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ABSTRACT 

This thesis presents the results of an experimental investi

gation into the strength of brickwork under biaxial tension-comp

ression. Since there is insufficient experimental evidence available 

on the strength of brickwork under biaxial stress to explain the 

behaviour of brick masonry walls under in-plane loads, experiments 

were carried out on one-sixth scale model brickwork panels under 

uniform stress conditions. An idealized failure surface is suggested 

based on experimental results, and the effect of shear bond strength 

and tensile bond strength on the results is discussed. 

An iterative plane stress f ini te element computer programme 

incorporating the above information is used to simulate the in-plane 

behaviour of brickwork. Brickwork is treated as an e las t i c , isotropic 

material with limited capacity when stressed in a state of biaxial 

tension-compression. The model reproduces the non-linear behaviour 

of masonry produced by progressive cracking. Shear wall tests have 

been used to test the validity of the analytical model. Sensitivity 

analysis of the elast ic constants used in the model are performed to 

i l lus t ra te their influence on the calculated stresses. 

The influence of the stress distribution on shear wall behaviour, 

and the derivation of a failure criterion for local failure in masonry 

shear walls, are described. This criterion, in terms of the vertical 

stress and shear stress at a point, has been derived for particular 

values of horizontal stress from the three dimensional surface mentioned 

above. The effect of the shape of the specimen, testing technique, 

and boundary conditions on the shear strength of masonry panels is 

discussed. 
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NOTATIONS 

Each symbol used in the text is explained where i t f i r s t 

appears. However, a summary of frequently used symbols is also 

presented below for convenience. 

Note: (1) The following general terminology has been adopted: 

{ } denotes a column vector 

[ ] denotes a row vector, or rectangular or 

square matrix 

[ ] T denotes the transpose of a matrix or a column 

vector. 

(2) The notation adopted in the computer programme 

is l is ted in Appendix C. 

o"i Major principal stress 
cjg Minor principal stress 
a t Principal tensile stress at fai lure 
a n Average compressive stress at the brick-mortar interface 
Oĵ  Stress normal to the brick-mortar interface 
a^g Normal stress at the bed joints 
a^p Normal stress at the perpend joints 
a ,a Local stresses parallel to x and y directions (parallel x y 

to bed joints and perpendicular to bed joints respectively) 
x Q In i t ia l shear bond strength at the brick-mortar interface 
T Local shear stress 
T Average shear stress at the brick-mortar interface av 
t Tensile bond strength at the brick-mortar interface 
9 Direction of relative to the bed joint direction 
f Principal compressive stress 
f t Principal tensile stress 
f Compressive strength of masonry 
f t c l Diagonal tensile strength of brickwork 
fK+. Flexural tensile strength of brick unit 
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u Coefficient of fr ict ion : 
X mean 
S.D. Standard deviation 
C. of V. Coefficient of variation 
u, v, Displacements in x and y directions 
2a,2b Rectangular element length and height respectively 
{c} Displacement function coefficients 
{ t} Element displacements 
[Z] Transformation relating displacement function coefficients 

to element displacements 
[Z n ] Transformation relating nodal displacement function 

coefficients 
{n} Nodal displacements for an element 
[ P] Transformation relating nodal and element displacements 
{e} Element strains 
e ,e ,e Strain in x and y directions and shear strain 
[ s] Transformation relating element strains to element displacements 
[ B] Transformation relating strains and nodal displacements 
[ D] Constitute strain-stress matrix 
E Elast ic Modulus 
v Poisson's Ratio 
{a} Element stress 
{f} Nodal forces 
[ K] Element stiffness matrix 
[k] Structure stiffness matrix 
W ' Load applied normal to the bed joints for shear walls 
P Shearing load applied for shear walls 
a tan'^W/P) 


