LB 100001 192

University of Moratuwa

Capacity Improvement of CDMA Systems by Adaptive Beam forming using GRNN Techniques.

.....

,

ι,

Submitted in partial fulfillment for the degree of Master of Engineering in Electronics and Telecommunications

621.38 63 621.58 63

University of Moratuwa

87278

C. S. Jayawardena

August 2003

8.15.18

DEDICATION

4

4

.

CONTENTS

Page

Abstract List of Figures List of Tables List of Source Codes List of Abbreviations	
CHAPTER 1 INTRODUCTION	1
 1.1 Overview of Mobile Communication Systems 1.2 Conventional Multiple Access Technologies 	1 2
 1.2.1 Frequency Division Multiple Access (FDMA) 1.2.2 Time Division Multiple Access (TDMA) 1.2.3 Code Division Multiple Access (CDMA) 	2 3 4
1.3 Capacity Increase in a Mobile Communication System	5
1.3.1 Frequency Re-use1.3.2 Space Division Multiple Access (SDMA)	6 8
1.4 Overview of the Proposed New Statistical SDMA Model	9
CHAPTER 2 BEAMFORMING AND ADAPTIVE ANTENNA ARRAYS	10
 2.1 Antenna Arrays 2.2 Adaptive Antenna Arrays 2.3 Smart Antenna Technology 	10 11 12
2.3.1 Smart Antenna Systems	13
2.3.1.2 Adaptive Smart Antenna Systems	13
CHAPTER 3 NEURAL NETWORKS FOR BEAMFORMING	15
3.1 Introduction3.2 Artificial Neural Networks for Beamforming	15 16
3.2.1 Radial Basis Networks3.2.2 The GRNN Architecture	16 18
CHAPTER 4 DIRECTIONAL BEAMFORMING USING GRNN	20
4.1 The Dipole Array4.2 The Microstrip Array	20 22

'n,

٤

i

The objective of this work is to demonstrate a method of improving the capacity of a Code Division Multiple Access (CDMA) system by employing Neural Network based Adaptive Beamforming. A Generalized Regression Neural Network was used for this purpose.

First, the Neural Network was designed, which could accurately predict the phase angle of the feed current to a ten-element antenna array in order to form a directional beam towards a given signal source direction while forming a null towards a given interfering source. Then, the model was developed to form multiple beams towards different signal sources.

Next, using the multiple beamforming technique, a new Space Division Multiple Access (SDMA) model was developed to improve the capacity of an existing CDMA system that has already become saturated. This SDMA model is based on the statistical distribution of the mobile users within a sector. It assumes that the user distribution within a sector is non-uniform. More densely populated areas within a sector are identified and the users in a particular area are grouped together. One such group is called a cluster. Similarly, a number of clusters are selected and the three most populated clusters are served with three isolated directional beams operating on the same frequency achieving SDMA.

It was observed that this new SDMA model could improve the capacity of existing CDMA systems up to a maximum of 20% with three directional beams.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

1

LIST OF ABBREVIATIONS

CDMA	Code Division Multiple Access
DOA	Direction of Arrival
DSSS	Direct Sequence Spread Spectrum
FDMA	Frequency Division Multiple Access
GRNN	Generalized Regression Neural Network
PCS	Personal Communications Services
PN	Pseudo Noise
RF	Radio Frequency
SDMA	Space Division Multiple Access
SINR	Signal to Interference and Noise Ratio
TDMA	Time Division Multiple Access

· • · •• ·

:

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

.

V