LB/DON/08/04

A SOFTWARE BASED METHOD TO DETERMINE THE INTERMEDIATE TEMPERATURES **OF A SHELL AND TUBE HEAT EXCHANGER**

By Srilal Wijesinghe

(N. MERSON" "

www.lib.mrt.ac.lk

This thesis was submitted to the Department of Mechanical Engineering of the University of Moratuwa in partial fulfillment of the requirement for the degree of Master of Engineering in Energy Technology

University of Moratuwa, Sri Lanka Electronic Theses & Dissertations

WINATUWA

Department of Mechanical Engineering The Faculty of Engineering University of Moratuwa Sri Lanka October 2003

UM Thesis coll .

621 "03"

621. 43.016

79565

79565

DECLARATION

м.

I hereby declare that this submission is my own work and that, to the best of my knowledge and behalf, it contains no material previously published or written by another person nor material, which to substantial extent, has been accepted for the award of any other academic qualifications of a university or other institute of higher learning except where acknowledgement is made in the text.

1. Kiesne

Srilal Wifesinghe

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ABSTRACT

In spite of the fact that the heat exchanger is a piece of equipment that is extensively employed in the industry, still there are gray areas associated with its design and manufacture that have a very substantial potential for research and development. This research project is aimed at determining intermediate temperatures of a shell and tube heat exchanger, particularly at the interface of the tube external surface and the shell fluid using a software based method.

In carrying out the research a physical model of a heat exchanger was made, its intermediate temperatures were measured with a testing apparatus and an application programme was developed based on basic principles to determine the same. Further, a correlation was built up between the empirical and theoretical values.

Engineering design is at times based on approximation. Intermediate temperatures of a heat exchanger dictate the actual heat transferred across each portion of the tubes which is not taken into account in conventional design. This sort of study refines the design process giving detailed information.

Moreover, the software developed provides instant feedback on behavioural changes of the exchanger caused by changes in design parameters or variables for swift decision making and also indicates undesirable effects such as temperature crossing. Also, the correlations derived transform theoretical values to suit real situations in the industry and can be utilized for any other similar exchanger.

Acknowledgement

I wish to thank profusely Dr. R.A. Attalage, Dr. K.K.C.K. Perera and Dr. T. Sugathapala, Senior Lecturers of Mechanical Engineering Department, University of Moratuwa for the invaluable advice given in carrying out this project and the knowledge imparted by opening the avenues of the vast field of energy engineering.

Also, I acknowledge with appreciation the service rendered by the staff of Cad-Cam Center of the university in machining some of the components of the exchanger model.

3

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

<u>CONTENTS</u>	
Chapter 1- Introduction	Page no. 1~2
-	2.15
Chapter 2- Type of heat exchangers and their applications in the industry	3~15 3~6
2.1 Shell and tube heat exchangers	3~0 3
2.1.1 Fixed tube heat exchangers 2.1.2 U-tube heat exchangers	3 3~6
2.1.3 Floating head type heat exchangers	6
2.2. Classification according to the service and flow direction	6~10
2.3 Special type of heat exchangers	10~14
2.3 Special type of heat exchangers 2.3.1 Spiral heat exchangers	10 11
2.3.2 Plate- fin exchangers	11
2.3.3 Air-cooled exchangers	11~14
2.4 Comparison of different types of heat exchangers	14~15
2.4 Comparison of anterent types of near exchangers	
Chapter 3- Conventional design aspects of heat exchangers	16~40
3.1 Design criteria	16~17
3.2 Thermal design	17~34
3.2.1 Dimensioning a heat exchanger to obtain the	25~28
required performance	
3.2.2 Tube side and shell side convective heat transfer coefficients	29~30
3.2.3 Increasing convective coefficient with finned surfa	ces 30~32
3.2.4 Pressure drop across a heat exchanger	33~34
3.3 Mechanical design for structural integrity	34~39
3.3.1 Fixed tube sheet construction	34~37
3.3.2 Packed floating tube sheet type	37~38
3.3.3 Shell and tube longitudinal stresses	38~39
3.4 Materials of construction	39~40
Chapter 4- A computer programme based on the assembly theory to determine intermediate temperatures	41~50
4.1 Assembly theory	41~42
4.2 Temperature crossing	43
4.3 The computer programme and sample calculations	44~50
Chapter 5- Experimental set up	51~56
Chapter 6- Results	57~59
Chapter 7- Results interpretation	60 ~68
7.1 Observations	60
7.2 Interpretation	60~66
7.3 Establishing a correlation between the measured temperatures	66~67

i

¥

4

and the temperatures given by the computer programme	
7.4 Usage of the software in a practical environment	68
Chapter 8- Discussion	69~73
8.1 Precision and economic factors	69~70
8.2 Error avoidance	70~72
8.3 Unresolved problems under investigation	72~73
References-	74~75
Appendix A- Thermodynamic data for heat exchanger design	a~c
Appendix B- Types of heat exchangers	d~e
Appendix C- Nomenclature	f~j
Appendix D- Measured temperature profiles	I~C

7

l

.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

×

4

2

,

	Page no.
Figure 2.1 - TEMA notation for shell and tube heat exchanger	4
Figure 2.2 - Fixed tube sheet heat exchanger	5
Figure 2.3 - U- tube heat exchanger	5
Figure 2.4 - Pull-through floating head exchanger with backing device	5
Figure 2.5 - Pull-through floating heat exchanger	5
Figure 2.6 - Temperature distribution in a parallel flow heat exchanger	8
Figure 2.7 - Temperature distribution in a counter flow heat exchanger	8
Figure 2.8 - Temperature distribution in a one shell pass and two tube pass heat exchanger	8
Figure 2.9 - Type of baffles	9
Figure 2.10 - A spiral heat exchanger	12
Figure 2.11 - A plate heat exchanger	12
Figure 2.12 - A plate and frame heat exchanger	12
Figure 2.13 - An air fin heat exchanger	13
Figure 3.1 - Analogical electrical circuit	17
Figure 3.2 - Idealized diagram of shell-side flow streams	21
Figure 3.3 - Baffle cuts	23
Figure 3.4 - Tube configurations	23
Figure 3.5 - Sealing strips	·23
Figure 3.6 - Heat release curve	26
Figure 3.7 - Normal fins on individual tubes	31
Figure 4.1 - Temperature crossing	43

Figure 4.2 - A heat exchanger divided into modules	45
Figure 8.1 - Sensors installed on the heat exchanger model	71
LIST OF TABLES	
Table 3.1 - Efficiency of common fin shapes	32
LIST OF DRAWINGS	
Drawing 5.1 - Heat exchanger	52
LIST OF PLATES	
Plate 5.1 - Heat exchanger tube bundle	53
Plate 5.2 - Complete model of the heat exchanger	54
Plate 5.3 - Heat exchanger on the testing apparatus	55
Plate 5.4 - Heat exchanger under test 16 millions	56