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ABSTRACT 

This dissertation is mainly a review of some of the work done 

by various authors on the long wave (shallow water) approximation and 

its applications to different problems. Shallow water wave equations 

are derived which are identical with Stoker's equations but the method 

of derivation is slightly different. 

The method of characteristics is used in solving the differential 

equations governing the shallow water wave theory. The climbing and 

breaking of waves on sloping beaches is discussed. After the derivation 

of the transport equations for the discontinuities that can exist across 

a characteristic an equation is obtained for the time and hence the 

distance of breaking. 

A simple explanation of the formation of a bore in a sloping 

stream is given here. The climb of a bore on a beach of uniform and 

non-uniform slope is also discussed briefly because of its close 

resemblance to non-uniform shock propagation in gas dynamics. 

The notion of tsunami waves and the use of shallow water wave 

theory in the study of the numerical simulation of realistic tsunamis is 

also discussed briefly. 
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1. Introduction 

The formation of waves in water is a natural phenomenon. Many 

mathematicians have formulated theories regarding various types of 

wave propagation. In Section 2 of this review a theory is developed 

to explain the behaviour of long waves in shallow water and although 

the method of derivation is slightly different the result is identical 
(24) 

with .the well established mathematical model first derived by Stoker , 

commonly known as the shallow water wave approximation which should more 

properly be called the long wave approximation. The theme of this 

dissertation is the long wave (shallow water) approximation and some of 

its different applications. A survey of some of the work done by various 

authors is included here. 

The shallow water theory gives satisfactory results only in 

certain types of problems such as the climbing and breaking of waves 

over a sloping beach. Carrier and Greenspan (7) used Stoker's (24) non­

linear shallow water theory to study breaking of waves and also the climbing 

of waves on a sloping beach without breaking. Their method was to specify 

the shape of the wave first and then to find the criteria for breaking, 

using the non-dimensionalised version of the shallow water equations and 

a constant slope beach. 

In this dissertation we examine a similar problem using a more 

general method due to Jeffrey (12) which is directly applicable to problems 

in which the beach has a non-uniform slope. 

A qualitative treatment of the problem of the change of form 

of waves moving into still water in the context of non-linear shallow 

water theory is discussed in Section 3. The method of characteristics 

which is the most convenient method for treating the initial value problems 

associated with the differential equations (2.15) and (2.16) is used in 
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this work. 

In Section 4 the propagation of waves having steadily decreasing 

and steadily increasing surface elevations are discussed. Then we 

proceed to discuss the continuity of the motion and prove that in the 

case of a wave having steadily increasing surface elevation the motion is 

continuous only up to the point of intersection of two characteristics 

which we interpret physically as the point of breaking of the wave. 

The transport equations for the jump quantities concerned are 

derived in Section 5 and then we proceed to find the general criteria for 

breaking. 

We are then inevitably led to consider the possibility of 

discontinuous motions. This type of motion, called a bore if the 

discontinuity front is a moving one and a hydraulic jump if it is stationary, 

is a common occurrence in nature. 

In Section 6 the problem of the propagation of a smooth wave 

initially in the form of a sine wave into still water above a constant 

slope beach is treated. An equation is derived for the time, and hence 

the distance, of breaking which is defined as the point at which the slope 

of the front of the wave first becomes infinite. 

The change in the form of pulses initiated as sine waves as they 

move into still water is illustrated by diagrams for a number of cases in 

Section 6. 

In Section 7 we briefly discuss some of the specific problems 

treated by various authors. We also discuss briefly the notion of tsunami 

waves as treated by Mader (19) and the use of shallow water long wave 

theory in the study of the numerical simulation of realistic tsunami waves. 
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2, Formulation of the theory of Long Waves 

We shall use the following equations of hydrodynamics and 

boundary conditions (24) in terms of Euler variables in deriving the 

shallow water theory. 

Incompressibility 

li ,-vV' -+ cJ - Q (2.1) 

momentum equations t 

u l ^ + O J V ^ + W V ^ . ^ g ( 2 < 2 b ) 

CO + +*UO> - V - C O C O = - _3_ (2.2c) 
t> * . y 5 ^ 

Irrotational condition 
( t i l l i 

Co = . U . U , = Co T$ - ( X , (2.2d) 

Free surface condition 

I \ 1 i \ I I i 
* Y l +-U,l\ ^ = 7 J o n ^ = < y\ (2.3) 

f> = O OH. ^ = *\ 
bottom condition 

uld! - v V od! = 0 on. (2.4) 

» 1 • I • ' 

where ^"u^co are the velocity components in the j % directions 

respectively. 

>̂ is the pressure and subscripts denote derivatives in the direction; 

indicated. 
The co-ordinate axes are taken with the 3C^2>' plane in the 

i 
undisturbed water surface and the positive*^ -axis upwards. The free 

i I f t ' ,/N 

surface elevation is given by ^ s o r ^ o c ^ , s*t J and the bottom surface by 
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Cross-section by plane Z = 0 

Figure 2.1 

g = acceleration due to gravity 

= density of water (assumed to be constant) 

h = undisturbed water depth at the origin of co-ordinates 

A = characteristic wave length. 

As already implied by (2.3), we assume the pressure to be zero on the 

free surface of water. In order to transform the equations (2.1) - (2.4) 

to equations with dimensionless variables we introduce the three quantities 

K,,kjA with dimensions of length, and £. an arbitrary constant to be 

chosen. The transformation is as follows 

^ - ^ v f-t&h 

and c - c r where C c = 43 -̂-
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By substitution of these into ( 2 . 1 ) - ( 2 . 4 ) we get the following 

equations in terms of the new dimensionless variables 

^ U , + - £ l t a +1V\JL 4-eCOLLET -T- b O ( 2 . 6 a ) 

C ^ - l ^ £ a ^ e V ^ + e " ^ + ^ + * 1 ~ ° ( 2" 6 b > 

€. J<?^ c o + £ O , C 0 - v ^ V C O + e c o c o 7 * b o ( 2 . 6 c ) 
A x l ^ x S 3>J

 r s 

U V h j - c o H ^ o n y = H ( 2 ' 8 ) 

Now we shall consider the effect of the ratio of the scale lengths in 

solving the equations ( 2 . 5 ) - ( 2 . 8 ) . When the depth of the undisturbed 

water is small compared with the wave length, this ratio will be small. 

In solving the equations ( 2 . 5 ) and ( 2 . 6 ) we choose €, 1 and 

let — 0 . It then follows from ( 2 . 6 d ) that \JL and CO are, to first 

^independent of *>JJ , so that from ( 2 . 5 ) we have 

where ^ is an arbitrary function of "X,^ and t. 

Substituting for V in ( 2 . 8 ) we get 
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that is . 

and so 

Again from (2.6b) we have, 

\>̂ + \ - o 
Integrating with respect to*lj gives 

f 0 , 3 , 0 . C 2 . 1 0 ) 

where F is an arbitrary function of X , 3 

But jp-O on ~ 

so that 

Thus 

(2.11) 

Using (2.11) and (2.9) in (2.6a), (2.6c) and (2.7) together with the 

assumption that \ f = 0 , we get 

^ U - < V ^ ^ ^ T ° (2.13) 

and 

that is 

(2.14) 

(2.12), (2.13) and (2.14) are the non-linear shallow water equations 
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(2.15) 

(2.16) 

8 

for 3-dimensional flow over an arbitrary smooth bottom. Thus we 

arrive at the required shallow water theory. Some authors have 

chosen to use linear shallow water theory as the basis for the tidal 

wave theory in deep oceans. (Naturally oceans are not shallow, but 

their depth is very small compared with the wave length of tsunami 

waves so that the shallow water theory is appropriate). 

We should note here that the functions lA^co and depend 

on ^JJ^) and t only. IfCO is taken to be zero, and we assume that 

all quantities are independent of 3> ^ e § e t the following equations 

These differential equations are identical with the basic equations 

given by Stoker (24) except for the fact that the factor Cj , the 

acceleration due to gravity, is missing in (2.15) as we have introduced 

a dimensionless pressure. 
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Figure 3.1 

We shall commence this section with some definitions. 

Definitions 

Quasilinear systems 

In a system of partial differential equations, if the elements 

of the unknown vector and its derivatives do not occur linearly, then 

the system is said to be non-linear. In a non-linear system, if the 

highest order derivatives of the unknown vector occur linearly then the 

system is said to be quasilinear. In its general form a first order 

quasilinear system may be written as 

P U + Q U + R = 0 (3 .D 

where i and Q arenxH matrices, P nonsingular, and R and U are 

VYxl column vectors. P , Q and Rare all functions of U , X and t . 
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Instead of the general system (3.1), we may, without loss of generality, 

write 

U + A U + - B = 0 <3-2> 

where A =A((J,X/t) is a VlX^ matrix, B=B(U,x,t) l s a Ylxl 

column vector and Û Ĝ U..,;--- .U.̂ ") where ^ = U
t(j * , 0 A = ,.i/"r^ 

and T denotes the transpose operation. Unless otherwise stated the 

independent variables X, and fc are considered as scalars. 

Weak and strong discontinuities 

A discontinuity in the derivative of a function is called a 

weak discontinuity and a discontinuity in the function itself is called 

a strong discontinuity. 

In this section we shall be considering the propagation of 

waves into water at rest, above a sloping sea bed given by ^-V-H(bt)=0 

It follows from the previous theory that the surface wave velocity 

G ( X j ' t ^ — + J *\ being the elevation of the free surface. . Incorporatin 

C in (2.15) and (2.16) we get 

V * a U L x a c C x T H x = 0 <3'3> 
and 

fcc*s,ac+ca - 0 (3.4) 

If the sea bed is of constant slope VV\, , then "~ a n d t n e 

shallow water equations can be expressed in matrix form as given by 

Jeffrey (12) as follows, 

U + - A U + B = 0 o.5) 
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witK \. , "X denoting the partial differentiation with respect to time 

and distance respectively and 

U - f t ] . A -
Our next problem is to find if the system ( 3 .3 ) is hyperbolic. In 

order to achieve this we shall first change the variables from ̂ -jt to 

Qij-L » where 

(3.6) 

It is well known that discontinuities of a derivative of a solution 

cannot occur except along characteristics (Courant and Lax (8)) and we 

assume that <p = 0 to be one of the family of O characteristics (to 

be defined later). Thus it is quite appropriate to take 3̂ = 0 as 

one of the new co-ordinate axes. 

The new system of co-ordinates will be semi-curvilinear and 

for the transformation we shall use the following differential operators 

and 

(3.7) 

(3.8) 

Figure 3.2 
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Since , the operators become, 

3 l = +3-

and . 
& - cK 3 

Thus the system ( 3 . 5 ) can be written in terms of the new variables as: 

i>U. + U„ + A 4 U B = 0 

that is, as 

Now , along ^C.X;,'^^ = constant 

and so, 

Hence ( 3 . 7 ) becomes 

say 

4>' 

Thus we can solve for U » » in terms of U . provided (A-A11 + 0 
The curves 0 defined by 

C ; 4r u>kê e A - A l | = 0, dt I 

are called characteristics if the eigen values A. are real and distinct. 

When the curves C are real the equations are then called hyperbolic. 

in ( 3 . 5 ) are A. =*U .+C a n t j A = *U,-C» , so 

that they are real, and hence system ( 3 . 5 ) is hyperbolic with two sets 

of characteristic curves v_, and corresponding, respectively, to 

A. and A 
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It has been established by many authors that discontinuities 

in the derivative of a solution of a quasi-linear hyperbolic system 

such as ( 3 . 5 ) are propagated along characteristics. Now we shall 

Of ' 

Figure 3 . 3 

difference ( 3 . 9 ) across the wave front trace whose equation we take to 

be given by = 0 . That is, we take<P = 0 to bound the 

disturbed and undisturbed regions of water so that it represents the 

projection or trace in the Ĉ ĵ O P^ a n e °f t n e wave front. The para-

meterisation of the curves <J3 = const^to achieve this will be discussed 

later. We know that Û i is continuous across ^C*3^= 0 and that Û j 

is discontinuous. Hence if Q}£ are points to the right and to the left 

of P on the wave front we can write, 

( 3 . 1 0 ) 
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where r r i"\ , N 

If *>P , then the equation (3.10) becomes, 

fe+Ai)p[u^]=0 ' ( , N ) 

where, 

Since we have taken » arbitrarily on the wave front we can drop the 

suffix P and can write (3.11) as, 

The wave front trace is, 

so, as we have already seen, 

whence, 

Now from (3.10) and (3.11) 

SETTING \ = ^ = -

equation (3.14) becomes 

(3.12) 

(3.13) 

( A - f e l H K M 

(3.13)' 

(A-M)[U^"J^ 0 , provided ( j^O (3.15) 
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There will be a non-trivial solution forU^if and, only if, 

A-K 1 = 0 (3.16) 

In general if A is anVl*H matrix there will be V\ eigen values, 

^ j\} X. and hence Y\. eigen vectors for the solution of (3.16). 

The curves <P = constant will be real if and on ly if all X are real 

and distinct. Further, if all the eigen vectors are linearly independent, 

we call the system (3.5) totally hyperbolic. This again is our hyper-

bolicity condition appearing in the context of the d e r i v a t i v e o f U 

normal to the wave front trace. 

In our problem the eigen values ofA are given by, 

u-X. a c 
c = 0 

or by, 

- U - * C a v \ d U . - G , (3.17) 

0*° 
and the corresponding left eigen vectors X. are 

(3.18) 

Thus, as already stated, the system (3.5) has two families of character-
• r l , ) r w 

istics and \— determined by the solutions of the equations 

dx _ y*> (3.i9) 

for X = I ,Z 
0) W 

The characteristics 0 & and C & originating from 0 in the (0C,t.̂  pi ane 
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Figure 3.4 

If the disturbance is going in to the right region which is at rest 

(for simplicity), then 

XL = 0 o 

and 

C o ( x ) = J l - VVOC ( 3 . 2 0 ) 

From ( 3 . 1 7 ) and ( 3 . 1 9 ) we can determine the form of the characteristic 

Q, (say) which forms the wave front through 0 as a function of time. 
t o . 

dlt 

that is, 

d x 

which when integrated gives, 

= j l - V A X ( 3 . 2 1 ) 

V - T - ( 3 . 2 2 ) 
4 
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Now premultiply the system (3.5) by JL and use the relation X M - A. A * 

to get, 

t \ U ^ t \ ) ^ i ^ B = 0 (3.23) 

>) 
along \_,. 
Using the values of JL , U and B > we get, 

VI, :± = 0 (3.24) 

and on integrating (3.24) with respect to time, we find that 

in 

UL -v 2> C vw,"t si C c w s - V a n t (sa^ k j c J o w j C (3.25) 

We shall assume that initially at t = 0, the values of IA, and G. are 

prescribed, say by 

c C X j O ) - j (3.27) 

By use of the initial conditions we can determine the constant K and K 

Then the values of IL and C for all points in the (0C3fc^) plane can be 

obtained by solving the differential equation (3.21) for the characteristic 

through that point. As <b is so far specified only by the differential 

equation (3.13), in which for waves moving to the right X. — X . =.*U.-t-C^ 

we must give initial conditions for as it is a co-ordinate variable 

for which <Q = 0 is the wave front through the origin. We set (^(b^o^-^, 

when <̂ 3 > O ahead of the wave front and ^ < C O behind it. As 



-17-

is the Jacobian of (3.6), this implies that initially no two members of 

the same family of characteristic curves are tangent to each other, so 

that initially they will constitute a regular semi-curvilinear co-ordinate 

system in thefx^^ plane. We shall discuss later the case when the 

characteristics cease to have this property. 

Simple Wave 

It is possible to have a problem in which (a) the initial 

undisturbed depth of water is constant, (b) the water extends from the 

initial point to infinity at least in one direction and (c) the water is 

either at rest or moving with constant velocity with its free surface at 

zero elevation at the time t = 0. Under these conditions we see that 

one of the characteristic families of (3.21) consists of straight lines 

along which W. and C are constants, and the corresponding motion is 

called a simple wave. » ^ 

Figure 3.5 

When a disturbance is initiated at t = 0, it is propagated into the region 

of rest and the water will remain at rest until the disturbance reaches 

that point. The nature of the motion is determined by the character of 
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the disturbance at x = 0. Since there is a disturbance in the region II 

(see Fig. 3.5), one set of characteristics will be straight lines and 

the other curved lines. This has to be so, or else if both sets of 

characteristics are straight lines, then that region will be at rest. 



-19-

4. Propagation of Waves into still water ,vf 

" n , v c • • • 

There is a remarkable difference between the propagation of 

waves having a steadily decreasing surface elevation at x = 0 and 

those having a steadily increasing surface elevation at x = 0. 

The slope of any characteristic issuing from t = X on the 

t axis (Fig. 3.5) is given by, 

This equation gives us a complete family of straight characteristics. 

Now if at x = 0 is a decreasing function, then decreases 

with increase of time. Hence the slope of these straight line 

characteristics decreases as t increases and we get a family of straight 

characteristics which diverge on moving from the t axis. In the other 

case the function increases as t increases and hence Siib. also 

increases as t increases. Thus the characteristics converge to a 

point. In the first case the motion is continuous throughout and in the 

second case the motion is continuous only up to the point of intersection 

of two characteristics. Physically we say that the wave breaks or 

developes a bore once the solution ceases to be continuous. 

The propagation v waves into still water has been investigated 

by many authors. Jeffrey (1_ considered a smooth fronted wave, (that 

is a wave whose slope is continuous in the free surface, but which has a 

discontinuity in the derivative of the surface slope across some line 

in the free surface). The author also assumes an arbitrarily smooth 

sea bed profile and establishes the fact that breaking at the wave front 

cannot take place until the waves reach the shore line. Jeffrey and 

Tin (14) considered the propagation of non-smooth fronted waves over 

a a A i i a 



-20-

vertical walled objects on a flat sea bed. In a problem of this type, 

where the sea bed is not continuous and smooth, the reflection of waves 

is very significant. Carrier and Greenspan (7) considered a sea bed 

of constant slope and showed that breaking depends on the initial shape 

of the wave and the particle velocity distribution. . There is still no 

general theory for the propagation of waves into water above a sea bed 

of arbitrary shape. 

Waves in channels 

In deriving the differential equations of the flow in open 

channels we should consider the existence of significant forces other 

than gravity, such as friction. Stoker (24) using the one dimensional 

theory obtained the following differential equations. 

Figure 4.1 

equation of continuity, 

equation of motion, 
V V V ^ = S V S * V ^ ( 4 . 3 ) 



where A = area of cross-section 

q = influx per unit length of channel 

S = Sir , the slope 

S f = the friction slope 

v = the velocity 

and y = the depth 

The differential equations governing the flow are expressions of the 

laws of conservation of mass and momentum. In deriving them the 

following assumptions are made. 1) The pressure in water obeys the 

hydraulic pressure law, 2) the slope of the bed of the river is small, 

3) the effects of friction and turbulence can be represented by a 

resistance force depending on the square of the velocity v. These 

equations are used in describing certain typp? of waves that form in 

open channels. 

Roll Waves 

Sometimes in open channels there exists a flow in the form of 

a progressing wave moving downstream at constant speed without change in 

shape. This type of wave could be expressed mathematically as a function 

and 1* 

in the following form, 

(4.4) 

(A.5) 

where is a constant. 

Introducing a new , Stoker (24) 
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transformed (4.2) and (4.3) to, 

( v - U ) ^ ^ \ = ° (*.»> 
and 

(v- u y ^ - 3 V 3 C V S ) = 0 <*-7> 

for a rectangular channel of fixed breadth and slope. The solution o 

(4.6) and (4.7) is 

( 9 - $ ) V 3 C V s ) - 0 ' 
where 

,: D = constant of integration of (4.6). 
• ' ' •• 

With the aid of this differential equation it is possible to describe 

a special type of progressing wave in a uniform channel known as roll 

waves (Fig. 4.2). 

. 8 

Figure 4.2 

These waves consist of a series of bores connected by a 

stretch of smooth flow. This type of wave occurs in steep channels. 

Practical observations lead one to wonder whether there are 

discontinuous periodic solutions with discontinuities in the form of 

bores. But the "shock" or bore conditions were derived assuming no 
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resistance was present and it was confirmed by Dressier (8) that the 

resistance terms play no role in shock conditions. Dressier also 

proved that roll waves cannot occur either if the resistance is zero 

or if the resistance exceeds a certain critical value. As the 

resistance decreases, the size of the wave decreases and if the 

resistance becomes large the profiles reverse their directions and can 

no longer be joined by shocks. According to Dressier (8) the critical 

value is reached when the dimensionless resistance coefficient equals 

one-fourth the value of the channel slope. 

Problems in non-viscous unsteady flow can be solved by using 

the Riemann method of characteristics to integrate the partial differ­

ential equations. The problem of roll-waves cannot be treated in this 

way as this type of flow depends basically upon resistance effects. 

Solitary Waves 

There exist waves of finite amplitude consisting of a single, 

elevation which propagate without change of shape. Such types of wave 

are called solitary waves. 

A theory was developed by Keller (16) by extending the theory 

of Friedrichs (9) to second order terms to get both solitary and enoidal 

type waves. In the lowest order approximation, the only possibility 

is the uniform flow with undeformed free surface. But if the speed U 

of the flow is taken to be critical, that is, U = J ^ ^ V , where V\. 

is the"'undisturbed depth, then a bifurcation phenomenon takes place and 

the second order terms in the development of Friedrich's theory lead to 

the possibility of solitary and enoidal waves. 

Stoker (24) has shown that a steady flow with critical speed 

VJ — J * 3 ^ - is highly unstable, since the slightest disturbance leads 
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theory to explain solitary waves 

j — / / / 7 -j j-y ? f 7 7 7—7-
X 

Figure 4.3 

Solitary Wave 

Stoker obtained the shape of the wave as, 

~ \ + 3 X S e c W 3 X x 

a 
when the horizontal component of the velocityU. is 

VJL = - 1 - 3 X S e c W 2 " 3 X ^ c _ 

and where is a quantity which depends on the speed U . These 

equations show that the solitary wave is of symmetrical form and the 

amplitude increases with the increase of speed U . A review of the 

occurrence of solitary waves and of their properties is to be found in 

the work of Jeffrey and Kakutani (15). 

to a motion where infinite elevations of the free surface occur in the 

context of the linear theory. Thus we should adopt the non-linear 
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5. Transport Equations 

We shall use the method due to Jeffrey (12) in deriving the 

transport equations for the discontinuities that can exist across C_ 

in the case of a wave advancing up a sloping beach. Hereafter we call 
1 

these O discontinuities. f u 

Figure 5.1 

Assume that at t = 0, a periodic wave exists in the region x 0 

(Fig. 5.1) and that the water is undisturbed in the region 0 < x 4> d; 

x = d is the shore line. Let the disturbance be given by 

nr^jDjt") = Asivbcot. ( 5 # 1 ) 

The initial values suffer a Lipschitz discontinuity across the wave front. 
0) 

These discontinuities are propagated along the G Q characteristic originating 

at the origin. We say that (mathematically) the breaking of wave at the 

wave front will take place first at C^c^c"^) ^n t n e C2~î 0 P^-ane when 
the V_ characteristics intersect on the v̂. characteristic to form a 

O 

cusp and the slope of the wave front at this point becomes infinite. 

Now let us introduce the new variables 
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<^0^^O = constant and "t, — t (5.2) 

and as shown earlier require to satisfy the equation 

(5.3) 

re = A. along <t> = constant. whei 3 E t 
We shall also impose the initial condition 

(5.4) 

to obtain the parameterisation for described previously. 

The wave front is then given by <̂ pĈ ĵ 0 = ^ a n c* ahead of the wave 

front ( ^ ( o t j - t ^ O • The transformation (5.2) is non-singular if 

is non-zero. From the initial conditions, -^-^ = 1» and 

hence the Jacobian is non zero. We seek to find the condition that the 
^ JL 4 . " Jacobian is zero on . In terms of the new variables ^ j ' t . we 

have 

and 
at at" 

From (3.21), (5.3) and (5.5), 

J 

0 

(5.5) 

and after division by » w e have, provided <jp ^ Oj 
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But as 

becomes 

I 0 ) 
= - A, a n rj ^ — •"-Q the above equation 

x ~ 2," 

A l „ + j f B = o 

( 5 . 6 ) 

( 5 . 7 ) 

(5.8) 

0) 
We have that the vector U is continuous across C<0 and that A(lj)is 
also continuous across v_. • Also the derivatives with respect to A. 

o 
are continuous across C Q • However, the derivatives with respect to 

(j) are discontinuous. We shall define the jump conditions across 

(|= 0 as follows, 

and 

(say) 

(say) 

Note here that is a scalar and is the jump condition in the 

Jacobian "X.^ . 



Figure 5.2 

We also note that a constant solution U =U exists in the region R, 
O 

satisfying the equation 

I L + A U * B = 0 
at o ox o 

(5.9) 

Since A = 1,2 , (5.7) reduces to, 

and on differentiating with respect to ^ , at a point in the region , 

we have, 

(5.10) 

There exists a similar equation for a point P (say) in the region 

behind <|> = 0 but in front of the backwards facing characteristic issuing 

out of the origin. Letting the points P and P tend to a point on 

the line ^ = 0, differencing the equation across <|j = 0 and using 

the jump relations we obtain, 

TT 
i t 2 t ! 
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where Vi and T\ are the components of V\ . 
• 2. 

Then differencing (5.8) across (j} = 0 gives, 

The suffix 0 denotes the values in the region of rest R. . If we 

write(xJ\ =
 ^ - ^ L , then on the side CD = 0 + of the wave front the 

equation (5.8) becomes, 

Multiplying (5.12) by and subtracting the product of (5.13) and 

X then gives 

Now, using the initial conditions UL = 0, (5.14) reduces to: 

7L ( O X + TT - Z V = 0 (5.13) 

Since 

° $ c)<Jp * 0 <^ 
and 

we also have, 

as the differential equation from which we may determine the wave front 

trace. Differentiating this with respect to <p , and working on C 
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•6V 

and so 

or 

which may be written 

where is the gradient operator with respect to the elements 
o f U . 

^ 0) 
Differencing (5.16) across (2, , gives 

o 

and since A.' ~ U» + C> 

Integrating (5.17) along from 0 to t* = T we get, 

X W - X ( p ) = j (y^?i ) ) 0

T TcLi ) 

but, as defined earlier, 

The initial condition for <b is <h(x,0) = x, and as *X = 
T i 

that X(0) = 1 - 1 = 0 . 
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As the state ahead of the disturbance is constant, so that the 

characteristics in U are all parallel, we have that, 
<$=0 

Thus the equation (5.19) can be written 

= 1 +• ( ( V U ^ ^ T I C H ! ' (5.20) 

The left hand side of (5.20) is just the Jacobian of the transformation 

evaluated immediately behind the wave front trace at time t = *C . If, 

for some time "C = t , the Jacobian vanishes, then the characteristics 
c 

intersect and a discontinuity forms in the solution at the wave front. 

Hence, setting the Jacobian -X̂ > equal to zero in (5.20), and replacing 

"C by t^, an equation is obtained from which, when it has a real non-

negative solution, we can find t , the time of formation of a discontinuous 

solution, 

0 = 1 + (5.21) 
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6. The breaking of waves 

We can write the equations (5.11), (5.15) and (5.18), 

dropping the prime over the t without loss of generality, as 

a T T a t = 0 <6-l> 

2 (C 0 ) X + T 1 - 2 T I = Q (6.2) 
and 

From (3.19) and (3.20), 

Writing S = (C ) we shall differentiate (6.2) with respect to t, giving 

which reduces to, 

S t X + S C V n a . V n i t = ° ( 6 ' 5 ) 

using (6.1) and (6.3). 

Then we eliminate X between the equations (6.2) and (6.5) to obtain 

the equation, 

3.S1T •.-(2.S 1- S C S ^ X * 0 (6.6) 

If we differentiate (6.4) with respect to time, we have 

= - s 4 
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Thus the equation (6.6) reduces to 

I f . 4- 3 S I T = 0 (6.7) 
>t £ \ 

Now integrate (6.7) with the initial condition TT̂  =. TT4 at t = 0, to 

find T\>_ ^ ^ 

Hence tt * O -*J?.n 

and we now write 

3 

where TT, » is the initial value of TTj • 

Then, by integrating (6.1), we get 

where TT » is the initial value of Tf • 
X X 

whence 

_ 3 

Since A- =- *\X -+• C. (5.21) reduces to, 

0 = 1 - * - ^ ( j ^ + ^ O ^ ( 6 a o ) 

Now substituting for TTj and TT from (6.8) and (6.9) in (6.10) we get 3. 
the following equation 

& ( 6 . U ) 
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Also, by definition, 

TT - U. - U 

and 

so that 

Similarly, 

4 = 0 
4> 1 

= 0, 

TT = & TT, = U , . = U , X A 

TT, ^ ^ a s 1 

TT = ftt TT = it C. 
1 

- C 
($>= o" 

Thus (6.11) becomes DC 2/ 

that is, 

(6.12) 

The equation (6.2) holds along C and if we take the limit as t 0 
O 

along = 0 , we get 

TT, « £TT 

that is 
. A - A . 

- u = c ^ 
so that we get. 

The solution of (6.13) depends on the value of > where is 
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results obtained by Stoker and Jeffrey are the same for a flat sea bed. 

But Jeffrey's method has the advantage that it may be applied to any 

problem having a sloping beach. For a disturbance given by (5.1), the 

critical time t and the corresponding distance x c obtained by Stoker (25) 

are, 

and 

^ (6.14) 

t - ^ C o C C o + UL,,*) (6.15) 

We also see from the definition of the surface wave speed C— \ J^h, 

that the propagation speed of a wave of height h increases with the 

height of a wave above the undisturbed level, and so it follows 

immediately that the higher points in the wave surface will propagate 

at a higher speed than the lower points in front of them, with the result 

that the crest of a wave overtakes the trough. Consequently, the wave 

becomes steeper and eventually the wave curls over and breaks. From 

equation (6.14) and (6.15) we see that the breaking depends on the 

amplitude and frequency. Hence the shorter the wave, the sooner it will 

break. Also the waves will break early if U-Q is small, whilst if 

is negative the breaking will be even sooner. 

Another important deduction from the theory is that the 

maximum surface elevation of the waves propagating into still water is 

independent of time and distance. The position of the breaking point 

also depends on the type of wave that is propagated into still water. 

We shall now discuss a few cases of the breaking of waves in 

shallow water of constant depth. The following table indicates the 

calculations made bv Stoker (23) for three cases. 
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CASE TYPE OF PULSE yl 

RANGE OF 

1 — .2 0 < < TT 

2 -=^: -.2 0 < V < 2ir 

3 -.1 0 < f < 6V O -.1 0 < f < 6V 

The case 1 is a half sine pulse in the form of a positive elevation. 

Fig. 6.1 shows the straight characteristics in the (x,t) plane. Here 

we observe that the envelope begins on the initial characteristic with 

two distinct "branches which meet in a cusp at lYie "breaking point \> >t- ̂  

as given by (6.14) and (6.15). 
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Th e Figure 6.2 gives the shape of the wave for two different times. 

We see that the front of the wave steepens until it finally becomes 

vertical for x = x and t = t , while the back of the wave flattens out. 
c c 

V 
L"5 

— I .4 

y 
S s \ y2. 1 1 1 p i A J 1 I 1 I ' I • I • 

o 1 2 s 

Figure 6.2. Wave height versus distance for a half sine 

wave of amplitude h Q in water of constant depth at 

2 instants, where h Q = height of the still water level (23) 

We also observe that the region between the two branches (of Figure 6.1) 

of the envelope is narrow and hence the influence of the developing 

breaker over the motion of the water behind it is very little. Hence 

we might be justified in assuming that the solution by characteristics 

as given by the Figure 6.2 is valid approximately for t just above t c > 

Figure 6.3 refers to a wave at a time greater than t . 

- \ 1 1 

i 1 1 1 I 
1 

> I t S * 5 6 T 

Figure 6.3 versus x' at t' = 6 for a non-sloping bottom, 

where the pulse is a half-sine wave. The dotted part of 

the curve represents in the region between the branches 

of the envelope (22). 

Case 2 refers to a depression phase which preceeds a positive elevation. 
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Figure 6.4 which refers to case 2 shows that the envelope of the 

characteristics begins in the interior of the simple wave region and 

not on the initial characteristic. 
•U_ . . . , , , 

RUGION OF 

Figure 6.4 Characteristic diagram in the (x',t') plane (22) 

Figures 6.5a and 6.5b show three stages of a wave propagating into 

still water. 

1} 1 1 1 1 1 7 , . rr 

0 1 2 3 4 
WOVO DOLGHL V«RTU« DLITONCA FOR O FULL NTGOLKT LINO «RO»O ^ITFI 
OMPTLLUDO t* IN OOTTR OF CONDON! DOPLH OL ('• 3.0 OND 1 - 3 0 

• \ . ' • 5 . 0 

- V 
- \ 

1 i 1 i _. t 
2 J 4 

Figure 6 .5a (22) 
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0 . 1 6 

o.oe 

• 0 . 0 8 

-o.i« 

j -— 

- \ 
- ' 

a 

-

1 1 V ̂  1 - - ' I 1 

Figure 6.5b Wave height versus distance for a full 

negative sine wave with amplitude ^ h in water of 

constant depth at t° = 6.28 (23) 

It is seen that the steepening is very marked as the breaking point 

is reached. Figure 6.7 shows the shape of the wave just after passing 

the breaking point. Near the breaking point" the curvature of the water 

surface is large. However, shallow water theory is accurate only for 

smaller curvatures. Thus we should revert to the original exact 

formulation of the problem in terms of a potential function with a non 

linear free surface if a solution to this question is required. 

4 
0 . 2 

0 . 1 

• 0 1 

- 0 . 2 

- \ 
\ 

- \ i i 
i 
i 

1 
i 

1 I i 
/ 

Figure 6.7 versus x' at t' = 7 for non-sloping 

bottom where the pulse is an entire negative sine-wave. 

The dotted part of the curve represents in the 

region between the branches of the envelope (23) 

Now we shall consider some cases of breaking on a uniformly sloping 

beach. Here too the principle is the same as that for waves in water of 



-40-

constant depth, but with some differences, such as the fact that the 

amplitude of a progressing wave increases and its wave length decreases 

as it moves towards the shore. This implies that early breaking is 

possible by having a steep beach. In these cases the characteristics 

are not straight lines in the region of the (x,t) plane bordering the 

region of constant state. Also the velocity and the displacement of 

the water surface are not constant along the characteristics. Thus 

we are forced to integrate the differential equations numerically. 

From (3.20) we have the initial characteristic as, 

A 

which is a parabola with its vertex at a point with the x co-ordinate 

corresponding to the shore line. 

Figure 6.8 Characteristics for a uniformly sloping 

beach in the (x,t) plane (2i) 

In order to obtain the remaining characteristics ,we make use of the 

method of finite differences. A set of points on the initial character-
0 ) 

istic C is taken at equal time intervals, the size of the interval is 
° 0 ) 

chosen depending on the accuracy required. Along C , UL = 0, x,t 

are known and hence C is known. Along si, between points (2,2) and (1,2) 
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we have 

from (3.24) 

Figure 6.9 (22) 

(6.16) 

If the arc G between point (1,2) and (2,2) is sufficiently short then 

we can replace the differential equation which 

is valid along the above arc approximately by, 

Since C. passes through point (2,2), from (6.16) we have 

(6.17) 

(6.18) 

From the initial conditions C - - may then be obtained. Thus we can 
i., z 

find all the relevant quantities at the point (2,2). This procedure is 

adopted to determine the positions (2,2), (3,3), (4,4) etc. on the t axis. 
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This method is applicable to all net points in the interior region 

between G and the t axis, o 
The table below gives some of the numerical calculations made by Stoker 

for the cases indicated. 

CASE 
TYPE OF 

PULSE 
AMPLI­
TUDE SLOPE 

BREAKING POINT INCKEASE 
IN AMPLI­
TUDE AT 

BREAKING 
CASE 

TYPE OF 
PULSE 

AMPLI­
TUDE SLOPE (' = w \ / g h I x' = UX 

INCKEASE 
IN AMPLI­
TUDE AT 

BREAKING 

1 .2/i . 4w/i 4 0.8 as 60% 

2 • 08/i . 2uh 7 3.0 ~ 5 0 % 

3 • .02/> .4wft 20 14.0 ~ 3 0 % 

We see from the above table that (as stated earlier) the breaking occurs 

earlier with increase in amplitude and decrease in wave length. In 

Fig. 6.10, the set of characteristics shown are calculated by the method 

of finite differences for case 1 . 
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The time interval is A t' = 0.5 and the Fig. 6.11 shows the shape of 

the wave surface for t* = 3 and t' = 4. 

05 1.0 15 2J> 25 
1 1 y 1 

•3.0 

ui, l'- ŵfqh t 
>)( !')• -02 sin (0 

V-4.0 

-8 0 OS 1.0 15 2 0 25 

Figure 6.11 Wave height ^ versus x' at two different 

instants. (22) 

Then the Figures 6.12 and 6.13 show the characteristics in the (x',t*) 

plane and the wave surface for two different times for case 2 in the table, 



M . O 

— 

1 N 1 1 1 
0 1 2 3 4 5 

t • 7.0 

Figure 6.13 (22) 

The wave surface in case 3 at two different times is shown in Figure 6.14. 

We see that the wave length shortens, the amplitude increases and the 

wave front steepens as the train of waves moves towards the shore. But 

these changes are very small. In case 3 where the amplitude is sufficiently 

small the shape of the wave could be obtained fairly accurately by using-

the linear shallow water theory. 

Figure 6.15 shows the results obtained by using the two 

theories. 



Figure 6.15 Comparison of linear and non linear 

shallow water theories (22>) 
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Thc Bore 

We shall now consider the water profile after breaking. 

Stoker (24) and Biesel (5) suggested some methods of solving the differ­

ential equations after breaking. Stoker suggested the form of curves 

given in Figure 6.16. 

tj'.-ISTMO.OLT) Appraiimotol, 01 L'»0 

Figure 6.16 (22) 

The results of Biesel's work using a perturbation procedure can also 

be shown graphically by Figure 6.17a, 6.17b, 6.17c and 6.17d. 

Figure 6.17a Progression and breaking of a wave on a 

beach of 1 in 10 slope. First order theory. (23). 
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[ 

Figure 6.17b Details of breaking of wave shown in 

Fig. 6.17a. First order theory. (21) 

The Figures 6.17a and 6.17b show the results when the theory is carried 

out to the first order only, and the Figures 6.17c and 6.17d refer to 

results when the theory is carried out to second order terms. It is 

seen that if second order terms are taken the breaking seems to occur . 

earlier. 

MEAN LEVEL 
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' , ' : i „ Figure 6.17d Details of breaking of wave shown in 

Fig. 6.17c. Second-order theory. (22) 

and the height of the wave at breaking is greater. This shows that we 

cannot expect to get a good approximation to the wave profile near the 

breaking point using the shallow water theory. 

In open channels sometimes a situation arises when a steady • 

progressing wave front which is steep and turbulent is created as shown 

in Figure 6.18. 

J 

K i j 
• ————————— 

Figure 6.18 (22) 

If the discontinuous front is a moving one it is called a bore and if it 

is stationary a hydraulic jump. 
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Simple explanation of bore formation in a sloping stream 

Consider water of depth h flowing with velocity u in a channel 

whose bed is inclined downwards at a small angle <*• to the horizontal. 

Figure 6.19 

Let OX = x, and let y be the depth of a point P in the water with 

surface at depth Y below the origin 0 as in Figure 6.19. 

Bernoulli's equation then gives, 

(6.19) 

where 

giving 

P = water density 

UL = water speed 

= acceleration due to gravity 

(6.20) 

(6.21) 

If OC is small we can write 

(6.22) 



-•50-

So that (6.21) becomes 

-L^f^cjW - £oi/vStav\fc - v ' X O C g (6.23) 

Now continuity of flow implies that 

U_,K/ = A = constant = initial value of product (6.24) 

Hence (6.23) can be written 

with B a constant. 

Hence 

Thus, if u 4, gh, the depth h of the water increases with distance, and 
2 

if u > gh, the depth h of the water decreases with distance. If 
2 

u —> gh the above argument no longer holds and the slope of the surface 

would become large giving rise to a possible mechanism for bore formation. 

Figure 6.20 

Relations across a strong discontinuity line 

We have seen earlier in our discussion that in general, a quasi-

linear hyperbolic equation will not have a differentiable solution which 

is unique for all time. This is also true for a system of such equations. 
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The non-uniqueness of a solution at a given point suggests the 

introduction of discontinuous solutions to overcome this differentia­

bility problem. That is we try to piece together a solution from 

differcntiable solutions which are discontinuous across a line and to 

determine the nature of such a discontinuity. This corresponds to a 

shock in gas dynamics cr to a bore in water waves. 

Now consider the following equation (6.25) written in the 

divergence or conservation form, 

assume that U is discontinuous across line L in the (x,t) plane 

(Figure 6.21) and that the equation (6.25 is valid in some region R with 

(6.25) 

T 
where F, G, H are functions at x,t and Let us 

o —v 

Figure 6.21 

boundary that is traversed by L. We have 

(6.26) 

So let us now integrate (6.26) over R to obtain 

(6.27) 



Now apply Green's Theorem to the left hand side of (6.27) and we get; 

^ C ^ * - 6 d 0 ^ [ H a X d ^ (6.28) 
b R R 

Allowing R to shrink to zero about P, we see that the right hand side of 

(6.28) tends to zero. (We assume that H is finite). (6.28) becomes after 

division by dt, 

(6.29) 
juvwjp O.CYOSSL 

Setting = ^ then gives the result 

or ^ 

[ t n U ( 6 - 3 0 ) 

where ^ 0 "J j denotes the jump across the line L and \. is the slope of 

L at P. (6.30) is a system of algebraic equations. In gas dynamics a 

system of equations of this type is called the Rankine-Hugoniot equations. 

Let us now write the equation (33) and (34) in conservation form. We 

see by inspection that (33) can be written as 

^ + | L 0 k ^ - > f > O (6.31, 

Equation (3.4) is not in divergence form as it stands. It can be brought 

into this form by multiplying by C, when it may be written 

Combining (6.31) and (6.32) we have the system, 



o 
(6.33) 

and in terms of our previous notation, 

U L C 

o 
e 

Thus the jump condition 

takes the form 

and (6.34) 

The conditions (6.34) are algebraic conditions and they determine the 

behaviour of *X. and C across the "bore" and relate them to its speed 
A 

of propagation A. . 

Let us apply this result to a wave advancing in water at 

rest over a step change of depth in a channel as shown in Fig. 6.22. 

Equation (6.34a) yields 

c - Y = c - Y 

which gives us no new information as each side of the equation is 

identically zero. 

Figure 6.22 
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Equation (6.34b) becomes 

( c : - c ! ) ^ = o 

so that if d > then A/ must be zero. This means that the 

disturbance is stationary as would be expected from the nature of 

the problem. 



:i" The well established shallow water theory due to Stoker has 

been used by many authors to explain various problems. Carrier and 

Greenspan (7) used it on water waves of finite amplitude on a sloping 

beach. In this paper the authors assume a constant slope beach and 

the characteristic length £ in the transformation is chosen depending 

on the problem. 

Figure 7.1 (7) 

Having introduced a potential function (ĵ G^X) such that the horizontal 
velocity "\S is given by 

(7.1) 

the authors obtained the following relationships, 

- c + x 

(7.2) 

(7.3) 

and 
-6"<b = 0 

(7.4) 

(7.5) 
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i from the origin and G" , \ are a pair of independent variables. 
I 
$ The free boundary line is the line 6 " = 0 in the X.} 
I plane. Once the function <J5(?>^0 ^ s chesen to suit the problem, then 

I ^ , v, x, t are defined in terms of 6 " and A . 

If the Jacobian does not vanish in C ^ 0, the 

solution V^(x, t), \J (x, t) is single valued and hence the waves do not 

break. The form of the function <j> satisfying the above equations is 
;| given by 

•5 

3 

- 1 4 

(7.6) 

Jq being the Bessel Function. For a function given by (7.6) the 

Jacobian *̂ C"X/0 does not vanish in 6 " ^ 0 for A »̂ 1. 

The authors considered two initial value problems. The first 

example is a one parameter family of wave forms at t = 0 given by 

-̂tAf̂ l'bfeJ- (7-7) 

* = - a ? + £ [ , - I | ^ f ] ' C7-8) 

16 L -2- (a: 
3 % 

where a = (1 + 0.9£) and £ is a constant to be chosen. 

The authors obtained the following equations for the motion of the 

instantaneous shore line 
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'•1 

- SEA UVU. 

- -

- • 
1 1 I i i 1 I I ' i l i 1 

-12 -JB -A -A. . 

U> 
A • 

3. 

Figure 7.2 Initial wave shapes given by equations 

(7.7) and (7.8) for 0 and £, = 0.1 (7) 

By setting C" = 0, we find that 

.2-

and 

(7.9) 

(7.10) 

(7.11) 

The maximum penetration distance is obtained by settinglf = 0. It occurs 

when X- = 5 , when 

(7.12) 

The time history of the wave motion for 

7.4, 7.5 and 7.6. 
= 0.2 is shown in Figures 7.3, 



Figure 7.3 Time history of the wave form of 

equation (7.7) for €, = 0.2 near the coast 

line. (7) 
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Figure 7.4 Time history of the wave-form of 

equation (7.7) for £ =0.2, far from the 

coast line. (7) 
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Figure 7.5 Time history of the wave-from of 

equation (7.7), for = 0.2,in the neigh­

bourhood of the beach. (7) 

Figure 7.6. Coastline position and velocity 

versus time for the wave-form of equation 

(7.7) with £, = 0.1. (7) 
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We note that, as shown in Figure 7.3, the instantaneous shore line rises 

above the mean sea level and then slowly settles back. Further, there 

are no oscillations about the mean sea level and the waves do not break 

for *c. "C 0.23. In the second example (7) the motion of the stationary 

mound of water released at t = 0 is assumed to be given by, 

1 = i £ P <3- e 
and 

where 

2 4 a.-cr^ 2_ 

4 I 16 

This wave form is shown in Figure 7.7, 

«- 9 

Figure 7.7 Exponential wave-forms of equation 

(7.14),£. = 0, 0.1, 0.5, 1. (7) 

(7.13) 

(7.14) 

We see that the waves have zero slope at the origin and the initial 

maximum height is at a fixed position from the shore line. The authors 

were able to show that the quantities "U* , \T ,\L_ are bounded and that 

the upper bounds are independent of <5~ and X. , so that, 
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where M, M^, M2 are constants. 
"•[', '•'."•<*•" 

For sufficiently small fc. , the Jacobian 

Hence the Jacobian does not vanish in the interior of the fluid showing 

that the waves given by the equations (7.13) and (7.14) do not break as 

they climb the shore. The Jacobian is zero only for CT = 0. But 

this is a property of the transformation and not in any way related to 

the initial wave shape. In this problem too (cf. Figures 7.8 and 7.9) 

the shore line motion is such that it first rises to a maximum height 

Figure 7.8 Coastline position and velocity versus 

time for the exponential wave £, = 0.1 of equation 

(7.14). (7) 
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Figure 7.9 Coastline position and velocity 

versus time for the exponential wave £, =0.5 

of equation (7.14). (7) 

and then falls back to a minimum below the rest position and then settles 

to the original mean sea-level slowly. Further, there are no oscillatory 

motions, and the maximum penetration distance obtained by setting IT = 0 

for X. = 2.41 is 

(7.15) 

Thus the maximum penetration distance in the second example is greater 

than in the first one for a particular £ . The authors have shown that 
i 

there:| aire, progressive waves with positive amplitudes which do not break 

as they climb a sloping beach, even though the value of , and hence 
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the initial shape of the wave, determines the breaking. 

Greenspan (11) using the non-linear shallow water theory 

obtained the same basic equations as Stoker. The wave velocity was 
h 

obtained as C = (1 - x +*!.)• 

Figure 7.10 Fluid with a fixed boundary and a 

free surface. (11) 

In this paper the characteristic length $,Q is chosen as the distance 

of the origin of co-ordinates system from the shore line. When non-

dimensionalised this distance became equal to unity. 

Since the wave propagation is into water at rest, "U" = 0 in 0 x ^ 

Hence the slope of the characteristic at any point (x,t) is given by 

(7.16 

along which v + 2c + t is constant, and since C = 1 at x = 0, 

v + 2c + t = 2c + t = 2. That is, 
d x _ \ _ ; t _ 
d i - t Z 1 

and on integrating, we have 

4 J 

At the wave front the wave velocity is given by 
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Also, at t = 0, the wave front is at the origin of the co-ordinate 

system fixed in the fluid.. In time t the wave front moves through 

a distance Jcd - t and if ^ denotes the distance from the moving 

wave front, then 

^ 4-

The new .co-ordinate ̂  is the position of the wave front and using the 

basic equations, in terms of the new co-ordinate ^ , the following 

Its are obtained for LL (o,t) and Tj (o,t), 

0-4)st=f <*s=°. '(7.i7) 

resu 

and 

(7.18) 

In this case the wave is steadily decreasing at the wave front if 
yf\,<^(P^<0 and from (7.18) we see that '\^9P)'CQ . This 

shows us that the wave front steepens. Also we see that if ^ ^ P ^ ) 2 ^ 

then "̂ X̂ (̂P>̂ 3 ~ ^ ' showing us clearly that this type of wave cannot 

break or form a bore at the wave front. Solving (7.17) and (7.18) 

Greenspan obtained, 

and 

w here, f,, ^\ in 

This shows us that if ,/\_^S>p) ^ O , then A ^ 1, and the wave breaks 

when the slope at the wave front becomes infinite, that is, when 

-t z Q - a ^ } < a 
or 

2 , 
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Therefore, we can say that a steadily decreasing wave (at the wave 

front) propagating towards the shore with a discontinuity in the 

surface slope breaks before reaching the shore line. 

In both the above papers special forms of shallow water 

equations are derived and the slope of the bottom is assumed to be 

constant. Also in both papers the shape of the wave is determined 

first and hence the conditions for breaking depends on the shape of 

the wave. 

Now we shall look briefly into a method given by Jeffrey (12) 

whose method of approach could be applied to problems involving sloping 

beaches having non-uniform slopes. This method employs the Lipschitz 

continuity property in the neighbourhood of the wave front and does not 

depend on any special properties of the basic equations. We also 

find, as expected, that Stoker's (24) results by analytic solution for 

a special case of waves in water of uniform depth, and Jeffrey's result 

for zero slope are the same. 

In all the papers discussed previously it was shown that the 

breaking of the wave depends on the initial shape of the wave front. 

Jeffrey (13) considered the propagation of a smooth fronted wave using 

shallow water theory, where a smooth fronted wave is taken as one in 

which the surface slope is continuous across some line in the free 

surface, but the second derivative of the surface slope is discontinuous 

across the same line. Using the same techniques as in (12) the author 

established that in the context of the shallow water wave approximation, 

smooth1!,fronted waves propagating into still water above an arbitrarily 

smooth sea bed profile can never break at the wave front until they 

reach the shore line, after which their behaviour depends on the subsequent 

motion of the shore line itself. 
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The study of the climb of a bore on a beach of uniform 

slope is interesting because of its close resemblance to non-uniform 

shock propagation in gas dynamics. This problem v/as examined by Ho 

and Meyer (20) whose method of approach is based on the fact that 

non-trivial solutions of the given differential equations have singularities. 

The differential equations are of the form 

k being a constant. 

Equation (7.19) has a singularity at z = 0 and the immediate problem 

here is to specify the necessary and sufficient conditions on the singular 

line z - 0 for the existence, uniqueness and stability of the solutions. 

The bore relations given in Section 2 of (20) furnish some of 

the boundary conditions. The other boundary conditions are given in 

the subsequent Sections 3 and 4 and they are the seaward boundary 

conditions 

Figure 7.11 (20) 
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where is the horizontal water velocity, h Q(x), the undisturbed water 

depth, h(x,t) the total water depth and V the velocity of the bore. 

The remaining boundary conditions giving specific information about the 

water motion behind the bore is given in Section 3 of the paper. The 

bore height (h^ - h Q) is assumed to be a single valued, continuous 

function of time t, for t < 0. Hence V(t), ULb(t) and C b(t) all 

become single valued and continuous. Also in Section 3 the authors 

have defined a limiting characteristic L as shown in Fig. 7.12 whose 

Figure 7.12 Diagram of (x,t) plane showing 

of successive bore positions. (20) 

importance was first pointed out by Guderly. The bore path is given 

by B in the (x,t) plane. The time is measured from the instant at which 

the bore reaches the shore. The authors have assumed the bore to be 

known for t = T *C 0. C is assumed to be a receding characteristic line 

of the water motion behind the bore issuing from the bore at time T. So, 

if u and h are known on the segment of C between B and L, the bore 

development is uniquely determined in T < t ̂  0. Mathematically, this 

segment of C is called the seaward boundary. A fairly detailed 

qualitative approximation for the solution near the shore is obtained in 

Section 5 of the paper and the approximate bore path is also obtained. 



Meyer and Shen (21) proceed to discuss the climb of a bore 

on a beach having a non-uniform slope. Here too it is shown that the 

shore singularity for a boach of uniform slope still gives an 

approximate solution and that the shape of the beach affects only the 

basic velocity of the bore in the development of the bore close to the 

shore;"(W It is also shown in this paper that the main results regarding 

the shore singularity are not exceptional as in the first part of the 

paper. It is also assumed that the bore reaches the shore at a finite 

time as in (20) which is taken as t = 0. With these assumptions the 

authors obtained the following relations 

C , - o Q 0 L o " b - * O 
b 

V l ^ W x fcr t < 0 b o J 

UL, + C > V L > C 7 0 V . X J L / ' O -fov i < 0 
b b b b > b o J 

They also showed the existence of a limiting characteristic L as in 

Figure 7.12. By assuming a shorter time interval during which the bore 

development is studied, the existence of any secondary bores is eliminated 

in the region II bounded by B, L and C in Figure 7.12. 

In Section 3 of the paper, the authors established the 

existence of an asymptotic approximation which depends on the velocity u^ 

as well as on the beach slope variations. For the bore condition 

— a n equivalent expression is obtained as 

The other bore conditions as in (20) are also satisfied asymptotically 

since hQ(x) is continuous. This shows that asymptotic solutions in (20) 

satisfy the shallow water equations and bore conditions asymptotically to 

a first approximation on a beach of non-uniform slope. 
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Tsunami Waves 

The results of nany recent observations suggest that tsunami 

waves consist of a train of several large, approximately sinusoidal 

waves of about 1 m in height moving in the deep ocean at approximately 

the shallow water speed of ^gh. Mader (19) studied this using the 

Marker and cell method which is a technique for the calculation of 

viscous, incompressible flow with a free surface. This method uses a 

finite difference technique for solving the time dependent Navier-Stokes 

equation. 

In the shallow water theory we assumed that the vertical component 

of the motion does not influence the pressure distribution, which was 

assumed to be hydrostatic. The results obtained by using the two methods 

were compared in several cases by Mader. 

Mader used single solitary like waves to demonstrate the 

fundamental features of the flow and for checking the numerical results 

obtained from tsunami waves. The results obtained for several models 

are illustrated in the paper (19). The models are, (a) one metre half-

height; 1320 seconds tsunami, Fig. 7.13; (b) one metre half-height, 660-

seconds tsunami, Fig. 7.14j(c)half metre half-height, 660-seconds tsunami, 

Fig. 7.15. In all these cases the author gives a comparison of solutions 

obtained using the SWAN and ZUNI codes (see the paper by Mader). 

Further, the author discusses some underwater barrier results. 

A submerged barrier absorbs some of the wave energy and the wave consequently 

breaks prematurely. Also much of the wave energy is reflected back 

seawards. 

However, tsunami waves are of sufficiently long wave length 

that they do not tend to break. Thus underwater barriers will be effective 



on tsunami waves only as reflectors of energy. This implies that the 

shallow water theory is inadequate to determine the effect of underwater 

barriers on tsunami waves because of the importance of the vertical 

velocity on the flow. 

Many calculations have been made assuming the location of 

barriers under water. Mader's work shows us that the numerical 

simulation of gravity waves resembles the profile of actual tsunami 

waves. The wave heights were observed to increase by a factor of 4 

as they shoaled up a 1:15 continental slope and the results obtained 

by using the shallow water theory for long wave length tsunamis were 

similar. But for short wavelength tsunamis it was different. 

100 200 300 400 500 600 700 800 
DEPTH (METERS) 

Figure 7.13 The amplitude of calculated 1 m half-

height, 1320-sec. tsunami waves as they shoal up a 

1:15 slope from 4550 m. Also shown is the shallow 

water, long-wave curve. (20) 
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ZUNI (simpMied morkef end cell) 

500 m 
100 2 0 0 3 0 0 

D I S T A N C E ( K I L O M E T E R S ) 

Figure 7.14 Computed wave surface profiles for a i m 

half-height, 1320-sec tsunami interacting with a 1:15 

continental slope, a continental shelf 500 m deep and 

reflecting off a cliff; and the shallow-water, long­

wave calculations for the same model. (20) 
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Figure 7.15 Computed wave surface profiles for a 0.5 m 

half-height 660-sec tsunami interacting with a 1:15 

continental slope, a continental shelf 500 m deep and 

reflecting off a cliff; and the shallow water, long wave 

calculations for the same model. (2.0) 

( K I L O M E T E R S ) 

Figure 7.16 Surface wave profiles for a 660-sec tsunami inter 

•acting with a 11.1 m deep barrier, and the shallow water, long 

wave profiles for the same model. (2.0) 
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8. General remarks 

In all the papers we have mentioned the authors have based 

their discussions on the shallow water wave theory by Stoker, but with 

modifications depending on the problem such as 'the breaking and climbing' 

of a wave depends on the type of wave and the bottom topography of the 

sea bed. 

The shallow water wave theory itself is an approximation and 

the results obtained will be accurate only to a certain degree. Thus 

any further modifications or approximations will tend to make the results 

less accurate. 

Therefore we can say that there is still no general criteria 

found which enables us to determine when a given wave will break other 

than at the wave front, although the initial wave shape and the bottom 

topography are of fundamental importance. 
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