereas the front-end, besides its

own LADT, also maintains a Global-Agent Descriptor Table (GADT), mapping every

agent into the RMI object reference of its container. Moreover, JADE uses an address

caching technique to avoid querying the front-end continuously for address

information.

Besides being efficient, this is also meant to support agent mobility, where agent

addresses can change over time (e.g. from local to RMI); transparent caching means

that messaging subsystem will not be affected when agent mobility will be introduced

into JADE. Moreover, if new remote protocols will be needed in JADE (e.g. a

wireless protocol for nomadic applications), they will be seamlessly integrated inside

the messaging and address caching mechanisms.

71

A.3.4 User-Defined Ontologies and Content Languages

According to the FIPA standard, achieving agent level interoperability requires that

different agents share much more than a simple on-the-wire protocol. While FIPA

mandates a single agent communication language, the FIPA ACL, it explicitly allows

application dependent content languages and ontologies. The FIPA specifications

themselves now contain a Content Language Library, whereas various mandatory

ontologies are defined and used within the different parts of the FIPA standard.

The last version of JADE lets application programmers create their own content

languages and their ontologies. Every JADE agent keeps a capability table where the

known languages and ontologies are listed; user defined codecs must be able to

translate back and forth between the String format (according to the content language

syntax) and a frame based representation.

If a user-defined ontology is defined, the application can register a suitable Java class

to play an ontological role and JADE is able to convert to and from frames and user

defined Java objects. Acting this way, application programmers can represent their

domain specific concepts as familiar Java classes, while still being able to process

them at the agent level (put them within ACL messages, reasoning about them, etc.).

A.3.5 Tools for Platform Management and Monitoring

Beyond a runtime library, JADE offers some tools to manage the running agent

platform and to monitor and debug agent societies; all these tools are implemented as

FIPA agents themselves, and they require no special support to perform their tasks,

but just rely on JADE AMS.

The general management console for a JADE agent platform is called RMA (Remote

Monitoring Agent). The RMA acquires the information about the platform and

executes the GUI commands to modify the status of the platform (creating agents,

shutting down containers, etc.) through the AMS. The Directory Facilitator agent also

has a GUI, with which it can be administered, configuring its advertised agents and

services.

72

JADE users can debug their agents with the Dummy Agent and the Sniffer Agent.

The Dummy Agent is a simple tool for inspecting message exchanges among agents,

facilitating validation of agent message exchange patterns and interactive testing of an

agent. The Sniffer Agent allows tracking messages exchanged in a JADE agent

platform: every message directed to or coming from a chosen agent or group is

tracked and displayed in the sniffer window, using a notation similar to UML

Sequence Diagrams.

A.4 JADE Agent Development Model

FIPA specifications state nothing about agent internals, but when JADE was designed

and built they had to be addressed. A major design issue is the execution model for an

agent platform, both affecting performance and imposing specific programming styles

on agent developers. As will be shown in the following, JADE solution stems from

the balancing of forces from ordinary software engineering guidelines and theoretical

agent properties.

A.4.1 From Agent Theory to Class Design

A distinguishing property of a software agent is its autonomy; an agent is not limited

to react to external stimuli, but it’s also able to start new communicative acts of its

own. A software agent, besides being autonomous, is said to be social, because it can

interact with other agents in order to pursue its goals or can even develop an overall

strategy together with its peers.

FIPA standard bases its Agent Communication Language on speech-act theory and

uses a mentalistic model to build a formal semantic for the performative agent

exchange. This approach is quite different from the one followed by distributed

objects and rooted in Design by Contract; a fundamental difference is that invocations

can either succeed or fail but a request speech act can be refused if the receiver is

unwilling to perform the requested action.

Trying to map the aforementioned agent properties into design decisions, the

following list was produced:

73

 Agents are autonomous, and then they are active objects.

 Agents are social, and then intra-agent concurrency is needed.

 Messages are speech acts, and then asynchronous messaging must be used.

 Agents can say “no”, and then peer-to-peer communication model is needed.

The autonomy property requires each agent to be an active object with at least a Java

thread, to proactively start new conversations, make plans and pursue goals. The need

for sociality has the outcome of allowing an agent to engage in many conversations

simultaneously, dealing with a significant amount of concurrency.

The third requirement suggests asynchronous message passing as a way to exchange

information between two independent agents that also has the benefit of producing

more reusable interactions. Similarly, the last requirement stresses that in a Multi

Agent System the sender and the receiver are equals (as opposed to client/server

systems where the receiver is supposed to obey the sender). An autonomous agent

should also be allowed to ignore a received message as long as he wishes; this

advocates using a pull consumer messaging model, where incoming messages are

buffered until their receiver decides to read them.

A.4.2 JADE Agent Concurrency Model

The autonomy requirement forces each agent to have at least a thread, and the

sociality requirement pushes towards many threads per agent. Unfortunately, current

operating systems limit the maximum number of threads that can be run effectively on

a system. JADE execution model tries to limit the number of threads and has its roots

in actor languages.

The Behaviour abstraction models agent tasks: a collection of behaviours are

scheduled and executed to carry on agent duties (see Figure A.2). Behaviours

represent logical threads of a software agent implementation. According to Active

Object design pattern, every JADE agent runs in its own Java thread, satisfying

autonomy property; instead, to limit the threads required to run an agent platform, all

agent behaviours are executed cooperatively within a single Java thread. So, JADE

uses a thread-per-agent execution model with cooperative intra-agent scheduling.

74

Figure A.2: JADE agent architecture.

JADE agents schedule their behaviour with a “cooperative scheduling on top of the

stack”, in which all behaviours are run from a single stack frame (on top of the stack)

and a behaviour runs until it returns from its main function and cannot be pre-empted

by other behaviours (cooperative scheduling).

JADE model is an effort to provide fine-grained parallelism on coarser grained

hardware. A likewise, stack based execution model is followed by Illinois Concert

runtime system for parallel object oriented languages. Concert executes concurrent

method calls optimistically on the stack, reverting to real thread spawning only when

the method is about to block, saving the context for the current call only when forced

to.

Choosing not to save behaviour execution context means that agent behaviours start

from the beginning every time they are scheduled for execution. So, behaviour state

that must be retained across multiple executions must be stored into behaviour

instance variables. A general rule for transforming an ordinary Java method into a

JADE behaviour is:

 Turn the method body into an object whose class inherits from Behaviour.

 Turn method local variables into behaviour instance variables.

 Add the behaviour object to agent behaviour list during agent start-up.

75

The above guidelines apply the reification technique to agent methods, according to

Command design pattern; an agent behaviour object reifies both a method and a

separate thread executing it. A new class must be written and instantiated for every

agent behaviour and this can lead to programs harder to understand and maintain.

JADE application programmers can compensate for this shortcoming using Java

Anonymous Inner Classes; this language feature makes the code necessary for

defining an agent behaviour only slightly higher than for writing a single Java

method.

JADE thread-per-agent model can deal alone with the most common situations

involving only agents: this is because every JADE agent owns a single message queue

from which ACL messages are retrieved. Having multiple threads but a single

mailbox would bring no benefit in message dispatching. On the other hand, when

writing agent wrappers for non-agent software, there can be many interesting events

from the environment beyond ACL message arrivals. Therefore, application

developers are free to choose whatever concurrency model they feel is needed for

their particular wrapper agent; ordinary Java threading is still possible from within an

agent behaviour.

A.4.3 Using Behaviours to Build Complex Agents

The developer implementing an agent must extend Agent class and implement agent

specific tasks by writing one or more Behaviour subclasses. User defined agents

inherit from their super class the capability of registering and deregistering with their

platform and a basic set of methods (e.g. send and receive ACL messages, use

standard interaction protocols, register with several domains). Moreover, user agents

inherit from their Agent super class two methods: addBehaviour(Behaviour) and

removeBehaviour(Behaviour), to manage the behaviour list of the agent.

JADE contains readymade behaviours for the most common tasks in agent

programming, such as sending and receiving messages and structuring complex tasks

as aggregations of simpler ones. For example, JADE offers a so-called JessBehaviour

that allows full integration with JESS, a scripting environment for rule programming

offering an engine using the Rete algorithm to process rules.

76

Behaviour is an abstract class that provides the skeleton of the elementary task to be

performed. It exposes three methods: the action() method, representing the "true" task

to be accomplished by the specific behaviour classes; the done() method, used by the

agent scheduler, that must return true when the behaviour has finished and false when

the behaviour has not and the action() method must be executed again; the reset()

method, used to restart a behaviour from the beginning.

JADE follows a compositional approach to allow application developers to build their

own behaviours out of the simpler ones directly provided by the framework. Applying

the Composite design pattern, ComplexBehaviour class is itself a Behaviour, with

some sub-behaviours or children, defining two methods addSubBehaviour(Behaviour)

and removeSubBehaviour(Behaviour). This permits agent writers to implement a

structured tree with behaviours of different kinds. Besides ComplexBehaviour, JADE

framework defines some other subclasses of Behaviour: SimpleBehaviour can be used

to implement atomic steps of the agent work. A behaviour implemented by a subclass

of SimpleBehaviour is executed by JADE scheduler in a single time frame. Two more

subclasses to send and receive messages are SenderBehaviour and

ReceiverBehaviour. They can be instantiated passing appropriate parameters to their

constructors. SenderBehaviour allows sending a message, while ReceiverBehaviour

allows receiving a message, which can be matched against a pattern; the behaviour

blocks itself (without stopping all other agent activities) if no suitable messages are

present.

JADE recursive aggregation of behaviour objects resembles the technique used for

graphical user interfaces, where every interface widget can be a leaf of a tree whose

intermediate nodes are special container widgets, with rendering and children

management features. An important distinction, however, exists: JADE behaviours

reify execution tasks, so task scheduling and suspension are to be considered, too.

Thinking in terms of software patterns, if Composite is the main structural pattern

used for JADE behaviours, on the behavioural side we have Chain of Responsibility:

agent scheduling directly affects only top-level nodes of the behaviour tree, but every

composite behaviour is responsible for its children scheduling within its time frame.

77

Appendix B:

Geometric ontology

B.1 Introduction

Following XML data provides the information of trivial geometric ontology used for

implementation. This can be easily extended for complex analogy problems with

improvements that were discussed.

<?xml version="1.0"?>

<!DOCTYPE Ontology [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY xml "http://www.w3.org/XML/1998/namespace" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<Ontology xmlns="http://www.w3.org/2002/07/owl#"

 xml:base="http://www.semanticweb.org/ontologies/2011/3/GeometricOntology.owl"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:xml="http://www.w3.org/XML/1998/namespace"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 ontologyIRI="http://www.semanticweb.org/ontologies/2011/3/GeometricOntology.owl">

<Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>

<Prefix name="" IRI="http://www.w3.org/2002/07/owl#"/>

<Prefix name="xsd" IRI="http://www.w3.org/2001/XMLSchema#"/>

<Prefix name="rdfs" IRI="http://www.w3.org/2000/01/rdf-schema#"/>

<Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>

<Declaration>

<Class IRI="#Big"/>

</Declaration>

<Declaration>

<Class IRI="#Circle"/>

</Declaration>

<Declaration>

<Class IRI="#Direction"/>

</Declaration>

<Declaration>

<Class IRI="#Down"/>

78

</Declaration>

<Declaration>

<Class IRI="#Ellipse"/>

</Declaration>

<Declaration>

<Class IRI="#Equilateral"/>

</Declaration>

<Declaration>

<Class IRI="#Isosceles"/>

</Declaration>

<Declaration>

<Class IRI="#Large"/>

</Declaration>

<Declaration>

<Class IRI="#Left"/>

</Declaration>

<Declaration>

<Class IRI="#Medium"/>

</Declaration>

<Declaration>

<Class IRI="#Parallelogram"/>

</Declaration>

<Declaration>

<Class IRI="#Rectangle"/>

</Declaration>

<Declaration>

<Class IRI="#Right"/>

</Declaration>

<Declaration>

<Class IRI="#Scalene"/>

</Declaration>

<Declaration>

<Class IRI="#Shape"/>

</Declaration>

<Declaration>

<Class IRI="#Size"/>

</Declaration>

<Declaration>

<Class IRI="#Small"/>

</Declaration>

79

<Declaration>

<Class IRI="#Square"/>

</Declaration>

<Declaration>

<Class IRI="#Triangle"/>

</Declaration>

<Declaration>

<Class IRI="#Up"/>

</Declaration>

<EquivalentClasses>

<Class IRI="#Big"/>

<Class IRI="#Large"/>

</EquivalentClasses>

<SubClassOf>

<Class IRI="#Big"/>

<Class IRI="#Size"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Circle"/>

<Class IRI="#Ellipse"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Down"/>

<Class IRI="#Direction"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Ellipse"/>

<Class IRI="#Shape"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Equilateral"/>

<Class IRI="#Triangle"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Isosceles"/>

<Class IRI="#Triangle"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Large"/>

<Class IRI="#Size"/>

80

</SubClassOf>

<SubClassOf>

<Class IRI="#Left"/>

<Class IRI="#Direction"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Medium"/>

<Class IRI="#Size"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Parallelogram"/>

<Class IRI="#Shape"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Rectangle"/>

<Class IRI="#Parallelogram"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Right"/>

<Class IRI="#Direction"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Scalene"/>

<Class IRI="#Triangle"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Small"/>

<Class IRI="#Size"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Square"/>

<Class IRI="#Rectangle"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Triangle"/>

<Class IRI="#Shape"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Up"/>

<Class IRI="#Direction"/>

81

</SubClassOf>

<DisjointClasses>

<Class IRI="#Down"/>

<Class IRI="#Left"/>

<Class IRI="#Right"/>

<Class IRI="#Up"/>

</DisjointClasses>

<DisjointClasses>

<Class IRI="#Equilateral"/>

<Class IRI="#Isosceles"/>

<Class IRI="#Scalene"/>

</DisjointClasses>

<DisjointClasses>

<Class IRI="#Large"/>

<Class IRI="#Medium"/>

<Class IRI="#Small"/>

</DisjointClasses>

</Ontology>

82

Appendix C:

Analogy problems for verification

C.1 Introduction

Following figures (Figure C.1 to Figure C.10) are the geometric analogies that were

used to evaluate the model. Those have been created mainly from the intuition got

from Thomas G. Evans testing problems and deliberately made them non ambiguous

but merely to capture the analogical reasoning with low order cognition. Furthermore

in all the Figures number of solutions were reduced to three to improve the

computation speed.

Figure C.2: Analogy problem 1

83

Figure C.3: Analogy problem 2

Figure C.4: Analogy problem 3

84

Figure C.5: Analogy problem 4

Figure C.6: Analogy problem 5

85

Figure C.7: Analogy problem 6

Figure C.8: Analogy problem 7

86

Figure C.9: Analogy problem 8

Figure C.10: Analogy problem 9

87

Figure C.11: Analogy problem 10

