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ABSTRACT

This dissertation is mainly a review of some of the work done
by various authors on the long wave (shallow water) approximation and
its applications to different problems. Shallow water wave equations
are derived which are identical with Stoker's equations but the method

of derivation is slightly different.

The method of characteristics is used in solving the differential

equations governing the shallow water wave theory. The climbing and
breaking of waves on sloping beaches is discussed. After the derivation
of the transport equations for the discontinuities that can exist across
a characteristic an equation is obtained for the time énd hence the
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bore in a sloping
strea g h of uniform and
non-uniform slope is also discussed briefly because of its close

resemblance to non-uniform shock propagation in gas dynamics.

The notion of tsunami waves and the use of shallow water wave
theory in the study of the numerical simulation of realistic tsunamis is

also discussed briefly.



1. Introduction

The formation of waves in water is a natural phenomenon. Many
mathematicians have formulated theories regarding various types of
wave propagation. In Section 2 of this review a theory is developed
to explain the behaviour of long waves in shallow water and although
the method of derivation is slightly different the result is identical
with .the well established mathematical model first derived by Stoker(24),
commonly known as the shallow water wave approximation which should more
properly be called the long wave approximation. The theme of this
dissertation is the long wave (shallow water) approximation and some of

its different applications. A survey of some of the work done by various

authors is included here.

«:-.10 LAl e 244 F oY Ko adrlils T4 2 A el FlavCy results only in
certa tipe { problems such as eaking of waves

over Op ] each. carrier and used Stoker's (24) non-
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linear shallow water theory to study breaking of waves and also the climbing
of waves on a sloping beach without breaking. Their method was to specify
the shape of the wave first and then to find the criteria for breaking,
using the non-dimensionalised version of the shallow water equations and

a constant slope beach.

In this dissertation we examine a similar problem using a more
general method due to Jeffrey (12) which is directly applicable to problems

in which the beach has a non-uniform slope.

P

A qualitative treatment of the problem of ;he change of form
of waves moving into still water in the context of non-linear shallow
water theory is discussed in Section 3. The method of characteristics
which is the most convenient method for trecating the initial value problems

associated with the differential equations (2.15) and (2.16) is used in



this work.

In Section 4 the propagation of waves having steadily decreasing
and steadily increasing surface elevations are discussed. Then we
proceed to discuss the continuity of the motion and prove that in the
case of a wave having steadily increasing surface elévation the motion is
continuous only up to the point of intersection of two characteristics

which we interpret physically as the point of breaking of the wave.

The transport equations for the jump quantities concerned are

derived in Section 5 and then we proceed to find the general criteria for

breaking.
We are then inevitably led to consider the possibility of
discont i: L bms Thisiyberofmetién; [cakkes bore if the
(3)
discont. Llﬁf fromt-is 4 movingonetand g hydranliz p if it is statiomnary,
is a cor ¢

In Section 6 the problem of the propagation of a smooth wave
initially in the form of a siné wave into still water above a constant
slope beach is treated. An equation is derived for the time, and hence
the distance, of breaking which is defined as the point at which the slope

of the front of the wave first becomes infinite.

The change in the form of pulses initiated as sine waves as they
move into still water is illustrated by diagrams for a number of cases in

Section 6.

In Section 7 we briefly discuss some of the specific problems
treated by various authors, We also discuss briefly the notion of tsunami
waves as treated by Mader (19) and the use of shallow water long wave

theory in the study of the numerical simulation of realistic tsunami waves.



2., TFormulation of the theory of Long Waves

We shall use the following equations of hydrodynamics and
boundary conditions (24) in terms of Euler variables in deriving the
shallow water theory.

Incompressibility

' [

w +v ,+c.>', = Q (2.1)
x' be}

momentum equations

x! &j 3 F (2.2&)
T'l" i !
! U ey = Py
)
! ! ol t ! P:z’
C CQ c 2 = - (2.2¢c)
Irrotatignat
= ! ( | ! i ;
‘ R Homartae R (2.24)
Free surface condition
¢ t ? { ' '
+ D = =
'YL +un : U oon Yy ‘Y\ (2.3)

| .
Ld, ~u+dd =0 on Y= 3) (2.4

! 3
« [ [ Y .
‘ where W U co are the velocity components in the ¢ Y ,9 directions
; respectively.
'
. ‘) is the pressure and subscripts denote derivatives in the direction:
indicated.

. : 't ,
The co-ordinate axes are taken with the 2 4 plane in the
’
undisturbed water surface and the positive‘\\s -axis upwards. The free

. ' ! Pt
surface elevation is given by i ’—"-"f\‘(il}& ;t,> and the bottom surface by
! t,
N = d(x3).
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Cross-section by plane Z = 0
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h = undisturbed water depth at the origin of co-ordinates

A = characteristic wave length.

As already implied by (2.3), we assume the pressure to be zero on the

free surface of water. In order to transform the equations (2.1) - (2.4)

to equations with dimensionless variables we introduce the three quantities

) h,k,A with dimensions of length, and € an arbitrary constant to be
chosen. The transformation is as follows
~ = A%, w o= E@k)y‘u.
Y= hy, V= e hghi
e o=k, 4= e %gaaj‘m.
# £ =@A@};, fr\'/-.-. ehn, p= pahp, d = hH.

and c =CC, where C_ = \‘3&\.




By substitution of these into (2.1) ~ (2.4) we get the following

equaticns in terms of the new dimensionless variables

U,x-(-\) +Cd, = O

y* Ry (2.5)
b o= 2.6
eiwg—e Wl QUL+ ecou«g} rp =0 (2.62)
A
} = (2.6b)
< %_1\5{; euy + guu\f eco‘ugg + \93*- | =0
K9 o +€ UG + €U+ € coed 3 =0 (2.6e)
eﬁl,cewan-r 3+k>3
k.zg Kzog W = L‘U
R A O (2.6
1V T N D I T R P 7 Y af g ¥ N (2.7)
e P =0 ‘ L
571 ey (2.8)

: H

Now we shall consider the effect of the r.atio of the scale lengths in
solving the equations (2.5) - (2.8). When the depth of the undisturbed
water is small compared with the wave length, this ratio will be small.
In solving the equations (2.5) and (2.6) we choose € = l,;}% = 1 and

h

let —=<% 0. It then follows from (2.6d) that \L_ and QO _ are,to fir‘st:
N X 3

ovder

aindependent of'\j , so that from (2.5) we have

Vo= (e )y + P(x3k)
where é is an arBitrary function of =C,3 and t.

Substituting for \J in (2.8) we get

WH_ + coH3= - (_u_1+coz}H + %Cx;g,t)




that is

@+ M), = G,

and so

e O +(\:LH)£ wH)S 2.9

Again from (2.6b) we have,

+\ =0 v
Py
Integrating with respect to?j gives

‘5“"‘3 = F(x,3%). (2.10)

where F is an arbitrary function of ’JC,,‘S th_‘t

But F:O on ‘j=Y\

so tha
’w‘."'"‘ :\7' 1.

&5
Thus
‘ T I\J)VJ - A4 . A ) (2.11)

Using (2.11) and (2.9) in (2.6a), (2.6c) and (2.7) together with the

assumption that US=OC , we get

W+ LU ol 41 = O (2.12)
§
wt"' wed + coco3+V\3= o (2.13)
and
e W L= = (rea I+ () eoM)
that is |

VL-'\':‘. E\LO\" H)] ;_- K_Co (_V\— H>}3= o (2.14)

(2.12), (2.13) and (2.14) are the non-linear shallow water equations




for 3-dimensional flow over an arbitrary smooth bottom. Thus we
arrive at the required shallow water theory. Some authors have
chosen to use lincar shallow water theory as the basis for the tidal
wave theory in deep oceans. (Naturally oceans are not shallow, but
their depth is very small compared with the wave iengfh of tsunami

waves so that the shallow water theory is appropriate).

We should note here that the functions WO and V| depend
on X ,% and t only. Ifco is taken to be zero, and we assume that

all quantities are independent of 3, we get the following equations

W WU+ V\_xf- o (2.15)
o (M=H) ] =0 (2.16)

Ewk 1 TN

These differential equations are identical with the basic equations
given by Stoker (24) except for the fact that the factorta y the
acceleration dpe'to gravity, is missing in (2.15) as we have introduced

a dimensionless pressure.



3. Rearrangement of basic equations and proof of the existence of

characteristics

A\j

vee guvface,
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Definitions

Quasilinear systems

In a system of partial differential equations, if the elements
of the unknown vector and its derivatives do not occur linearly, then
the system is said to be non-linear, In a non-linear system, if the
highest order derivatives of the unknown vector occur linearly then the
system is said to be quasilinear. .In its general form a first order

quasilinear system may be written as
= 3.1
.PU£+ QUsR =0 (3.1)

where P and Q are NXN matrices, Pnonsihgular, and R and U are

nxi coluvmn vectors. P ,Q and Rarc all functions ofU , X and t .



Instcad of the general system (3.1), we may, without loss of generality,

write

U+ A U+r B =0 (3.2)

where A ALU 'I_‘L) is a W xL matrix, B BLU 'X—J(.) is a nxti
column vector and U=(U«‘,\L2;"' ') where '\l =\, (3({_) L=, 2N

and | denotes the transpose operation. Unless otherwise stated the

independent variables A and kt are considered as scalars.

Weak and strong discontinuities

A discontinuity in the derivative of a function is called a

weak e P ARE 1R HFERABHR R YRS kR n itself is called
a st I_g‘—m{fis adinuithyl

: propagation of
waves into water at rest above a sloping s.ea bed given by 'B+H(1)=°
It follows from the previous theory that the surface wave velocity
C(x t) Q—\-&VO Y\ being the elevation of the free surface. . Incorporating
C in (2.15) and (2.16) we get |
W o+ Wik, +2CC ~H, =Q S
and

= 0 ‘
ZC.t—» R,LLCDL‘*' CU.:X. | (3.4) |

If the sea bed is of constant slope,, then H‘JC= - and the |
shallow water equations can be expressed in matrix form as given by

Jeffrey (12) as follows,

U+AU+B =0 (3.5)
1 L o
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[EF i{i‘_(
“with *:, % denoting the partial differentiation with respect to time

and distance respectively and

o8] aslg o). sl

Our next problem is to find if the system (3.3) is hyperbolic. In

order to achieve this we shall first change the variables from DCJE to
" '

Q,L , where

(F-.—. JP@C,{') and b=t (3.6)

It is well known that discontinuities of a derivative of a solution

cannot occur except along characteristics (Courant and Lax (8)) and we

assur iz =10~ 0 theqdne]ofqthe family ofil.& haracteristics (to
3

be defiamidater Yy IOMEs | 1SS qhi @ SapEIAPPES take & =0 as

one (

The new system of co-ordinates will be semi-curvilinear and

for the transformation we shall use the following differential operators

O =2 2 L% >
at a -g-@ 4+ t ',b.—{—’" (3-7)
and

.._a._. @é@_ -\-@LE—E.Q (3.8)
fbx ,a ¢ ,a ll

't ¢=COV\S+RW+

. / )
t".—:CDV\S"'th,
e 7
) Y.

Figure 3.2
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"
Since L=t , the operators become,

D3 - 2 4+
?t 3 ot

O = & 2.
i DX (‘b'f-'ade

Lo

and

Thus the system (3.5) can be written in terms of the new variables as:

dthq} + Ug + A?XU@_ + B =Q

that is, as

Ug + (CPC’ACK)U@‘" B=0O -9

Now, along d)(x,hj = constant

and sc

g}'__ = - ¢t = >\ , | say
ax & |
P,

Hence (3.7) becomes

Ug |, A - A T)Usr B, = O
5 rrovicea| A=A T[40

Thus we can solve for UC y in terms of U

The curves C. defined by

C: X=X, whee|A-AT|=0

2

are called characteristics if the eigen values A. are real and distinct,
When the curves ( are real the equations are then called hyperbblic.
The eigen values ofA in (3.5) are >\L.|) =U+C vand xz):'\\»"ca y SO
that they are real, and hence system (3.5) is hyperbolic with two sets

0) 2)
of characteristic curves C, and C corresponding, respectively, to

0) @)
7\. and?\-
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It has been established by many authors that discontinuities

in the derivative of a solution of a quasi-linear hyperbolic system

such as (3.5) are propagated along characteristics. Now we shall
A“. x
e
1o
ot
R
| S Poas S
|
l o
0
RI2; !
Q' X

£ A ol b o

)
ad)

difference (3.9) across the wave front tréce whose equation we take to
be given by C‘)C‘I,‘k) = 0. That is, we take? = 0 to bound the
disturbed and undisturbed regions of water so that it represent‘js the
projection or trace in the @,‘t} plane of the wave front. The para-
meterisation of the curves 43 = const to achieve this will be discussed
later, We know that Ut‘:' is continuous ac';ross %DCI,"L)= 0 and that‘Uq:

is discontinuous. Hence if Q’R are points to the right and to the left

of P on the wave front we can write,

(Ue).- (Ue")q* W)tl i Aq)x)quk— H)tl +A%}U¢ Q

or

{iUgﬂ N i@g + A4, ) U<t>B N %BB =0 (3.10)
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T s 00,

If Q)R—&P , then the equation (3.10) becomes,

&(bl' +Af\) U‘A 0 . ‘ (3.11)

(U, M Uy ),

Since we have taken 'Y arbltrarily on the wave front we can drop the

" where,

suffix F) and can write (3.11) as,

((RLI + A@x)&UqA: D - BRNERTS

The wa g Idave/cirsy

d;g*x. -\—Ct)td&. =0
whence,

dx. =0
~ &k N d‘)t 1 (3.13)

Now from (3.10) and (3.11)

QA - %l) q)qu’] =0 (3.14)

Setting A = % = = -Cc%‘-, (3.13)
x

equation (3.14) becomes

(A—-7\I") [Uq:} = 0, provided (’P # 0
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There will be a non-trivial solution for Uc?if and, only if,
L« :
’A.-)\ II =0 (3.16)
In general if A is an NxN matrix there will be V\, eigen values,
g
V@ W)
)\% ki- —.. N~ and hence N, eigen vectors for the solution of (3.16).
]
The curves q) = constant will be real if and only if all )\ are real
and distinct. Further, if all the eigen vectors are linearly independent,
A
] we call the system (3.5) totally hyperbolic. This again is our hyper-
?.
3 bolicity condition appearing in the context of the derivativqu) ofU
1 normal to the wave front trace.
In our problem the eigen values ofA are given by,
;"" .L ;‘ W l N
o) . 3
Eb =) mdc uos i}
A 4 . 7.:;;'_‘ I o
' or by
o) Q) -
AN'=w+C awnd A= w-C, (3.17)
| ®)
: and the corresponding left eigen vectors 9. are
i
| 9 (1,2] #= (2]
~ i
!
3 Thus, as already sgated, the system (3.5) has two families of character-
, ) 2
| .
tstics C ana C determined by the solutions of the equations
P% @) )
.‘ c.odh = N (3.19)
i Todt
A for L = ‘,2/
o) @)
_y'l‘he characteristics C,° and Co originating from O in the @,t) plane
L I
&
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will be as shown in the figure 3.4

@) pe
Co , v)
Co
\
o ALy
(}éb/ 5\\\\\\\\ °
& \
T~ qegiov\, 0& 1est
i 0 x

Figure 3.4

If tl hich is at rest

(for ;%%%1

and
Co@') = ,\-—W\,'l (3.20).

From (3.17) and (3.19) we can determine the form of the characteristic
0)

(;3 (say) which forms the wave front througﬁ 0 as a function of time.

Cm. dx - ¢
O’ d_t Q

that is,

dx - M- mx (3.21)
G ==

which when integrated gives,

(3.22)
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@) ) Wy Ad)
Now premultiply the system (3.5) by ,Q. and use the relation 1 A =A 2'
to get,
@) @) W) |
iLU-\»)\U)-\-ﬂ,B =0 (3.23)
+ x

*)

along C

Q)
Using the values of ,Q, R U and B , we get,

) - 3.24
\LbiZCt+W\. ) | (3.24)

and on integrating (3.24) with respect to time, we find that

Q
: 9 C (3.25)

, Q)
www b met. aglk q C (3.26)

<
]
(e N
0y
T 710

We shall assume that initially at t = O, the values of WL and C are

prescribed, say by , .
w(x,0) = Wiy
c(x,0)= C ) (3.27)

\

S e

By use of the initial conditions we can determine the constant K\ and Kz
Then the values of W and C for all points in the Qt,’c) plane can be
obtained by solving the differential equation (3.21) for the characteristic
through that point., As (? is so far specified only by the differential
equation (3.13), in which for waves moving to the right )\.’—‘-7&5):’\\.‘*{3,

we must give initial conditions for C‘D as it is a co-ordinate variable

for which <{D = 0 is the wave front through the origin. We set <b@)0)=1,

when 43)0 ahead of the wave front and ¢<O behind it. As 1

(22)
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is the Jacobian of (3.6), this implies that initially no two members of

the same family of characteristic curves are tangent tc each other, so
that initially they will constitute a regular semi-curvilinear co-ordinate
system in thetF)k) plane. We shall discuss later the case when the

characteristics cease to have this property.

Simple Wave

It is possible to have a problem in which (a) the initial
undisturbed depth of water is constant, (b) the water extends from the
initial point to infinity at least in one direction and (c) the water is

either at rest or moving with constant velocity with its free surface at

zero elevation at the time t = 0, UInder these conditions we see that

one of %‘”57:' 4: &Y famiMHds] idBVES 21D Lo Kils of straight lines
()

along whigh\ , be ding motion is

called

1
Region of vest.

3\?

Figure 3.5

When a disturbance is initiated at t = 0, it is propagated into the region
of rest and the water will remain at rest until the disturbance reaches

that point, The nature of the motion is determined by the character of
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the disturbance at x = O. Since there is a disturbaince in the region II
(see Fig. 3.5), one set of characteristics will be straight lines and
the other curved lines. This has to be so, or else if both sets of

characteristics are straight lines, then that region will be at rest.
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4. Propagation of Waves into still water Cay
ot (B
=2 L
3

There is a remarkable difference between the propagation of
waves having a steadily decreasing surface elevation V& at x = 0 and

those having a steadily increasing surface clevation YL at x = 0,

The slope of any characteristic issuing from t = U on the

t axis (Fig. 3.5) is given by,

dx = 3CE)-2C, 4 (4.1)
dt -

This equation gives us a complete family of straight characteristics.
Now if qlﬂl,t) at x = 0 is a decreasing function, then (Z\t) decreases

with increase of time. Hence the slope S!Z: of these straight line

charac 7 indvedseby a3l Wimcremses and lvanget family of straight
charactexristi g 5T1 -0 from th S. In the other
case nce % also

increases as t increases. Thus the characteristics converge Lo a

point. In the first case the motion is continuous throughout and in the
second case the motion is continuous only up to the point of intersection
of two characteristics. Physically we say that the wave breaks or

developes a bore once the solution ceases to be continuous.

The propagation . waves into still water has been.investigated
by many authors. Jeffrey (1. ~onsidered a smooth fronted wave, (that
is a wave Qhoéé slope is continuous in the free surface, but which has a
discontinuity in the derivative of the surface slope across some line
in the free surface). The author also assumes an arbitrarily smooth
sea bed profile and establishes the fact that breaking at the wave front
cannot take place until the waves reach the shore line. Jeffrey and

Tin (14) considered thc propagation of non-smooth fronted waves over

223413




vertical walled objects én a flat sea bed. In a problem of this type,
where the sea bed is not continuous and smocth, the reflection of waves
is véry significant. Carrier and Greenspan (7) considered a sea bed
of constant slope and showed that breaking depends on the initial shape
of the wave and the particle velocity distribution. . There is still no
general theory for the propagation of waves into water above a sea bed

of arbitrary shape.

Waves in channels

In deriving the differential equations of the flow in open
channels we should consider the existence of significant forces other
than gravity, such as friction. Stoker (24) using the one dimensional

theory a¥ thefelloning differentda k €obkatilon

e

Figure 4.1

equation of continuity,
@\"’)%” Ac=19 (4.2)

ecequation of motion,

“C\Nf%‘u = S%—Sgam'jg \ “.3
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where A = area of cross-scction
q = influx per unit length of channel
S = é_Z__ , the slope
dx
Sf = the friction slope
v = the velocity
and y = the depth

The aifferential eduations governing the flow are expressions of the
laws of conservatiqn of mass and momentum. In deriving them the
following assumptions are made. 1) The pressure in water obeys the
hydraulic pressure law, 2) the slope of the bed of the river is small,
3) the effects of friction and turbulence can be represented by a
resistance force depending on the sauare of the velocit';y V. These

equati ar edl MCIdd ¥ rAbiv) Ced i, by asAsiKa, s that form in

.;‘:
¥

open channels

Roll Waves

Sometimes in open channels there exists a flow in the form of
a progressing wave moving dosnstream at constant speed without change in
shape. This type of wave could be expressed mathematically as a function
of depth '\J(x,{b and velocity ‘UCD(,{‘.) . Stoker (24) expressed “3 and Y

in the following form,

yGeE) = (- Ut) (4.4)

)= vE-U L) (“:3)

where U is a constant. : |

Introducing a new variable é where %: 'I-‘U‘L » Stoker (24) \

S ke
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transformed (4.2) and (4.3) to,

- U )U%*'ﬂui =0 (.6)

AR 2l 4

and

: (- U W+ 9+ q(8,-9)=0 .

for a rectangular channel of fixed breadth and slope. The solution of

(4.6) and (4.7) is

@“ '%Ea)"di + ‘3@&“8): %

; where
E . o D = constant of integration of (4.6).
a BT

' With tl 5 thilsvaisfiarén tiabraquatiom it sl pa: yle to describe
: a specialifigpe of : Lt I . known as roll
;
1 waves

bOVe bove bove

Figure 4.2

These waves consist of a series of bores connected by a

stretch of smooth flow. This type of wave occurs in steep channels.

Practical observations lead one to wonder whether there are

discontinuous periodic solutions with discontinuities in the form of

bores. But the "shock" or bore conditions were derived assuming no
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resistance was present and it was confirmed by Dressler (8) -that the
resistance terms play no role in shock conditions. Dressler also
proved that roll waves cannot occur either if the resistance is zero

or if the resistance exceeds a certain critical value. As the
resistance decreases, the size of the wave decreases and if the
resistance becomes ;arge the profiles reverse their directions and can
no longer be joined by shocks. Accordiné to Dressler (8) the critical
value is reached when the dimensionless resistance coefficient equals

one-fourth the value of the channel slope.

Problems in non-viscous unsteady flow can be solved by using

the Riemann method of characteristics to integrate the partial differ-

ential equations. The problem of roll-waves cannot be treated in this
way as thisdy oA PGS dapendylBA3idBlly Mpondiigsistance effects.

&

=)
Solitar

There exist waves of finite amplitude consisting of a single,
elevation which propagate without change of shape. Such types of wave

are called solitary waves.

A theory was developed by Keller (16) by extending the theéry
of Friedrichs (9) to second order terms to get both solitary and enoidal
type waves. In the lowest order approximation, the only possibility
is the uniform flow with undeformed free surface. But if the speed U
of the flow is taken to be critical, that is, U= Iéﬁ: , where Vx
iﬁmfﬁé”hndisturbed depth, then a bifurcation phenomenon takes place and
the second order terms in the development of Friedrich's theory lead to

the possibility of solitary and enoidal waves.

Stoker (24) has shown that a steady flow with critical speed

U ?—Ja\'\v is highly unstable, since the slightest disturbance leads
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to a motion where infinite elevations of the free surface occur in the
context of the linear theory. Thus we should adopt the non-linear

. e 1s R
theory to explain solitavy waves.' T's

/\
A\
\, |
h
VA Ry A A A S ///)////*‘x
bottom.
Figure 4.3
i SabinaugyvHave
Stoker olita e, she g it

‘\3= I F3 X Sen 2D A
2' 14

when the horizontal component of the velocityW is

2
w= 1-3% Seckz%_’ag,

and where X is a quantity which depends on the speed U . These
equations show that the solitary wave is of symmetrical form and the
amplitude increases with the increasec of speed U . A review of the
occurrence of solitary waves and of their properties is to be found in

the work of Jeffrey and Kakutani (15).
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5. Transport Equations

We shall use the method due to Jeffrey (12) in deriving the

u)
transport equations for the discontinuities that can exist across
in the case of a wave advancing up a sloping beach. Hereafter we call
i
these C: discontinuities. ALH
)
X

) 40

Assume that at t = 0, a periodic wave exists in the region x & O

-

(Fig. 5.1) and that the water is undisturbed in the region 0 £ x & d;

x = d is the shore line. Let the disturbance Y| be given by

mlot) = Asin oot (5.1)

.

The initial values suffer a Lipschitz discontinuity across the wave front.
Q)

These discontinuities are propagated along the (;Q characteristic originating
at the origin. We say that (mathematically) the breaking of wave at the

wave front will take place first at (Etcrtt:> in the (2F>t:) plane when
L) W)

the (: characteristics intersect on the (%3 characteristic to form a

cusp and the slope of the wave front at this point becomes infinite.

Now let us introduce the new variables
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(i}(l,t) = coAnstant and ’t“'—"t (5.2)

and as shown earlier require C‘) to satisfy the equation

) |
C‘)t*‘ N cbx” o o . (5.3)

U

: )
where % = 7\, along 4) = constant,

We shall also impose the initial condition

d(xp) =% (5.4)

to obtain the parameterisation for AP described previously.

The 3 - ahead of the wave
fron @E r,l' ) The, tramwsfiormation: (3. ..non-singular if
» E o/
’_)C_q b_.‘;*‘ VSVBnd Deldd ions, 'JCq) = 1, and
hence the Jacobian is non zero. We seek to find the condition that the
) '
Jacobian is zero on C° . In terms of the new variables Cb)‘t" we
have
2 = 2D 3
dt Bk 'p ot
and (5.5)
2 - % 3
< DX DN Bd?
From (3.21), (5.3) and (5.5), '
(«) Q) @)
J,{ U+ U, + XU, {2178 =0
P Vet MRy
| ° &y @:«»7@:\3 U }+ QMB =0
é et N T Ny
R :' and after division by Cbx , we have, provided 4}1:# O,

M) L 7S° éi? O =0
JL X.Q%!Jty "’ N q%l )l~h? N jL ES (¥;L




MBI MUY Y

-27-

)

and 'kp' = :xkp the above equation
~ .

Q
d, - A
N

U{l U,,+& ) ‘i & ,Q, qu-— (5.6)

)

. ()
L=l Q-»Uu + L B=0 | (5.7)

But as

becomes

N o) \ o
V=R 9} )S(EPU‘C‘ + Qtﬂ— X)BUAJ«L‘B:%:O (5.8)

¢)
We have that the vector LJ is continuous across Cl and that}\UJ)LS
n "
also continuous across (: . Also the derivatives with respect to L
U) :
are continuous across (: However, the derivatives with respect to
q) ar 15 Imyou s We.shal l.define &heyrjumg itions across

(0
dp= 0 assf®lilows)

oy

g

LY

]

¢=0

Yprot
Us] - {U.] =0
BN

U - U = ﬂ(t) (say)
(NI O CRY

{'xq,] ] = X@) | (say)

and

Note here that )«iﬁ)is a scalar and is the jump condition in the

Jacobian UCdP.




Figure 5.2

We also note that a constant solution U =U° exists in the regionR

satisfying the equation

i, |\ tdtranii Theses PO (5.9)
Since ,Q, = 1,2, (5.7) reduces to,
U+ ZCCfW\, = O

and on differentiating with respect to 4) , at a point in the region R ,
we have,

Upo ¥ 3Cp =0 (5.10)

'
There exists a similar equation for a point P (say) in the region i,
behind dP = 0 but in front of the backwards facing characterlstic fssuing
'
out of the origin. Letting the points P and P tend to a point on

the line ? = 0, differencing the equation across (ti = 0 and using

the jump relations we obtain,

TTw +2T =0

v € £aA
< {S5.Liy
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where “l and “2 are the components of .

Then differencing (5.8) across CID = 0 gives,

) NG @
Pux + (-2 LT P x=0 5.1

The suffix O denotes the values in the region of rest R . If we
write(:[\) = . then on the side @ = 0 of the wave front the
¢ @::0" °¢’

equation (5.8) becomes,

@ B 0\ W @
X xodeoﬁ +Q\o‘ 7\°>Q qu> v 1 )Boxoq,:O (5.13)

Multiplying (5.12) by 3C°¢ and subtracting the product of (5.13) and

a0
e b-DuLag (5.14)
Now, using the initial conditions U~°= 0, (5.14) reduces to:
- = 5.135
2(CH R + T -2T =0 (5.15)
Since
X = ,.b_'_x_sz s Co = oG
¢ 2% ® 2
and

2, 2 - (C,),

we also have, E)C? aio
G
dax _ 7\)
dX

as the differential equation from which we may determine the wave front

)
trace, Differentiating this with respect to (P » and working on C
o
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3 - L\))
and so 23 )
8 (= (%
@(a") ”dp( )
or

YA
% (3)= 509,

which may ‘be written

r(%: (1433:: %(785: (vu X‘)) U¢ $5.16)

where ‘ZL is the gradient operator with respect to the elements

Ul - - W of U

H Ty L)
)
Differencing (5.16) across (, , gives

h SO (5.17)

and since

X, ='|T|+ﬂ2

‘L‘ (5.18)
0
Integrating (5.17) along (;o from 0 to t' =T we get,
T
Q) 1
X (1)~ X(0)= J(Vu A )oﬂ dt (5.19)
o

but, as defined earlier,

X)) = X,@© - X
) q)@ b= q}@) bect

XE) = ?’de@) o - quo)

The initial condition for é? is & (x,0) = x, and as
i

.
=Q \

AL, = 4/ , we see
? Py
that X(0) =1 - 1 = 0.

| s ® a——re———o
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1 . '
As the state lJb ahead of the disturbance is constant, so that the

characteristics in LJO are all parallel, we have that, X ©

[

Thus the equation (5.19) can be written <?

+ 1

T

X o) =1+ j@u{\))ﬂ at - (5.20)
$=0 °

o
The left hand side of (5.20) is just the Jacobian of the transformation
evaluated immediately behind the wave front trace at time t = T . if,
for some time T = tc’ the Jacobian vanishes, then the characteristics
intersect and a discontinuity forms in the solution at the wave front.
Hence, setting the Jacobian :Xkb equal to zero in (5.20), and replacing
T by t , an equation is obtained from which, when it has a real non-
negat S TIN5 <G A2 FEM reert e e 1050 FO ion of a discontinuous
solut 31€i%
O=1+]WuA )ldt
o

(5.21)
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6. The breaking of waves

We can write the equations (5.11), (5.15) and (5.18),

dropping the prime over the t without loss of generality, as
W +2T. =0 | | 6.1
‘e 2t (6.1)

2(C) X + T - 21 = Q (6.2)
and

- T 6.3
X,C W+ , (6.3)
From (3.19) and (3.20),

: v v OF | LAty ) .
m \ o _‘:‘, | 5) L (6.4)

\
Y.
=)

Writing S

C W 1 respect to t ivi
o’x pe o t, g v1ng‘

2SX + 28X +T -1 =0

which reduces to,

¥+ = .
SX + S(W+m,) n,.=0 (6.5)
» using (6.1) and (6.3). °

1 Then we eliminate X between the equations (6.2) and (6.5) to obtain

the equation,

P8
Q,S'{T‘t*-CZ)S— St)“l*-Z(_St'*Sz)Wl:D (6.6)

SRS

If we differentiate (6.4) with respect to time, we have

2
Se= 20-39C %)
2

= - 3
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Thus the equation (6.6) reduces to

‘\w*-%ST\' =0 (6.7)

~
Now integrate (6.7) with the initial condition .TT‘ =frh at t = 0, to

find , t »
j' Tilk, ‘ 3 -K R} v
at = -2 = | = 1— Mt )44
H T\ 2> 2 < 2 )

Hence

%%
_3),
Jog( T )= -2 g - )= degfGi- 20 ]

and we now write

3
I~ l
1\ = | — t)
TY\ T‘\(: (6.8)
\
where . i ﬁi } nel Afg-Ehad~ Vialine~Q ! 718
Then, by inte WAUW.A 19 YNELAG J ¢

T 2T, = T e2T,

where Tﬁb, is the initial value ofﬁjz.

whence
-3
'\Tz':: T\'2+-—‘é ,{I—Q-——it :] (6.9)
. Q)
Since N = w+C , (5.21) reduces to,
. .
0= 1|+ g CTT‘-‘-T\?D dk (6.10)
O

Now substituting for TE and Tﬁl from (6.8) and (6.9) in (6.10) we get

the following equation

e _3 3
AT AE VAL ’ 2 W . il —i
R Y\_A. \ - W
O=1+ gTY(\ 5t +“1+5,ﬁ\£‘ C -5") :]}“,(6.11)
6]




-3

Also, by definition,
TT‘ = '\l,qll - ‘u,q)l
4=0 'q;:<j*
= W Since ‘ULGPI =Q,
and q) Q:o’ : 43::0"'
AL A A
TT‘== ﬁ&: TT‘ = WU, = tLuPL
so that _ t -0 q’ ¢
AL - A w _ 1
‘ﬂ"~ U.l s DQ(V.
Similarly,
W=28T =% C l - C ,
2 tss % Lo ‘? q):o- q"(?_o.\.
— Vol ™m
= X (;z¢-+ t(z? 2
Thus (6.11) 1 e 2
: O Morat ‘ R A
%ié‘ Thas& Yr 40 ) L+“§- CLt
{ that : d
E e -3 N _
¥ A 2 A
- L ~ M L w,
0 ‘l"'S{_z.ux‘ . >+2.u£Cx+ 1]¢h 6.12)
0
Q) '
The equation (6.2) holds along (%3 and if we take the limit as t —» O
along ¢ =0, we get
B : A A
\ T = 2T,
that is A A
L = WA
| > U.,L = Cx+ =
g so that we get,
te _3
A A | 2
(o]

Al A
The solution of (6.13) depends on the value of C%, vhere C,&

is
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results obtained by Stoker and Jeffrey are the same for a flat sea bed.
But Jeffrey's method has the advantage that it may be applied to any
problem having a sloping beach. For a disturbance given by (5.1), the
critical time tc and the corresponding distance X obtained by Stoker (25)

are,

PN
W = Zcoccc‘\'u‘o) (6.14)
2qAco

and

t

< = 2C(Ca+Uo) (6.15)

?>C_3Aca

l

We also see from the definition of the surface wave speed C,==S§Fx

that the propagation speed of a wave of height h increases with the

height g shoverdhe, wiidi g furbed, deviadi ] and, s . follows
(0
imedi< ﬁlf?"fff thar B s kA 1O AM] Lht thynieravel a1y will propagate
at a higher m, with the result
that the crest of a wave overtakes the trough. Consequently, the wave

becomes steeper and eventually-the wave curls over and breaks. From
equation (6.14) and (6.15) we see that the breaking depends on the
amplitude and frequency. Hence the shorter the wave, the sooner it will
break, Also the waves will break early if W, is small, whilst if LLOA

is negative the breaking will be even sooner,

Another important deduction from the theory is that the
maximum surface elevation of the waves propagating into still water is
independent of time and distance, The position of the breaking point

also depends on the type of wave that is propagated into still water.

We shall now discuss a few cases of the breaking of waves in
shallow water of constant depth. The following table indicates the

calculations made by Stoker (23) for three cases.
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_ RaNGE oF
Case Tyre oF PuLse A ' = w\Vght
1 TN 2 0<t<~
‘ /\ /\ _ )
3 ~—~ 7 1 0V <Lé6r

The cas¢ ﬁiﬁu had fsine- pulser~ingthe; Lorm of~a ive elevation,
Fig. ¢ ‘;3; ‘he' s'traight ‘charax t) plane. Here
we observe that the envelope begins on the initial characteristic with
two distinct dranches which meel in a cusp al the Dreaking point ixc,lc)

as given by (6.14) and (6.15).
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The Figure 6.2 gives the shape of the wave for two different times.
We see that the front of the wave steepens until it finally becomes

vertical for x = X, and t = tc’ while the back of the wave flattens out.

9
0.24

|- 108 —— i = g
////- ~- \

0.6 - -}

// \\ )
- /vl//’ \ \\
0.08 Z )

Figure 6.2, Wave height versus distance for a half sine

wave of amplitude ho in water of constant depth at

) . N N Rl . k) . L S ~ R R ) ter level (23)
We alcs &ig%; LI TORE Cr e g 1OSC S €twe s SCHEA ey 1§ res (of Figure 6.1)
of the enve . the developing

breaker cver the motion of the water behind it is very little. Hence
we might be justified in assuming that the solution by characteristics
as given by the Figure 6.2 is valid approximately for t just above tc'

Figure 6.3 refers to a wave at a time greater than tc.

]
Figure 6.3 W versus x' at t' = 6 for a non-sloping bottom,
where the pulse is a half-sine wave. The dotted part of
L .
the curve represents ¥  in the region between the branches

of the envelope (22).

Case 2 refers to a depression phase which preceeds a positive elevation.
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Figure 6.4 which refers to case 2 shows that the envelope of the
characteristics begins in the interior of the simple wave region and

not on the initial characteristic.
.
4

Raqion of

constont

" siate / 7 //
/ Z,/ 7/4

a7 /8
. Ws /i ///
7 i

NN
N

Ola

I
W/ Region of constont state

HVCTY { I {

L e

= ) b 2 4 8 a2
Figure 6.4 Characteristic diagram in the (x',t") plane (23)

Figures 6.5a and 6.5b show three stages of a wave propagating into

still water.

.-ojk\\ » P 730
N —
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L Nl T ] 1 1 ]
| 2 4
Wove halght versua distonce for @ fuil negotive slne wavo th
v omplitudo {h In water of constant depth ot 1'+ 3.0 ond 1'+5.0
b
i P

fo_ ‘\\\\ (50
wonl— \ ,//
.. B \\\ | //////

i i 1\1 i | 1 1

"

Figure 6.5a (22)
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' ouel)! I~
. .
+ 0.08 ' AN

™
/

+0.08

i | | \
-048

Figure 6.5b Wave height versus distance for a full
negative sine wave with amplitude %g h in water of

constant depth at t' = 6,28 (223)

It is seen that the steepening is very marked as the breaking point

b

is réached. Figure 6.7 shows the shape of the wave just after passing

the b ;iL_ Ll MearOthel bE@ak¥iy, pdinrdble vature of the water
("ﬂb’; ,’ * N

surface ds i loy a accurate only for

small iginal exact

formulation of the problem in terms of a potential function with a non

linear free surface if a solution to this question is required.
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[
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~
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©

!
Figure 6.7 ¥\ versus x' at t' = 7 for non-sloping
bottom where the pulse is an entire negative sine-wave.
\
The dotted part of the curve represents ¥\ in the

region between the branches of the envelope (23)

Now we shall consider some cases of breaking on a uniformly sloping

beach. Here too the principle is the same as that for waves in water of
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constant depth, but with some differences, such as the fact that the
amplitude of a progressing wave increases and its wave length decreases
as if moves towards the shore. This implies that early breaking is
possible by having a steep beach. In these cases the characteristics
are not straight lines in the region of the (x,t) plane bordering the
region of constant state. Also the velocity and the displacement of
the water surface are not constant along the characteristics. Thus
we are forced to integrate the differential equations numerically.
From (3.20) we have the initial characteristic as,

x= %t - l-“N*31

]

whigh is a parabola with its vertex at a point with the x co-ordinate

corresponding to the shore line.

é .}

i
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o
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x

Figure 6.8 Characteristics for a uniformly sloping

beach in the (x,t) plane (22)

In order to obtain the remaining characteristics ,we make use of the

method of finite differences. A set of points on the initial character-

W)
istic (;o is taken at equal time intervals, the size of the interval is
L)
chosen depending on the accuracy required. Along (:o s W =0, x,t

2)
are known and hence C is known. Along C ~between points (2,2) and (1,2)
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t
we have
2)
AR R W
(-]
3,4
8.3
M xnt-ﬁg
33 4
2% 1,4
(Y
2
[ 13} 2
o 4
Figure 6.9 (22)
from (3.24)
-5
=) b (a1
i 1 v\ (6.16)
©?)
If the arc C between point (1,2) and (2,2) is sufficiently short then
we can replace the differential equation g%%f = W - Ci) which

is valid along the above arc approximately by,

-
. =LY e +~\WL ~C . (6.17)
L -t 2 L2 220 2,2 :
22 Ha

@)
Since C  passes through point (2,2), from (6.16) we have

12 13 ot 2o '\m.’f::‘_’_z~ (6.18)
o
From the initial conditions C may then be obtained. Thus we can

2,2

find all the relevant quantities at the point (2,2). This procedure is

adopted to determine the positions (2,2), (3,3), (4,4) etc. on the t axis.
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This method is applicable to all net points in the interior region

[\
between C° and the t axis.

The table below gives some of the numerical calculations made by Stoker

for the cases indicated.

Breaxing Point | INCREASE
TYPE OF AMPLI- — IN AMPLI-

CaskE Puise TUDE SLork | =w\/¢ht| 2’ = wI| TUDE AT
BREAKING

.08h . 2wh 7 3.0 | ~3509%

1 AV“ 2k | . Awh 4 0.8 | =~00%
.Lﬁv,—

n A~ L~ noL Ak o0 14.0 ~ 30%

We see fxgdm ahave| tabler thatl the breaking occurs
earlier with ifilicase ii dilipricude anid dediease it wave 1ength. In
Fig. 6.10, the set of characteristics shown are calculated by the method

of finite differences for case 1.

AL 1
a7
] /
i .o;/// / /
. SA
/Y

A /[ Region of rest pe0,00cin)

Characteristic diagram In
~ £, 1 plone; 1o ws, 1o wigh s
Ampillude « 0.2 0

Slope * 0.402 wh

'o‘thﬁ,l.

0 08 10 I 2.0 28 B
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The time interval is A t' = 0.5 and the Fig. 6.1l shows the shape of

" the wave surface for t' = 3 and t' = 4.

E

~N [«
p
—

9 v wsx, 1"«»{;;’
7l 1)e =02 sin (1)

- \ Q;' 4.0 / )
AL
-4
i /
S/
i/
a ) i
Eign 11  Mave height different

Then the Figures 6.12 and 6.13 show the characteristics in the (x',t")

plane and the wave surface for two different times for case 2 in the table.

I8 /1]
AL

‘L /f// Aémﬂﬂm
| / PRY N

s A
Chorocteristic diogrom
- tn 2’ 1-plone
2 4 Amolitude * 0.08h,
/ Slopec 02 why
| § o
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Figure 6.13 (23)

The wave rf in
We see the t'éi.é;“ eedengtie JHecdensy Ehesamphitude
wave frc ¢ HO. 140, LK

these changes are very small. In case 3 where the amplitude is sufficiently

small the shape of the wave could be obtained fairly accurately by using.

the linear shallow water theory.

Figure 6.15 shows the results obtained by using the two

theories.

wwn in Figure 6.14.
-eases and the

the shore.
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Figure 6.15 Comparison of linear and non linear

shallow water theorics (22)
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__The Bore

We shall now consider the water profile after breaking.
Stoker (24) and Biesel (5) suggested some methods of solving the differ-
ential equations after breaking. Stoker suggested the form of curves

given in Figure 6.16.

~ .

q"s-15sn {0.010) Approximatoly ot 1'+t8

08 e

OI o VI X - / -
‘0-08— 1 \1 /1 1 \/l/ 1 1 Zrél/‘ 1 1

. ) 2 4 6 e 0 12 ) 13 18

Figure 6.16 (23)

The T .1%?%-: Riesel's: work usi

be showr gr? eaVhy . By . Bigudée . 64 d 6.17d.

yperturbatior cedure can also

0]

Figure 6.17a Progression and breaking of a wave on a

beach of 1 in 10 slope. First order theory. (23).
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1
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Figure 6.17b Dectails of breaking of wave shown in

Fig. 6.17a. First order theory. (22)

The ‘Q%Ee: L 1]
out toithe v werdex mnlnc . ag
results when the theory is carried oul LO secondg order

scen that if second order terms are taken the breaking

earlier.

and 6.17d refer to

terms. It is

seems to occur

Vs MEAN LEVEL
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he theory is carried
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TR R S B AL e L W)

e R
TR BE R Y

S S T

e

T

B R RN 2 e

., Figure 6.17d Details of breaking of wave shown in

Fig. 6.17c. Second-order theory. (22)

PR AN LA TR AT T S TR = PN A SEL TP e P At

G
S5y

and the hei .qg%g >3 re g is g shows that we
cannot expe ,t;f dVEvodl aipEdXimak .le near the

breaking point using the shallow water theory.

In open channels sometimes a situation arises when a steady

£

progressing wave front which is steep and turbulent is created as shown

in Figure 6.18.

S

vt
s

etk

x

L T A e T e s S 6
et e W A e e R e

i

N
constomt veloarty. [k, ———-\-T__..
he

Figure 6.18 (22)

1f the discontinuous front is a moving one it is called a bore and if it

is stationary a hydraulic jump.

SEY
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Simple explanaticn of bore formation in a sloping stream

Consider water of depth h flowing with velocity u in a channel

whose bed is inclined downwards at a small angle © to the horizontal.

0 oL
Figure 6.19
Let OX = .}ﬂg, MIBECIEHe Vdep tHIQEA dIpoinDIP Liallgd ter with
é""?’%.
Y

surface at deptn

Bernoulli

v < .
Pl %er\/): Con 2haut. (6.19)
P &
where D = gy, (6.20)
F = water density
4 U = water speed
5 E} = acceleration due to gravity
4
‘a giving
E Lk = Constant
5 W - 3\/ = 1STant . (6.21)
N ?’ If oL is small we can write

"
ts

ﬁﬁﬁ@’*“

\/+\/L: oL

’ (6.22)




N
g
S e

T
e,

B
=3 RN Yo M:Z:‘\?t

"

bt e

e el

gy

PR e
AP TN W

TR

RIS
PYCR R T oS

o

PO

ER NN P ¥

Iyt Vel
SRR

. Z‘,H[‘w

B, mee

i ‘_:5 ;v"' 2

CERA. B9

X 4oz

e

EO

7

o

3
o

3
of
b

= glare.
L

it

i

o
=

So that (6.21) becomes

.

2
é—uu +c<3\r\. = Cowstawt +'x<x3 (6.23)
Now continuity of flow implies that
wh = /\ = constant = initial value of product (6.24)

Hence (6.23) can be written

2
1 A —
58 +gh = B +xoq,
with B a constant. '

T

Hence =7 4y !, A N o 1 d?\,
& ALV Bratt 3
Thus, if u2 1‘52%, el @eptHIlC JfllEhe Swalt e21 Saitiidakes distance, and
if u2 > gh = Ice. If
2

u- —p gh the above argument no longer holds and the slope of the surface

would become large giving rise to a possible mechanism for bore formation.

Figure 6.20

Relations across a strong discontinuity line

We have seen earlier in our discussion that in general, a quasi-
lincar hyperbolic equation will not have a differentiable solution which

is unique for all time. This is also true for a system of such equationms.
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The non-uniqueness of a solution at a given point suggests the
introduction of discontinuous solutions to overcome this differentia-
bility problem. That is we try to picce together a solution from
differcntiable solutions which are discontinuous across a line and to
determine the nature of such a discontinuity. This ‘corresponds to a

shock in gas dynamics cr to a bore in water waves.

Now consider the following equation (6.25) written in the

divergence or conservation form,

OF L div G =H (6.25)

ot
T
Where F, ~ L T - N Y . | ll — r-. e [N} .\ Let us
assume t Jﬁéﬂ discontindous 4ctoss  I'itre”L” In“the t) plane
(Figure ?IE.r that . the equation me region R with
x
0 L
Figure 6.21
boundary OR that is traversed by L. We have
OF . 9G =W, (6.26)

ot D™

So let us now integrate (6.26) over R to obtain

,g.% f%%) dxdt = H H dxoat (6.27)

N
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Now apply Green's Theorem to the left hand side of (6.27) and we get,

l@CFdx—GdQ:“H dxak. (6.28)
OR R

Allowing R to shrink to zero about P, we see that the right hand sicde of
(6.28) tends to zero. (We assume that H is finite). (6.28) becomes after

division by dt,

&F %—i" G = Q C(6.29)

Jumbp @evessL

“

Setting ‘i’i= 7\ then gives the result
(FR-a)=(Fh-¢)=0

CopT Viorgl (6.30)

or

“fﬂég —

2

where (S"Jj ........ the jump across the line L and /. 1s the slope of |
L at P. (6.30) is a system of algebraic equations. In gas dynamics a
system of equations of this type is called the Rankine-Hugoniot equations.
Let us now write the equation (33) and (34) in conservation form. = We

see by inspection that (33) can be written as
e D/ 2 |
=~ \L) 4+ = - 4 — ):O 6.31

Equation (3.4) is not in divergence form as it stands. It can be brought

into this form by multiplying by C, when it may be written

%@«z) +,§1ch) =0 (6.32)

Combining (6.31) and (6.32) we have the system,



RS

HOTEE S ool i B G R e

ey

o

it e

o

el

Ly
ard i

i e

A f,_‘g&.:{,‘_!,-;.‘

S int e AT A,
R R

i

'
Ex
Na.¥e!

) o
gl

¢

«1-"-;\‘& S o -
& G

SN

T
ot

TR P

o

~53=

- o = ' (6.33)

d {Uv 5 Yib&\{ ©
R L) T wcr o

and in terms of our previous notation,
LN
: Qﬂ S T IO
B Cz) - lLC:L ) 0
Thus the jump condition
A
(eI - 6] =
A R
Q}CﬂN = R&EUH-C —\fﬂ @)

and (6.34)

I = ﬁi’“&]] (by

The conditions (6.34) are algebraic conditions and they determine the

1

takes the form

behaviour ofs & M & Y ores s the Visore” Cand! reXatedthem to its speed

ap)

of propag i&;,

1
-~

Let us apply this result to a wave advancing in water at
rest over a step change of depth in a channel as shown in Fig. 6.22.
Equation (6.34a) yields
' 2 2
- - C -
CoY, =C-Y
which gives us no new information as each side of the equation is

identically zero.

u=0
Y

7

Figure 6.22
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Equation (6.34b) becomes

(Z-CHIX =0

K2 A
so that if C :#(: , then A must be zero. This means that the
-‘- -

disturbance is stationary as would be expected from the nature of

|

b

yﬁ the problem.
& '

1
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7. Vaves of finite amplitude on a sloping beach
I

"' The well established shallow water theory due to Stoker has

been used by many authors to explain various problems. Carrier and

Greenspan (7) used it on water waves of finite amplitude on a sloping

beach. In this paper the authors assume a constant slope beach and

the characteristic length 20 in the transformation is chosen depending

on the problem.

a

b

lad ol
h =
T Rigure/ 4l v
€3
Having intrédace AWpBtentia d1 T uhe.i K - the horizontal

velocity U is given by
=1
v =G 41$(F?,7C),
the authors obtained the following relationships,
x = S lie -ulf2
- J4"l "_/
' 2 2
M= c+x = 4>7J4-'u [2.

t = X[z -

and

(_6‘ 436.)6— & dP}J\: 0

IR TR ¥ Y R T - S - TN S o aa 4.

(7.1)

(7.2)
(7.3)
(7.4)

(7.5)
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from the origin and © , }\, arc a pair of independent variables,

The free boundary line is the line & = 0 in the C@,)\.}
plane. Once the function 4DCG)X) is chesen to suit the problem, then

VL , V, X, t are defined in terms of & and A .

~ If the Jacobian O(x:t) does not vanish in © 2> 0, the
!,.'M' C)KB

I
i

solution 'Yl(x,t),'U(x,t) is single valued and hence the waves do not

break. The form of the function (() satisfying the above equations is

given by
b = AT, (cos) e (oo -y)
(7.6)
3, being t! £ (7.6) the
Jacobian .;££; i ranish 1 .
) E8K)
"‘_.‘)"' » & Vie i s 5lA.d via 8. (i 1S. ‘I‘he firSt
example is a one parameter family of wave forms at t = O given by
3 ~:".'>",__ S
IYI_=€E—§_—':G:—;%' Bl '3_ 2 za 2~ , (7.7)
2(arer)?r R (o) |

' 3 QS
2 5 Q 2
16 3 l‘ 2 @,’4 s> )/l & Q’}‘* 613/;}’ -8

where a = -g- (1 + 0.9&))5' and €, is a constant to be chosen.
The authors obtained the following equations for the motion of the

instantaneous shore line
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Figure 7.2 Initial wave shapes given by equations

(7.7) and (7.8) for €~ Oand & = 0.1 (7)

By setting & = 0, we find that

o -
oMK (7.9)
&
5
: b ny
; ) (7.10)
P N B
and L
b= Lagk-w (7.11)
2
”f;‘ The maximum penetration distance is obtained by setting™J = 0. It occurs
;gf when A2 = 5, when
;
oA p 1.157¢€
i max ' (7.12)
gr
The time history of the wave motion for € = 0.2 is shown in Figures '7.3,

7.4, 7.5 and 7.6,
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Figure 7.3 Time history of the wave form of

equation (7.7) for € = 0.2 near the coast

line. (7)
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Figure 7.4 Time history of the wave-form of
equation (7.7) for £ = 0.2, far from the
coast line. (7)
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(7.7) with € = 0.1. (7)

Coastline position and velocity

versus time for the wave-form of equation
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We note that, as shown in Figure 7.3, the instantaneous shore line rises
above the mean sea level and then 'slowly settles back. Further, there
are no oscillations about the mean sea level and the waves do not break
for €& < 0.23. In the second example (7) the motion of the stationary

mound of water released at t = 0 is assumed to be given by,

2
- 2 4 2-cp
l
and 2
2 4 :L-CY|3 2.
X = LQFO‘G - (7.14)
4 I3

where

gpC+e) =1
This wave form is shown in Figure 7.7.

%
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.
L A e L A1 Vi o o
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Figure 7.7 Exponential wave-forms of equation

(7.14),¢ = 0, 0.1, 0.5, 1. (7)

"We see that the waves have zero slope at the origin and the initial

maximum height is at a fixed position from the shore line. The authors

were able to show that the quantities \J ,\J ’\&Y are bounded and that

A
the upper bounds are indecpendent of & and A » So that,

VU‘ <'p1€3 ‘\Jk‘ <"4I€U \X£T¢'< Wt;i,
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; where M, Ml’ M2 are constants.
“ R |
b For sufficiently small € , the Jacobian
? ' [ -
¥ —_ 6 (U-.‘ — _‘__ - U '
~ S 40
: \6
Hence the Jacobian does not vanish in the interior of the fluid showing
§ that the waves given by the equations (7.13) and (7.14) do not break as
; they climb the shore. The Jacobian is zero only for © = O. But
K this is a property of the transformation and not in any way related to
4 the initial wave shape. In this problem too'(cf. Figures 7.8 and 7.9)

the shore line motion is such that it first rises to a maximum height

- N
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Figure 7.8 Coastline position and velocity versus

3 time for the exponential wave £ = 0.1 of equation

£yl

(7.14). (7)
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L 4
I
i and then falls back to a minimum below the restposition and then settles
B to the original mean sea-level slowly. Further, there are no oscillatory
X .
R
‘ ’j: motions, and the maximum penetration distance obtained by setting U~ =0
- for N = 2.41 is
D 4

DN S T W Mt LR

e d = 1.4AS8]¢e

max (7.15)

Thus the maximum penetration distance in the second example is greater
than in the first one for a particular <. The authors have shown that
, .

therquﬁg,progressive waves with positive amplitudes which do not break

as they climb a sloping beach, even though the value of & , and hence

L od
U .
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the initial shape of the wave, determines the breaking.

Greenspan (11) using the non-linear shallow water theory
obtained the same basic equations as Stoker. The wave velocity was

obtained as C = (1 - x +71)%.

l

Figure 7.10 Fluid with a fixed boundary and a

€

PR 3

LA

In this | ‘é§3i chanachiérintiad the distance

of the origin of co-ordinates system irom the shore iine. When non-
dimensionalised this distance became equal to unity.

Since the wave propagation is into water at rest, U =0in 0 % x < 1.

Hence the slope of the characteristic at any point (x,t) is given By

dx = ¢ (7.16)
adt .

along which v + 2¢ + t is constant, and since C = 1 at x = 0,

v+ 2c+ t=2c+ t=2, That is,

QX = | - 35_
at 2’

and on integrating, we have
2%
x = t -1 for £g2
4

At the wave front the wave velocity is given by

Y
C = Q—fx,)?“
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Also, at t = 0, the wave front is at the origin of the co-ordinate
system fixed in the fluid. In time t the wave front moves through
a distance SCCU; and if % denotes the distance from the moving

wave front, then

T = +£-'.t:
E 4

The new.co-ordinate % is the position of the wave front and using the
basic equations, in terms of the new co-ordinate g , the following

results are obtained for W (o,t) and 'Ylg(o,t),

$

-t =5u -3(1-t\¢ - |
(i a)”“gt“z;‘*g 3( E)ug ak €=0, (7.17)
and
| - ii = éi - L 2
In this ca: @% yave; fis-1s-beadity, desrcas ing. at-theHa ont if

/{\'ico)0) G WEronl 9. 118). die. L& ) . This
shows us that the wave front steepens. Also we see that if ‘Ylé)p):()
then "YL%*_@,0> =0 » Showing us clearly that this type of wave cannot
break or form a bore at the wave front. Solving (7.17) and (7.18)

Greenspan obtained,

wow) = /(-] -A*0- %3%}]
o) = /(201 - A0 - 53]

2, 2
where, A = U 0,0) - J?;] _ (-3
0o,0) N Lo0)

This shows us that if ’YL%@)O)(O , then A 2> 1, and the wave breaks

and

when the slope at the wave front becomes infinite, that is, when
%,
+ = EL(:J - A t) <2

or

&
x £t "2.<|
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Therefore, we can say that a steadily decrcasiug wave (at the wave
front) propagating towards the shore with a discontinuity in the

surface slope breaks before reaching the shore line.

In both the above papers special forms of shallow water
equations are derived and the slope of the bottom‘iS'assumed to be
constant. Also in both papers the shape of the wave is determined
first and hence the conditions for breaking depends on the shape of

the wave.

Now we shall look briefly into a method given by Jeffrey (12)
whose method of approach could be applied to problems involving sloping

beaches having non-uniform slopes. This method employs the Lipschitz

continuit i I | . and does not
depend on ‘%$%p, j t f ‘the basi 1 We also

)
find, as expeecke thatStoken s 24D solution for

a special Cas¢ 0L waves ilt waciel Or unixiornm aepin, ana Jt:x.‘frey‘s result

for zero slope are the same.

In all the papers discussed previously it was shown that the
breaking of the wave depends on the initial shape of the wave front.
Jeffrey (13) considered the propagation pf a smooth fronted wave using
shallow water theory, where a smooth fronted wave is taken as one in
which the surface slope is continuous across some line in the free
surface, but the second derivative of the surface slope is discontinuous
across the same line. Using the same techniques as in (12) the author
established that in the context of the shallow water wave approximation,
smootﬁmgfgnfed waves propagating into still water above an arbitrarily

smooth sea bed profile can never break at the.wave front until they

reach the shore line, after which their behaviour depends on the subscquent

motion of the shore line itself.
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The study of the climb of a bore on a beach of uniform
slope is interesting because of its close resemblance to non-uniform
shock propagafidﬁ'in gas dynamics, This problem was examined by Ho
and Meyer (20) whose method of approach is based on the fact that
ﬁon-trivial solutions of the given differential eguations have singularities.

The differential equations are of the form

Cp'ﬁ‘:\_ q)%'b- \% C\)o) =0 (7.19)

k being a constant.

Equation (7.19) has a singularity at z = 0 and the immediate problem

here is to specify the necessary and sufficient conditions on the singular
line z = 0 for it x1stence’ uniquenéss 'afid "stabitity the solutions.
T
abo 58 VEBans. 13 et Al irnish some of

the bbuﬁdary conditions. The other boundary conditions are given in
the subsequent Sections 3 and 4 and they are the seaward boundary

conditions

E&ﬁZ = |- ELQ
V kb, (7.20)
\ 4
2 .
2V = Sth + hb‘_\b;>’ (7.21)

Figure 7.11 (20)
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4

A where is the horizontal water velocity, ho(x), the undisturbed water
E -

{3 depth, h(x,t) the total water depth and V the velocity of the bore.

3 .

fé The remaining boundary conditions giving specific information about the
A

3

f% water motion behind the bore is given in Section 3 of the paper. The
fﬁ bore height (hb - ho) is assumed to be a single valued, continuous

F% function of time t, for t £ O, Hence V(t), LLb(t) and C:b(t) all
ﬁ '

o become single valued and continuous. Also in Section 3 the authors
B

) .

3 have defined a limiting characteristic L as shown in Fig. 7.12 whose
4

A

o

i

by — » X

B

5 /1

|

34 = A or$

) ™y !

| &ri,;"’ U 1 b

i - T

%

3 |
Eé' Figure 7.12 Diagram of (x,t) plane showing '

e
Y

of successive bore positiomns. (20)

IR

importance was first pointed out by Guderly. The bore path is given

by B in the (x,t) plane. The time is measured from the instant at which

LR

el ALt

the bore reaches the shore. The authors have assumed the bore to be

i

known for t = T & 0. C is assumed to be a receding characteristic line

of the water motion behind the bore issuing from the bore at time T. So,

if u and h are known on the segment of C between B and L, the bore

To Tl e A LT
i i g B vt G

development is uniquely determined in T £ t £ 0. Mathematically, this

iy T .
S s e

segment of C is called the seaward boundary. A fairly detailed

qualitatiygiapproximation for the solution near the shore is obtained in

!
%{ Section 5 of the paper and the approximate bore path is also obtained. 2
i
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Meyer and Shen (21) proceed to discuss the climb of a bore

on a beach having a non-uniform slope. Here too it is shown that the

shore singularity for a beach of uniform slope still gives an
approximate solution and~that the shape of the beach affects only the
basic velocity of the bore in the development of the bore close to the
shore {1t is also shown in this paper that the main results regarding
the shore singularity are not exceptional as in the first part of the

paper. It is also assumed that the bore reaches the shore at a finite

J

)
y9

" i time as in (20) which is taken as t = O. With these assumptions the

3 N

authors obtained the following relations
¢,—0 ant—0
h’b?ho for £ <O

)

S

Bos S EPR AT

U« > >C 70 af wtt M L., L oA
They also sho 6 e lexisPeticCe 1o CRC L il LA QIR ATHRIEE .c L as in
o
Figure 7. =] I which the bore

™

development is studied, the existence of any secondary bores is eliminated

Gy ok
O AT

in the region II bounded by B, L and C in Figure 7.12.

In Section 3 of the paper, the authors established the

-{%/

,‘:&a?”}jﬁ,&‘

existence of an asymptotic approximation which depends on the velocity uy

as well as on the beach slope variations. For the bore condition
dxb Y
d.’c_

ry

an equivalent expression is obtained as

(W-v,-c)t %ﬁ> +(LL-1!b+C)EP =-(+ dd’")SJ

on o= & (p)
The other bore conditions as in (20) are also satisfied asymptotically
since ho(x) is continuous. This shows that asymptotic solutions in (20)
satisfy the shallow water equations and bore conditions asymptotically to

a first approximation on a beach of non-uniform slope.
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Tsunami Waves

The results of many recent observations suggest that tsunami
waves consist of a train of several large, approximately sinusoidal
waves of about 1l m in height moving in the deep ocean at approximately

TR ' )
the shallow water speed of J gh.. Mader (19) studied this using the
Marker and cell method which is a technique for the calculation of
viscous, incompressible flow with a free surface. This method uses a
finite difference technique for solving the time dependent Navier-Stokes

equation.

In the shallow water theory we assumed that the vertical component

of the motion does not influence the pressure distribution, which was

assumed to be hyd tati Tt 1t btained t ing the two methods
were comparcd dms ral ‘cases ?
=
Madéeiw SN Y alsolliltiaats . 116 ate the

fundamental features of the flow and for checking the numerical results
obtained from tsunami waves. The results obtained for several models

are illustrated in the paper (19). The models are, (a) one metre hal%-
height; 1320 seconds tsunami, Fig. 7.13; (b) one metre half-height, 660-
seconds tsunami, Fig. 7.l4{tJhalf metre half-height, 660-seconds tsunami,
Fig. 7.15. In all these cases the author gives a comparison of solutioné

obtained using the SWAN and ZUNI codes (see the paper by Mader).

Further, the author discusses some underwater barrier results.
A submerged barrier absorbs some of the wave energy and the wave consequently
breaks prematurely. Also much of the wave energy is reflected back

seawards.

However, tsunami waves are of sufficiently long wave length

that they do not tend to break. Thus underwater barriers will be effective
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on tsunami waves only as reflectors of energy. This implies that the
shallow water theory is inadequate to determine the effect of underwater
barriers on tsunami waves because of the importancé of the vertical

velocity on the flow.

‘Many calculations have been made assuming ﬁhe location of
barriers under water. Mader's work shows us that the numerical
simulation of gravity waves resembles the profile of actual tsunami
waves. The wave heights were observed to increase by a factor of 4
as they shoaled up aA1:15 continental slope and the results obtained
by using the shallow water theory for long wave length tsunamis were

similar. But for short wavelength tsunamis it was different.
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Figure 7.13 The amplitude of calculated 1 m half-
height, 1320-sec. tsunami waves as they shoal up a
1:15 slope from 4550 m. Also shown is the shallow

water, long-wave curve. (20)
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Figure 7.14 Computed wave surface profiles for a l m
half-height, 1320-sec tsunami interacting with a 1:15
continental slope, a continental shelf 500 m deep and
reflecting off a diff; and the shallow-water, long-

wave calculations for the same model. (20)
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wave profiles for the same model. (20)

and

1g wave

Figure 7.16 Surface wave profiles for a 660-sec tsunami inter-

'”ﬁiécting with a 11.1 m deep barrier, and the shallow water, long-




8. General remarks

In all the papers we have mentioned the authors have based
their discussions on the shallow water wave theory by Stoker, but with
modifications depending on the problem such as 'the breaking and climbing'

L of a wave depends on the type of wave and the bottom topography of the

sea bed.

The shallow water wave theory itself is an approximation and

‘ : gt ‘i'f‘:

the results obtained will be accurate only to a certain degree. Thus
any further modifications or approximations will tend to make the results

less accurate.

Therefore we can say that there is still no general criteria
fou » will break other

f tha ;gﬂgh; 2V al 1 jal lbe and the bottom

kl i
: topography gvofnfund anetitad o
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