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ABSTRACT

Coal is a well-known workhorse for power generation, particularly in developing
countries, due to its favourable economic benefits such as low cost, wide availability,
and minimal infrastructure. However, coal-fired power plants yield a substantial
by-product, known as coal fly ash (CFA), with a global annual output of 1 billion tons
during combustion. Only 60% of this CFA is presently used, whereas the rest is
disposed of in the environment, contributing to severe environmental pollution. In
contrast, CFA is a versatile material that can serve as an adsorbent, fertiliser, and in
advanced material applications, offering a promising dimension for its use. This study
addressed the multifaceted potential of CFA components, by probing its
seldom-explored heterogeneity through advanced characterisation techniques. While
existing research has predominantly focused on isolated extractions, neglecting
broader applications, this study proposes a comprehensive strategy centred on the
strategic implementation of washing cycles. Integral to this approach is an extensive
characterisation campaign employing multi-modal imaging techniques, such as
scanning electron microscopy and energy-dispersive X-ray spectroscopy combined
with state-of-the-art deep learning algorithms and digital image processing
techniques. Through these methods, this study uncovered and extracted various
valuable constituents from CFA, notably cenospheres and materials conducive to
zeolite synthesis, demonstrating their potential as effective adsorption agents.
Furthermore, this study pioneered a novel methodology that combined X-ray
microanalysis with deep learning to precisely classify and characterise cenospheres.
This breakthrough facilitated a comprehensive understanding of these hollow
structures and allowed quantification of their imperceptible physical structures to
modify them as efficient adsorbents. The results of this study significantly contribute
to elucidating the capabilities of CFA as a source of high-performance adsorption
agents. By leveraging innovative techniques and holistic approaches, this study
advances our understanding of CFA, and offers a pioneering methodology for
sustainable waste management and resource recovery.

Keywords: Coal fly ash, Cenosphere, X-ray microanalysis, Deep learning
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