
Bilingual Lexical Induction for English-Sinhala

Anushika Liyanage

208033U

Thesis/Dissertation submitted in partial fulfilment of the requirements for the

degree Master of Science in Computer Science and Engineering

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

October 2022

DECLARATION

I, Anushika Liyanage, declare that this is my own work and this dissertation does

not incorporate without acknowledgement any material previously submitted for

a Degree or Diploma in any other University or institute of higher learning and to

the best of my knowledge and belief it does not contain any material previously

published or written by another person except where the acknowledgement is

made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to

reproduce and distribute my dissertation, in whole or in part in print, electronic

or other medium. I retain the right to use this content in whole or part in future

works (such as articles or books).

Signature: Date:

The above candidate has carried out research for the Master’s thesis/Dissertation

under my supervision.

Name of Supervisor: Dr. Surangika Ranathunga

Signature of the Supervisor: Date:

Name of Supervisor: Dr. Sanath Jayasena

Signature of the Supervisor: Date:

i

01/02/2023

Milinda Kasun Rajapakshe
07/10/2022

Milinda Kasun Rajapakshe
01/02/2023

ABSTRACT

Bilingual Lexicons are important resources appertaining to Natural Language

Processing (NLP) applications such as Neural Machine Translation and Named

Entity Recognition (NER). However, Low Resource Languages (LRLs) equivalent

to Sinhala lack such resources. Manually producing millions of word translations

between languages is exhaustive and almost impossible. An increasingly popular

approach to automatically create such resources is Bilingual Lexical Induction

(BLI).

We created the first-ever BLI model for English and Sinhala language pair using

the existing popular model VecMap. Currently, no prior work has conducted

a sufficient evaluation with respect to the factors, nature of the dataset, type of

embedding model used, or the type of evaluation dictionary used on BLI and how

these factors affect the results of BLI. We fill the gap by executing an extensive

set of experiments with regard to the aforementioned factors on BLI for Sinhala

and English in this thesis.

Furthermore, we enhance the pre-trained embeddings to cater to the application

by applying sophisticated post-processing approaches. Linear transformation and

effective dimensionality reduction are applied to the pre-trained embeddings be-

fore obtaining cross-lingual word embeddings between Sinhala and English by

applying VecMap. Furthermore, we have introduced dimensionality reduction to

the VecMap algorithm where the algorithm starts the first iteration from a low

dimension to initialize a better solution. Subsequently, the dimensionality of the

embeddings is increased in each iteration until embeddings reach the original di-

mension in the final iteration. We were able to improve the results considerably

by learning a better initial solution and hence an improved final solution. Finally,

we combined the post-processing step with the modified VecMap model to obtain

even better mapping for Sinhala-English language pair which in turn is applicable

in task-specific downstream systems to improve the results of the entire system.

Keywords: Sinhala; embedding spaces; embedding models; bilingual lexicon induction

ii

ACKNOWLEDGEMENTS

I would like to recognize the invaluable guidance of my supervisors, Dr.Surangika

Ranathunga and Prof.Sanath Jayasena. I have greatly benefited from their in-

sights, vast knowledge, skillful supervision, and suggestions made throughout this

research. I am very thankful for the constant support, patience, understanding,

and motivation extended to me when times were difficult.

I would like to thank Prof. Gihan Dias, for the critical advice given through-

out this research. I would like to extend my gratitude to the academic and

non-academic staff of the Department of Computer Science and Engineering for

providing the required resources to carry out this research. This research was

funded by the University of Moratuwa AHEAD project research grant.

I thank my partner Milinda Rajapakshe for listening to my constant rant, uncon-

ditional love, support, and for the sacrifices you made in order for me to pursue

a master’s degree. I am forever grateful to my friends and family for the love,

support, and motivation in this entire thesis process every day.

Thank you!

iii

LIST OF ABBREVIATIONS

NLP Natural Language Processing

NMT Neural Machine Translation

NER Named Entity Recognition

BLI Bilingual Lexical Induction

PCA Principal Component Analysis

PPA Post Processing Algorithm

RNN Recurrent Neural Networks

SA Sentiment Analysis

LRL Low Resource Languages

HRL High Resource Languages

SVD Singular Value Decomposition

NN Nearest Neighbor

iv

LIST OF FIGURES

Figure 2.1 Illustrative example of vector representation of words in a two-

dimensional space 7

Figure 2.2 Simple word vector representation matrix where each row of the

matrix represents a word vector and columns represent the dimen-

sions 7

Figure 2.3 Architecture of the word2vec models: CBOW and Skip-Gram. Im-

age source [1] 8

Figure 2.4 Geometric Similarity between English and Spanish. Image source [2] 10

Figure 2.5 VecMap Model. Image source [3] 17

Figure 3.1 Research Process 23

Figure 5.1 Translation Difference Examples 41

v

LIST OF TABLES

Table 4.1 Dataset 36

Table 5.1 BLI Results For Pre-trained fastText Embeddings 40

Table 5.2 BLI Results For Combined News Data 41

Table 5.3 BLI Results For Each News Source Separatelyfit to pg width 42

Table 5.4 BLI Results For Few News Sources Combined 45

Table 5.5 BLI Results For Linear Transformation fastText Embeddings 46

Table 5.6 BLI Results For Linear Transformation word2vec Embeddings 46

Table 5.7 BLI Results For Comparison for Iterative Dim. Reduction 49

Table 5.8 BLI Results For NewsFirst data in all steps 49

vi

TABLE OF CONTENTS

Declaration of the Candidate & Supervisor i

Abstract ii

Ackowledgement iii

List of Abbreviations iv

List of Figures v

List of Tables vi

Table of Contents vii

1 Introduction 1

1.1 Background 1

1.2 Research Problem 2

1.3 Research Objectives 3

1.4 Contributions 3

1.5 Publications 4

2 Literature Survey 5

2.1 Overview 5

2.2 Vector representation of words 5

2.3 Embedding Models 7

2.3.1 Word2Vec Model 8

2.3.2 FastText Model 9

2.4 Cross-lingual Alignment of Word Vectors 9

2.5 Post-Processing Embedding Spaces 11

2.6 Bilingual Lexical Induction 12

2.6.1 Count-based Vector Space Models 12

2.6.2 Inducing Joint Cross-lingual Embedding Models 14

2.6.3 Projection Based or Mapping Approaches 14

2.6.4 VecMap Model 15

2.7 Post-Processing Embedding Spaces 19

2.8 Summary 20

vii

3 METHODOLOGY 22

3.1 Overview 22

3.2 Model Selection 24

3.2.1 VecMap Model 24

3.2.2 InstaMap Model 24

3.2.3 ClassyMap Model 25

3.2.4 Summary 26

3.3 Extensive analysis on BLI in low resource language pairs 26

3.3.1 Size and the nature of monolingual data 26

3.3.2 Type of The Evaluation Dictionary 28

3.4 Post-processing the Embedding Spaces 29

3.4.1 Linear transformation 29

3.4.2 Dimensionality reduction 30

3.4.3 Linear transformation with dimensionality reduction 31

3.5 Iterative Dimensionality Increment With VecMap 32

3.6 Modified VecMap Model With Pre-processed Embeddings 33

4 EXPERIMENTS 35

4.1 Experimental Setup 35

4.2 Data 35

4.2.1 Corpora and Embeddings 35

4.2.2 Evaluation dictionaries 36

4.3 Experiments 37

4.3.1 Comprehensive analysis 37

4.3.2 Post-processing pretrained embeddings 38

4.3.3 Post-processing with modified VecMap model 39

5 RESULTS AND DISCUSSION 40

5.1 Comprehensive Analysis 40

5.1.1 Pre-trained fastText embeddings 40

5.1.2 Combined News Data 41

5.1.3 Separate news sources 42

5.1.4 Combined news data based on writing styles 44

viii

5.2 Post-processing Pre Trained Embeddings 45

5.2.1 Linear transformation 45

5.2.2 Effective dimensionality reduction 47

5.2.3 Linear transformation + Effective dimensionality reduction 47

5.2.4 Improved VecMap model 48

5.2.5 Post-processing pretrained embeddings+Improved VecMap

model 49

5.3 Summary 50

6 CONCLUSION AND FUTURE WORK 52

References 54

ix

Chapter 1

INTRODUCTION

1.1 Background

A bilingual dictionary is a glossary that consists of a list of words and phrases in

one language, along with respective translations in another language. A similar

resource is a bilingual lexicon, which can be identified as a specific vocabulary or

a list of word translations between two languages in a particular field or a domain

such as medicine, engineering, psychology, administrative etc [3, 4, 5]. Bilingual

lexicons and dictionaries were predominantly generated manually by experts in

both languages. Existing bilingual dictionaries/ bilingual lexicons consist of a

limited number of word translation pairs.

Bilingual dictionaries/lexicons are considered an important resource in NLP since

such resources can be used for numerous NLP applications similar to NMT and

NER [6, 7, 8]. However, languages consist of millions of words and manually

translating all the words is infeasible and almost impossible. Additionally, the

translation/meaning of a word can differ from the context in which the word is

used.

ex: word May

• May he rests in peace

• It will commence on the 01st of May 2020

Therefore even the translations done by experts can be considered erroneous

when applied in different domains or contexts. This will make it incorrect to

use such dictionaries in domain-specific downstream systems and indicates the

importance of applying domain-specific lexicons for similar tasks. In addition,

low-resource languages equivalent to Sinhala lack important resources such as

bilingual dictionaries and lexicons and such resources are considered crucial for

various NLP applications.

1

1.2 Research Problem

An increasingly popular approach to alleviating the above issues is Bilingual

Lexical Induction. BLI is the task of automatically inducing word translations

between two languages using a monolingual corpus [9]. There are many dif-

ferent techniques introduced and implemented for BLI. However, none of them

was adapted or implemented for the Sinhala-English language pair. LRLs are

languages that lack some aspects such as lack of a unique writing system or sta-

ble orthography, lack of electronic resources for speech and language processing

such as monolingual corpora, bilingual electronic dictionaries, and vocabulary

lists [10]. Sinhala being a low-resource language, it is crucial for the Sinhala

language to adapt such mechanisms to generate similar resources. Many exist-

ing approaches for BLI benefit from parallel corpora and supervision to obtain

high-quality results. Even though such resources exist for High-Resource Lan-

guages(HRLs) it is challenging to produce similar resources for LRLs, making it

difficult or outright impossible to apply similar approaches for LRLs. Hence it

is critical to adapt an appropriate technique befitting the existing resources for

LRLs similar to Sinhala. However, even LRLs can acquire comparable corpora

between language pairs due to the abundance of resources available on the world

wide web.

There are multiple solutions proposed to resolve the issues that arise when

implementing BLI for LRLs due to a lack of resources. One such implementation

is the well-known robust VecMap algorithm to find a cross-lingual mapping be-

tween embedding spaces to generate the bilingual lexical [11]. Since this method

requires only monolingual data between two language pairs with no supervision

VecMap algorithm can be considered a great starting point for LRL pairs.

Results of the BLI techniques can vary depending on the dataset used, the em-

bedding model, or the evaluation dictionary. Therefore it is vital to be aware of

the factors that affect the results of BLI and how those factors affect the results of

BLI. Nevertheless, no comprehensive analysis has been carried out on the factors

that can affect the results of BLI thus far. Comprehensive analysis of factors that

2

affect BLI has to be achieved by running an extensive set of experiments with

multiple datasets, evaluation dictionaries and embedding models.

Moreover, how the BLI techniques are impacted by language-specific features

such as inflections have to be studied. Finally, it is always possible to enhance

the already existing BLI techniques for better performance.

1.3 Research Objectives

The objectives of this research are two-fold and as follows:

1. Adapt Bilingual Lexical Induction for English-Sinhala language pair

(a) Adapt existing best suitable BLI model for Sinhala-English

(b) conduct a comprehensive analysis of the factors that affect BLI

2. Further enhance the adapted model to cater Sinhala-English Language pair

1.4 Contributions

We make the following contributions in this thesis:

• Introducing the first-ever implementation of BLI for Sinhala-English lan-

guage pair

• Conducted the first-ever comprehensive analysis of the factors that affect

BLI

• Introduced different enhancements methods to pretrained word embeddings

• Introduced an enhancement to the existing mapping algorithm

• Introduced a novel approach for BLI by combining multiple enhancements

on pretrained word embeddings and mapping algorithm

3

1.5 Publications

• Anushika Liyanage, Surangika Ranathunga, and Sanath Jayasena.“Bilingual

lexical induction for Sinhala-English using cross lingual embedding spaces.”

2021 Moratuwa Engineering Research Conference (MERCon). IEEE, 2021.

(published)

4

Chapter 2

LITERATURE SURVEY

2.1 Overview

Several embedding models, algorithms, and enhancement techniques have been

used in this study. They are discussed in this section. We start by discussing

the vector representation of words. Then we discuss different Embedding models

and their architecture. Next, we move on to explain the cross-lingual alignment

of word vectors which is the technique used in this research to map embedding

spaces. Subsequently, we discuss the VecMap model we adapted for the Sinhala-

English language pair. We discuss how the VecMap model is the best suitable

model to be adapted for Sinhala-English languages by comparison with a few

other existing novel techniques. Afterwards, post-processing approaches on pre-

trained embeddings, linear transformation, and effective dimensionality reduction

using principal component analysis that can be applied to enhance the BLI re-

sults are discussed. Next, we conclude this section by discussing the main meth-

ods of generating BLI models along with different methodologies implemented to

improve BLI, particularly the post-processing of embedding spaces and diverse

strategies of post-processing. Furthermore, we discuss approaches such as improv-

ing word vectors to incorporate language-specific details similar to morphology.

We will be discussing the different procedures and enhancements used for BLI to

identify the feasibility of adapting the best suitable approaches for low-resource

languages such as Sinhala. The models discussed in this section are referred to

throughout the study.

2.2 Vector representation of words

Word vectors can be identified as an attempt to mathematically represent the

meaning of a word. Word vectors are represented by multidimensional continuous

5

floating-point numbers. Furthermore, semantically similar numbers are mapped

close together in the geometric vector space [12]. Put differently, word vectors are

real-valued numbers where each point in the vector space captures the dimension

of the meaning of the words and semantically similar words are mapped together

in the space. As can be observed in Figure 2.1 relatedness between words can

be represented by the geometric relations of vectors. As an example, the cosine

similarity between the words “Cat” and “Animal” is greater than the cosine simi-

larity between the words “Cat” and “Car”.

The vector values (numbers) in a word vector can be identified as a word’s

distributed weight across each dimension. Each dimension can be considered

as a possible semantic meaning for the word. The number associated with each

dimension captures the closeness of the word’s meaning to that dimension. Hence

the semantics of the words are embedded across each dimension. There are two

predominant methods to generate word vectors.

1. Count based methods: This method creates a co-occurrence matrix be-

tween each word and its context. This approach considers the words within

a linear window in a manner, that the resultant matrix has a square shape.

In this method dimension of the matrix will be equivalent to the number

of words in the corpus. The counts and dimensions are then normalized,

weighted and the context dimensionality of the space is reduced by different

dimensionality reduction techniques similar to Principal Component Anal-

ysis(PCA) or its generalized version Singular Value Decomposition(SVD).

Here PCA is used for the study of Principal Word Vectors [13] while SVD

is used in the Latent Semantic Analysis model (LSA) [14]

2. Prediction based methods: This method initializes vectors randomly

in a shallow neural network. Then the model trains the parameters to

predict either the context, given the word, or the word, given the context.

A few of the most prominent models of this method are the Continous

Bag Of Words(CBOW) and Skip-Gram with Negative Sampling(SGNS)

6

models of word2vec embedding model [15] and Glove, which rely on global

co-occurrence counts from the corpus for word representations [16].

In all the discussed methods, word embedding output represents the word

with the corresponding vector in a matrix of vectors(Figure 2.3)

Figure 2.1: Illustrative example of vector representation of words in a two-
dimensional space

Figure 2.2: Simple word vector representation matrix where each row of the
matrix represents a word vector and columns represent the dimensions

2.3 Embedding Models

In this study, we have used both Word2Vec and fastText embedding models to

build our embeddings. Both these models are prediction-based.

7

2.3.1 Word2Vec Model

The word2vec model introduced by Mikolov et al. [15] brings forth state-of-the-art

embeddings carrying a semantic representation of words. word2vec model con-

sists of a shallow neural network model which is trained to reconstruct linguistic

representations of words. Two different learning approaches were introduced as

a part of the word2vec model.

Figure 2.3: Architecture of the word2vec models: CBOW and Skip-Gram. Image
source [1]

1. Continuous Bag of words model (CBOW model)

This approach is similar to a feed-forward neural net language model archi-

tecture. The model attempt to predict the target when provided with a list

of context words. The model basically considers the distribution of context

words and predicts the target word.

2. Skip-Gram model

This model acts as the inverse of the CBOW model. Given a word Skip-

Gram model will try to predict the context words/surrounding words of the

given word.

Hierarchical soft-max and negative sampling were later introduced as improve-

ments to word2vec model [1].

8

2.3.2 FastText Model

fastText model is based on the skip-gram model and, yet unlike distinct vector

representation for each word, the model assigns a vector for each character level

n-grams. Each word is represented with a bag of character-level n-grams. Since

each n-gram is represented by a vector, an entire word is represented by a sum of

the mentioned character-level n-gram vectors [17]. This model allows to capture

morphology and sub-wording information, thus can be expected to capture the

similarity between orthographically similar words. As an example, the model will

be able to capture the similarity between words such as “wash” and “washing”

hence will be favourable for languages with a vast vocabulary and rare words.

2.4 Cross-lingual Alignment of Word Vectors

All common languages share concepts that are grounded in the real world. As an

example, both cats and dogs are animals. Figure 2.4 is a visualization of vec-

tor representation for numbers and animals for English and Spanish languages

reduced to two dimensions by PCA and manually rotated to accentuate the sim-

ilarity. It can be easily observable that there is a geometric similarity between

these two languages as mentioned above. Similarly, often there are strong geo-

metric relationships between vector spaces of different languages [2].

As a consequence, it is possible to discover an accurate mapping between two

languages to find translations by applying linear projection between vector spaces.

More concretely a vector space X can be sent through a transformation matrix

W such that it maps to a vector space Z where the spatial distance between X

and Zs translation word pairs is minimum.

A different approach to linear projection approaches is to align cross-lingual

word embeddings utilizing the iterative Procrustes analysis to find an optimal

orthogonal mapping between languages. This approach relies on finding an or-

thogonal mapping between source space and target space such that the orthogonal

distance between points will be minimum [18]. An orthogonal transformation

is a linear transformation where orthonormal bases are mapped to orthonormal

9

Figure 2.4: Geometric Similarity between English and Spanish. Image source [2]

bases. Orthogonal transformation preserves the length and angle between vec-

tors. Matrix representation of an orthogonal transformation is an orthogonal

matrix. Singular Value Decomposition is used to find the optimal orthogonal

transformation as proven by Schonemann et al. [19]. When U and V T are or-

thonormal unitary matrices and S is the diagonal matrix of singular values, SVD

decomposition of matrix X:

X = USV T (2.1)

U and V T approximately represent the directions of vertical and horizontal

vectors respectively, which can be seen as rotations or reflection matrices. S

determines the scaling of U and V T and is necessary to reconstruct X.

SVD is used to find optimal orthogonal transformation to solve the orthogonal

Procrustes problem. If X and Z are source and target matrices respectively with

the same dimensionality and equal size, the orthogonal Procrustes problem can

be used to find an orthogonal transformation. Schonemann et al. [19] proved that

if R is transformation learned by solving the orthogonal Procrustes problem, RX
0

will be approximately equal to Z.

To find a rotation, almost all the existing methods for alignment methods

10

require a bilingual lexicon with few term alignments [18, 15]. However, recent

work has been able to minimize the size of the seed dictionary or eradicate the

need for the dictionary completely [11, 20].

2.5 Post-Processing Embedding Spaces

Artetxe et al. [21] showed that post-processing of embedding spaces could lead to

finding a better mapping between cross-lingual embedding spaces and which will

result in a substantial improvement on BLI [22]. In this study, we incorporate

two different approaches of post-processing to improve the results of BLI.

• Generalization of first-order and second-order monolingual simi-

larities to the nth-order similarity: Artetxe et al. [21] argue that differ-

ent word embedding models capture different divergent and often incompat-

ible qualities such as semantic/syntactic information or similarity/relatedness

measures. Hence different applications of word embeddings will require dif-

ferent models based on the information captured by the model.

If X is the embedding matrix and Xi⇤ is the ith word embedding in the

matrix, then we can measure the similarity to some extent between the ith

and jth word embeddings by taking the dot product between as sim(i, j) =

Xi⇤.Xj⇤. Therefore we can define the first-order similarity matrix as M(X) =

XXT where sim(i, j) = M(X)i,j. Similarly, we can define second-order sim-

ilarity on top of this first-order similarity. Here second-order similarity does

not capture the similarity between the words i and j. Instead, it would cap-

ture the similarity of i and j to a third-word k, which in turn makes them

comparably more similar in second-order similarity. Furthermore, one could

likewise calculate the third, fourth similarity up to nth order similarity. The

underlying idea is that some of these similarity orders will be more capable

of capturing different aspects of language as mentioned.

• Effective dimensionality reduction: Word embedding models can be

further improved by adding dimensionality reduction as a post-processing

11

step [23]. We have used PCA one of the most common dimensionality re-

duction method along with a post-processing algorithm, in this research for

dimensionality reduction. PCA is the orthogonal projection of the data into

a lower-dimensional linear space and can be implemented using SVD [24].

2.6 Bilingual Lexical Induction

BLI can be supervised, semi-supervised, or unsupervised and currently there are

three main approaches to generating BLI models. In this section, we discuss

these three previous approaches and the different improvements proposed for

those basic methods. Early techniques to generate BLI models depended heavily

on count-based vector space models where translations are typically learned using

parallel corpora and used various distributional similarity metrics/properties in

the corpora as signals of equivalence. However, these approaches were replaced

by rather sophisticated methods that induce joint cross-lingual embeddings to

generate the lexical. These strategies continued to assume some level of supervi-

sion and solely relied on translating frequent words that appeared in the dataset.

Later on, these approaches were superseded by projection-based or mapping ap-

proaches where the need for supervision is minimized or completely eradicated.

2.6.1 Count-based Vector Space Models

Count-based vector space models typically utilize two monolingual corpora from

each language which can be completely unrelated or parallel along with a small

seed dictionary for low supervision. Past work experimented with and relied on a

variety of monolingual distributional similarity metrics as signals of equivalence

between two languages including orthographic similarity, contextual similarity,

temporal similarity etc [25, 26, 27]. Some of the prior work has combined dif-

ferent types of these orthogonal signals employing methods such as rank combi-

nation to obtain better results [28]. Based on the selected similarity metric, a

vector space model is created using the monolingual corpora. For instance, if the

contextual similarity is chosen as the signal of translation equivalence, then this

12

method consists of finding a mapping between the context vector space of one

language to another language. Once the context vectors are generated for each

word in each language and projecting the vector space of the target language into

the source language similarity between two words can be calculated using cosine

similarity [27]. If the context vectors of i and j are Wi and Wj then the similarity

between source word i and target word j Sim(Wi,Wj) can be calculated from

the below expression.

Sim(Wi,Wj) = (Wi.Wj)/||Wi||.||Wj|| (2.2)

Similarly, if the temporal similarity is selected, then the usage of words over time

is monitored as the signal of translation equivalence [29]. This is under the as-

sumption that over time all over the world people tend to discuss similar topics in

the same time frame in different languages hence will be able to find a mapping

between monolingual data based on that. Furthermore, if the orthographic simi-

larity is based on the assumption that similar words are spelt similarly in different

languages, especially names and places. Hence by calculating the edit distance

between two words by normalizing it by the lengths of the words will be able to

obtain a measurement of orthographic similarity. Additionally, there are several

different approaches used in count-based vector space models such as topic sim-

ilarity, frequency similarity, burstiness similarity, etc. Above discussed methods

require high levels of supervision firstly to identify beneficial signals of transla-

tions and then to map monolingual vector spaces of the selected languages. Irvin

et al. [9] performed a comprehensive analysis of the above-discussed approaches

and concluded that the accuracy of BLI is high for frequent words and terms

with bursty nature. Furthermore, they reasoned that the results of BLI can be

improved by increasing the monolingual data abundantly and by identifying the

best-suited signals of translation equivalence.

13

2.6.2 Inducing Joint Cross-lingual Embedding Models

Subsequent work on BLI has focused on inducing joint cross-lingual embedding

spaces utilizing bilingual corpora. Cross-lingual embedding models attempted to

represent vocabularies of more than one language into one continuous common

vector space.

These approaches heavily relied on different types of supervision from supervised

to weakly supervised. Also, these approaches used different levels of supervision

which are namely word level, sentence level, and document level.

There exist different approaches to induce a joint cross-lingual embedding space.

Klementiev et al [30] used word co-occurrence statistics of parallel data as the

signal of alignment and induce the joint cross-lingual embedding space. Gouws

et al. [31] used distant supervision to build embeddings relying on small seed

dictionaries, and they built a word embedding model such that similar words

in different languages will be close to each other in the embedding space. This

approach uses non-parallel corpora of two languages and will build task-specific

embeddings, as an example for POS tagging, NER, or sentiment analysis. Early

work of cross-lingual alignment methods were limited only to two languages rather

than aligning multi-languages [32].

Experiments for Cross-lingual Embedding alignment approaches were largely con-

ducted on HRLs due to the requirements of supervision and large bilingual

datasets [33, 34, 35]. Hence only a handful of experiments were conducted on

LRLs [36, 31]

2.6.3 Projection Based or Mapping Approaches

Above discussed approaches were superseded by recent methods of post-hoc align-

ment of word embeddings that were independently trained for each language. In

projection-based approaches, the word embeddings for each language are trained

independently utilizing monolingual corpora, and they were later aligned to find

a mapping between the languages through a linear transformation. Projection-

based approaches typically use a very small seed dictionary (starting from about

14

25-word translation pairs to a few thousand-word translation pairs) as the weak

bilingual supervision. A vital component of this approach is the iterative refine-

ment of the initial seed dictionary to obtain a better mapping/projection space

between two languages [37, 1].

Most of the existing work for projection-based approaches directly retrieves near-

est neighbours from the current shared vector space. Artetxe et al. [11] starts

mapping with a weak initial solution and then iteratively improves the solution.

Cosine similarity is taken as a measure of similarity and used to retrieve the

nearest neighbours in their research. Artetxe et al. [11] have introduced fully

unsupervised, weakly supervised, and supervised versions of the experiments.

Later work on projection-based approaches was able to completely eradicate the

need for bilingual supervision by using adversarial training or distribution-based

approaches [38, 39]. Conneau et al. [38] introduced a fully unsupervised approach

where they utilized adversarial training to find a linear mapping between two lan-

guages. The proposed method operates in two steps, where firstly mapped source

embeddings and target embeddings are identified by a trained discriminator, and

then using closed-Procrustes they improve the mapping by extracting a synthetic

dictionary from the shared embedding space. This approach also relies on basic

nearest neighbour extraction from the shared vector space.

In comparison, Karan et al. [40] introduced a novel classification step to each

iteration of the self-learning process where before including a word pair into the

training dictionary each translation pair will be going through a pretrained clas-

sifier. This will ultimately reduce the noised entries to the dictionary. Only a

handful of work conducted experiments on LRLs and none has done an in-depth

analysis on how the introduced methods will work on LRLs [38, 11].

2.6.4 VecMap Model

We are applying the recently introduced well-known VecMap model (Figure 2.5)in

our research to find a cross-lingual alignment between Sinhala and English lan-

guages. The VecMap model trains monolingual embeddings for each language

15

and then finds a mapping using a linear transformation. The algorithm suggests

a fully unsupervised initialization to find the cross-lingual mappings and then,

the algorithm iteratively improves the weak initial solution by combining it with

a more robust self-learning method to obtain the optimum mapping between

embedding spaces. VecMap model consists of four sequential steps namely pre-

processing, initialization of the initial solution, iteratively improving the solution,

and a final refinement of the solution [11].

• Pre-processing: This is the first step of the VecMap algorithm and in

this step, both source and target embedding spaces are pre-processed to

normalize the embeddings. Prepossessing starts by length normalizing the

embeddings and mean centering each dimension. Then embeddings are

length normalized again to ensure embeddings have a unit length. Having

unit length for embeddings corroborates that the dot product between em-

beddings is equal to the cosine similarity and explicitly comparable to their

Euclidean distance.

• Initialization: In this step algorithm learns a fully unsupervised initial

solution. The challenging part of finding a mapping is that source embed-

ding matrix X and target embedding matrix Z are not aligned across both

axes, hence there’s no direct correspondence between source and target lan-

guages. To overcome this issue and to build the initial solution algorithm,

first construct alternative matrices if X and Y, which are aligned across

their jth dimension as X’ and Z’ respectively. These embedding matrices

are used to build the initial solution dictionary that aligns their respective

vocabularies.

If embedding spaces are perfectly isometric, similarity matrices of X MX =

XXT and similarity matrix of Z MZ = ZZT would be equivalent up to

a permutation of their rows and columns. Based on the assumption that

the isometry condition approximately holds in practice, one can try every

possible permutation between MX and MZ to find the best possible map.

16

Figure 2.5: VecMap Model. Image source [3]

However, resulting combinations of permutations would make this approach

intractable. As a mean to overcome this challenge, one could sort each row

of MX and MZ matrices. For strictly isometric languages, equivalent words

would have the exact same vector across languages, hence in an approxi-

mately isometric situation, we could find the corresponding translation of

a word in sorted MX by retrieving the nearest neighbour in sorted MZ .

17

Furthermore if SVD of X is X = USV T then the similarity matrix MX =

US2UT . The square root of the Similarity matrix M1/2
X = USUT is closer

to original embeddings in nature and works better in practice. Hence to

obtain the X’ and Z’ matrices to build the initial solution, the VecMap al-

gorithm computes sorted M1/2
X and sorted M1/2

Z and normalizes the sorted

embeddings as described in the first step.

• Robust self-learning: In this step algorithm iterate through the follow-

ing steps until convergence.

1. When Xi⇤ is ith vocabulary item in X and Zj⇤ is jth vocabulary item

in Z, Maximizing the similarities of current solution dictionary D by

computing the optimal orthogonal mapping as follows.

argmax
WX ,WZ

X

i

X

j

Dij((Xi⇤WX)(Zj⇤Wz)) (2.3)

The optimal solution is given by WX = U and WZ = V when USV T =

XTDZ is the SVD of XTDZ

2. Utilizing the mapped embeddings XWXW T
Z Z

T compute the optimal

dictionary, which generally uses NN retrieval from source to target.

In order to avoid algorithms stuck in poor local optima, the approach

suggests a few key improvements namely stochastic dictionary induction,

frequency-based vocabulary cutoffs, Cross-domain Similarity Local Scaling

(CSLS) retrieval and bidirectional dictionary induction.

• Symmetric re-weighting: If SVD USV T = XTDZ then WX = U and

WZ = V S where X and Z are previously whitened by applying a linear

transformation and later de-whitened [37]. Re-weighting is applied sym-

metrically to both languages by taking WX = US1/2 and WZ = V S1/2 after

the self-learning converged to a good solution.

18

2.7 Post-Processing Embedding Spaces

Recently the application of pretrained embedding to numerous research fields such

as topic modelling, parsing, named entity recognition, document classification and

neural machine translation has largely grown [21]. This being the case, the impor-

tance of improving the quality of pretrained embeddings via different approaches

became a novel research avenue. One of the increasingly popular approaches to

enhance the quality of the pretrained embeddings is to post-process the pretrained

embedding spaces. There has been a number of research with different techniques

on post-processing pretrained monolingual embeddings. Faruqui et al. [41] try to

enhance word embeddings by getting relational information from semantic lex-

icons and this converts embeddings into sparse representations which are more

interpretable. Furthermore, antonymy and synonymy constraints are adminis-

tered into vector space in the research conducted by Mrkvsic et al. [42] whereas

Nguyen et al. [43] tries to reinforce weakening noise and salient information as a

denoising step of the pretrained word embeddings.

Moreover, Labutov et al. [44] proposed a method to adapt existing embeddings

to improve performance specifically in supervised tasks to achieve unconstrained

optimization utilizing regularization. Rothen et al. [45] introduced a method,

that learns orthographic transformations that will focus on the relevant task in

a lower-dimensional subspace than the original vector space called ultra-dense

subspace.

More recent work on post-processing pretrained embeddings by Artetxe et al.

[21] argues that word embeddings consist of information that is not directly ap-

parent and different embedding models capture different linguistic aspects such

as similarity and relatedness aspects or semantic and syntactic aspects which are

often mutually incompatible. They adjust the similarity order of the model using

a linear transformation without utilizing any other external resources to achieve

better results in different aspects depending on the application of embeddings.

We can consider similarity/relatedness to be one axis and the semantic/syntax

to be the other axis of the similarity Artetxe et al. [21] propose a methodology

19

to tailor any embedding space to lean on either of these axis’s depending on the

requirement of the application. In this research similarity order which is first or

second-order co-occurrences were generalized and used as a continuous parameter

for linear transformation applied to the embedding model.

Mu et al. [46] increase the discrimination of the embeddings by projecting the

word vectors away from their most dominant direction to improve the perfor-

mance considerably. Raunak et al. [23] introduces effective dimensionality reduc-

tion using PCA with the post-processing algorithm introduced by Mu et al. [46]

to create a more efficient and effective set of embeddings with reduced dimension.

They first create more discriminated embeddings by applying the post-processing

algorithm proposed by Mu et al. [46] and then apply effective dimensionality re-

duction using PCA to the discriminated embeddings to obtain a set of low di-

mensional embeddings. Finally, they once again apply the same post-processing

algorithm to the low dimensional embeddings to obtain a purified set of embed-

dings.

2.8 Summary

Although there has been various research conducted on different BLI techniques,

only a handful of research has been conducted on low resource domain [38, 39, 47].

However, None of the existing research has conducted a deep comprehensive anal-

ysis of the contributing factors to BLI such as the type of the dataset, the eval-

uation dictionary used, or the type of the embedding model used. Furthermore,

Vulic et al. [22] conducted improving BLI via combining post-processing tech-

nique linear transformation with cross-lingual embedding mapping there was no

other research conducted combining multiple post-processing techniques with BLI

or different post-processing techniques with BLI. There has been much research

conducted on improving BLI using different techniques [37, 40, 39]. Although

there has been some research that has shown better results when incorporated

with the state of art VecMap model [40, 48], none has conducted research that

combines multiple approaches such as combining an improved modified version

20

of the VecMap model with post-processed embeddings or combined multiple im-

provement techniques.

21

Chapter 3

METHODOLOGY

3.1 Overview

We have identified that only a limited number of research has been carried out for

LRLs on BLI. Additionally, no previous research or comprehensive analysis has

been conducted in terms of the size and the nature of the dataset used to create

the word embedding model, the type of the evaluation dictionary used to evaluate

the results, or the approach that has been used to create the word embeddings

for BLI.

In this research, all the experiments were carried out on low-resource Sinhala-

English language pair. We experimented with three different recently introduced

BLI models VecMap, InstaMap, and ClassyMap for the Sinhala-English pair to

identify the best baseline model to proceed with further experiments. We decided

to move forward with the VecMap model due to reasons which will be further

discussed in the coming sections. We conducted an extensive set of experiments

on how the size and the nature of the dataset, the type of the evaluation dictio-

nary and the approach used to create the embedding models affect BLI using the

VecMap model.

We further introduced multiple post-processing steps to the pretrained embed-

dings used in the VecMap model before performing the alignment/mapping of

the embeddings of each language.

Finally, we have combined the post-processing of the embedding spaces/linearly

transforming the embedding spaces with the modified VecMap to obtain vastly

superior results. The research process can be seen in Figure 3.1.

22

Figure 3.1: Research Process

23

3.2 Model Selection

We have selected three different models to run our experiments namely VecMap,

InstaMap, and ClassyMap models. All selected models find a mapping between

the embedding spaces of two different languages using monolingual embeddings

of each language. Sinhala being a Low resource language, it is challenging to find

a large amount of parallel data or a sizable seed dictionary to provide supervision

with any other language. Since each of the selected models reported results on

par with other existing models for BLI and since the required resources can be

provided even for low-resource languages, we have selected these three models as

the best models to conduct initial experiments on BLI for Sinhala and English

languages.

3.2.1 VecMap Model

The VecMap model finds considerably accurate mapping between two languages

using monolingual embeddings of each language. As discussed in 2.6.4 VecMap

model consists of four sub-steps which are Pre-processing, Initialization, Robust

self-learning, and Symmetric re-weighting (Figure 2.5). We have selected the fully

unsupervised version of the VecMap model due to the unavailability of a large

seed dictionary and since the unsupervised version reported the best result for all

the preliminary experiments conducted.

3.2.2 InstaMap Model

The InstaMap model consists of two main steps;

1. Finding a globally optimal rotation: InstaMap model first finds a glob-

ally optimal rotation using the kabsch algorithm for the source embedding

space w.r.t target embedding space. In this step, Glavavs et al. [48] used the

whole training dictionary to find and applied PCA without dimensionality

reduction to find the globally optimal rotation.

24

2. Obtaining instance-specific translations: An instant-specific transla-

tion vector for each point is calculated. This is calculated using the nearest

neighbours’ translation vector for the relevant point in the training dic-

tionary. Then each point is moved along the aforementioned calculated

translation vector.

This research showed that it can obtain better results when the proposed

model was applied on top of the VecMap model. Additionally, the model reported

accurate results when using a seed dictionary/training dictionary between the

size of 5k-10k word translation pairs [48]. Sinhala being a low-resource language,

a dictionary of such size was unavailable and difficult to produce. Hence we

conducted our initial experiments between about 500-800 word translation pairs.

This model reported very low results for Sinhala and English languages compared

to the VecMap model since the size of the evaluation dictionary is considerably

low and therefore is unable to find an accurate mapping between the embedding

spaces.

3.2.3 ClassyMap Model

ClassyMap model incorporates classification-based self-learning with iterative

mapping of cross-lingual embedding spaces. This approach enables the integra-

tion of various features into the iterative mechanism of the mapping. This allows

the model to capture different levels of features such as orthographic level or word

level. As this makes way to capture information like sub-wording information, this

approach seemed attractive for Sinhala and English, since the Sinhala language

is a morphologically rich language with a heavy inflectional nature. Furthermore,

this approach reduces the noise, since each iteration method allows to check the

reliability of the candidate translation pairs considered for that iteration.

This method also showed that it is able to obtain better results when integrated

with the VecMap model and only required monolingual embeddings of source

and target language with about 500-word translation pairs as the seed dictio-

nary. Karan et al. [40] use supervised classification in the classification step of

25

this method. However, results obtained by applying the ClassyMap model for

Sinhala and English language pair were unable to surpass the results obtained by

applying the unsupervised version of the VecMap model.

3.2.4 Summary

We have run preliminary experiments for all three models using the same dataset

and the seed dictionary (when applicable). As the unsupervised version of the

VecMap model reported Superior results for Sinhala and English language pairs

from all three models, we decided to proceed with the unsupervised version of

the VecMap model for all future experiments.

3.3 Extensive analysis on BLI in low resource language pairs

We have conducted a comprehensive analysis of how the following factors affect

BLI.

• Size and the nature of the monolingual data used to train the embeddings

• Properties of the bilingual dictionaries used for evaluation

• Type of the model used to train the embeddings

Each of the above items is discussed below.

3.3.1 Size and the nature of monolingual data

We have trained several different monolingual embedding types for both Sinhala

and English languages.

1. Pre-trained monolingual embedding models: For both Sinhala and

English languages, there are pretrained sets of monolingual embeddings that

were readily available1. We have conducted our preliminary experiments

using these embeddings for the VecMap model. We next proceeded to use

Sinhala and English comparable data.
1https://fastText.cc

26

2. Training embedding models using Sinhala and English compara-

ble news data: As news data can be considered to be an excellent source

to extract comparable Sinhala and English data, we used news data to

train monolingual embeddings. We have used several different news sources

available such as Hiru, NewsFirst, Army, LankaPuwath, etc that were pre-

extracted [49]. We pre-processed each news source separately for each lan-

guage. We removed special characters and punctuation from the corpora

of both languages. We further pre-processed the Sinhala corpora to re-

move characters from other languages. We combined(appended together)

the pre-processed corpus of every news source of each language separately to

generate a large monolingual corpus for both source and target languages.

We then trained the large corpora to obtain monolingual embeddings for

both languages. We trained both Word2Vec and FastText embedding mod-

els for both languages. Then this large monolingual dataset was used to

find a cross-lingual mapping between Sinhala and English languages using

VecMap, InstaMap, and ClassyMap models.

Since the data become more comparable, if monolingual embedding spaces

of each news source were mapped separately, we next trained embeddings

for each news source for each language using both fastText and Word2Vec

Models. Upon manual inspection, we observed that different news sources

had different writing styles. To further analyze this we have created corpora

for each language

(a) by combining the data of similar writing patterns(Hiru news data and

NewsFirst news data)

(b) by combining the data of different writing patterns(NewsFirst news

data and Army news data)

We then created both FastText and Word2Vec monolingual embeddings for

those corpora. Next, we proceeded to find a mapping for each type using

the VecMap model.

Since NewsFirst data reported the best results, we proceeded to double the

27

size of the NewsFirst dataset by collecting more data to further monitor how

the size of the dataset affects BLI. We then trained monolingual embeddings

for each language and applied the VecMap model to observe how the size

of the dataset affects BLI.

3.3.2 Type of The Evaluation Dictionary

Typically, BLI is evaluated by either integrating a BLI system with a task-specific

downstream system such as neural machine translation or named entity recog-

nition to obtain the resulting improvement of an entire system or by evaluating

the results against a golden standard dictionary. In this research, we proceeded

to evaluate the results against a golden standard dictionary. We evaluated the

results of our experiments against a few different dictionaries. We proceeded

to evaluate the results with multiple evaluation dictionaries to observe how the

results change and how the nature of the evaluation dictionary affects the results.

1. Standard Dictionary- We evaluated the results of our experiments ini-

tially using an existing standard dictionary [50].

2. Term Frequency dictionaries- To create these dictionaries, using TF-

IDF, we calculated the term frequencies of each word for both languages

using combined news corpora. We then created

• High-frequency term dictionary - Word translation pairs were obtained

by using the terms that appeared as high-frequent terms in both lan-

guages.

• Low-frequency term dictionary - Word translation pairs were obtained

by using the terms that appeared as low-frequent terms in both lan-

guages.

3. Dictionary retrieved from parallel data- To differentiate the dictio-

nary from the dataset, we have created another dictionary using a dataset

differing from the original dataset used to create the embeddings and is from

a different domain to the news domain. For this, we used parallel data from

28

the government document domain, which is extracted from Official Govern-

ment Documents [50]. We have again taken the term frequencies for each

language for parallel data and taken the high-frequency word translation

pairs of each language to create the dictionary.

3.4 Post-processing the Embedding Spaces

As the next step of our research, we decided to post-process the pre-trained

embeddings generated, to obtain a better mapping between two languages. In

this step, we have selected two different approaches to post-process the pre-trained

embeddings from the mentioned post-processing approaches in subsection 2.7.

1. Linear Transformation

2. Effective Dimensionality Reduction

3.4.1 Linear transformation

This post-processing approach is able to capture the information that is not

immediately apparent in pretrained embeddings and, by post-processing the em-

bedding, post-processed embeddings will cater to the application the embeddings

are being used. Also, it has been empirically validated that post-processing pre-

trained embeddings before obtaining a cross-lingual word embedding model is

beneficial for low resource BLI [22]. Additionally, this approach only requires

pretrained monolingual embeddings to experiment with. Therefore we selected

this approach as our first post-processing technique.

Conventional projection-based cross-lingual mapping approaches independently

train source language(Ls) monolingual embeddings X and target language(Lt)

monolingual embeddings Z separately and learn a mapping between two lan-

guages applying a linear transformation using a seed dictionary D. The initial

mapping is then improved iteratively until the algorithm converge. In an unsu-

pervised scenario, this dictionary is derived in the first iteration of the mapping

approach.

29

We experimented with the linear transformation approach for post-processing pre-

trained embeddings introduced by Artetxe et al. [21] in this research. The essence

of this approach is to generalize the idea of first-order similarity, second-order sim-

ilarity up to n-th order similarity. If the standard first-order similarity matrix of

source embedding matrix X is M1(X) = XXT then the second order similarity for

source X can be defined as M2(X) = XXTXXT . Hence M2(X) = M1(M1(X)).

Accordingly the n-th Similarity order of X can be defined as Mn(X) = (XXT)n.

It is proven by Artetxe et al. [21] that this n-th order similarity transformation

can be also obtained using Mn(X) = M1(XR(n�1)/2) where R↵ = Q�↵. Here Q

and � are obtained by the eigen decomposition of XXT = Q�QT where Q is the

orthogonal matrix with eigen vectors and � is the diagonal matrix containing the

eigen values. We then obtain the linearly transformed embedding spaces of source

embeddings(X) as X l
↵s

= XR↵s and linearly transformed target embeddings(Z)

as Z l
↵s

= ZR↵s . Finally before attaining the cross-lingual word embedding map-

ping between two embedding spaces we replace the source embedding(X) and

target embedding(Z) by X l
↵s

and Z l
↵s

consecutively.

3.4.2 Dimensionality reduction

Almost all the available BLI techniques have been experimented with in compar-

atively high dimensions such as 300 and usually, the experiment was done for a

very large number of tokens. This increases the memory requirement of the mod-

els. Furthermore, the required training time is also comparatively high for such

models. In this research, as we conduct an extensive analysis with a large num-

ber of experiments, the importance of an efficient model was apparent. Hence to

increase the performance without compromising the results, we have introduced

effective dimensionality reduction with a post-processing algorithm(Algorithm 1)

to increase the results of our model as the next post-processing step of the em-

beddings. We followed the research steps of- Raunak et al. [23] in this part of our

research as guidance.

The Algorithm 1 is based on the assumption/observation across all the embed-

30

Algorithm 1: Post Processing Algorithm (X,D)
Input: Word embedding matrix X, Threshold parameter D
Output: Post-processed Word embedding matrix X
/* Subtract the mean embedding */

1 X = X - X
/* Compute PCA components */

2 ui = PCA(X) ; i= 1, 2, 3,d;
/* Remove top D components */

3 for all v in X do

4 v = v �
PD

i=1(u
T
i .v)ui

5 end;

dings models, that the embeddings consist of a large mean vector, and once the

mean vector is subtracted from the original embedding the energy of the remain-

ing embedding is spanned in a subspace consisting about eight dimensions. Since

the mean vector is common amongst all embeddings, by eliminating the mean

vector, embeddings become stronger. This makes the embeddings more discrimi-

native since, in the newly obtained embeddings, none of the principal components

are disproportionately dominant securing better quality embeddings [46].

Following Raunak et al. [23], to obtain the discriminative embeddings, first the

Algorithm 1 is applied to the original set of embeddings. Then on top of these

purified sets of embeddings dimensionality reduction was done using the PCA

dimensionality reduction technique. Finally, to further flatten the dominant com-

ponents of the dimensionality reduced embeddings we again applied Algorithm 1

on the dimensionality reduced embeddings.

3.4.3 Linear transformation with dimensionality reduction

As both the linear transformation and dimensionality reduction deliver differ-

ent benefits to pretrained embeddings and to leverage from both post-processing

techniques, we decide to incorporate both techniques into our model. We first

experimented with linear transformation with a few different values for ↵ hyper-

parameter for both source and target monolingual embeddings. We selected best

suited ↵ value we can benefit from when incorporated with the VecMap algo-

31

rithm.

Next, we integrated the effective dimensionality reduction model with the VecMap

algorithm for a half-sized dimension incorporated with the post-processing algo-

rithm.

Finally, to benefit from both techniques, we introduced two hybrid models where

we follow the steps, first applying the linear transformation, then the effective

dimensionality reduction on the pretrained monolingual embeddings before ap-

plying the VecMap model to obtain a mapped embedding space. To observe

the difference in order these post-processing techniques were applied, we then

proceeded to experiment first applying the dimensionality reduction on the pre-

trained embeddings and then applying the linear transformation to finally apply

the VecMap algorithm to obtain the cross-lingual word embeddings.

3.5 Iterative Dimensionality Increment With VecMap

Sinhala being a LRL, resources including large enough parallel data set or bilin-

gual dictionaries with few thousand words is considered rare and almost im-

possible to obtain without extensive and expensive manual intervention. Hence

for tasks such as BLI, it is not possible to pick supervised or semi-supervised

approaches as LRLs lack the required resources. Therefore most of the LRLs

heavily rely upon unsupervised approaches for BLI.

When obtaining the cross-lingual word embeddings using fully unsupervised ap-

proaches, these approaches self initialize the initial seed dictionary and iteratively

improve the solution. The self-initialization step is an important part of these

methods as the converged solution heavily depends on this self-initialization step.

Li et al. [51] showed that if the initialization step is not accurate enough self-

learning will not converge to a solution. This will cause the accuracy of the

results to be zero or closer to zero.

We first use PCA to reduce the dimensionality of the initial raw word embeddings

as this will reduce the dimensions that are less important when explaining the

core features of the data. Therefore this can be considered as a noise-reduced

32

embedding space. Hence if an initial solution is to be obtained using this noiseless

dimensionality reduced embeddings the initialization tends to be rather accurate.

Also, to avoid the hubness problem [52, 51], drop-max is applied along with the

PCA algorithm. Following Li et al. [51], we first iteratively reduce the dimension

of the raw embeddings till they reach the dimension of 50. We then apply the

state-of-the-art VecMap algorithm on the dimensionality-reduced Embeddings to

obtain the initial solution dictionary. Then using the initial dictionary algorithm

will add k most frequent words to the initial dictionary calculating nearest neigh-

bours. Then the dimensionality of the embeddings was doubled to repeat the

process where the resultant dictionary of the previous step will act as the seed

dictionary. These steps will repeat until the dimensionality of the embeddings

is less than or equal to the original dimensionality of the initial raw embeddings

(Refer Algorithm 2).

Algorithm 2: Iterative Dimensionality Increment (E,n)
/* Initial dimensionality of the Raw embeddings = 300 */
Input: Raw word embedding matrix E, Initial dimension n
Output: cross lingual word embeddings of source and target

embeddings WX and WZ respectively
1 D �
2 while n<=300 do

3 Reduce E to E with dimension min(n,300) using PCA and dropmax
4 if D=� then then

5 Run the initialization and self-learning on E

6 else

7 Run the self-learning on E with D as an initial dictionary
8 end if

9 Translate 4k most frequent words and store the results in D
10 n n ⇤ 2
11 end while

12 return WX and WZ ;

3.6 Modified VecMap Model With Pre-processed Embeddings

As a final step to our model, we have integrated the iterative dimensionality re-

duction of the VecMap algorithm with the post-processing of raw embeddings.

33

As per the experiments conducted in subsection 3.4.3 we were able to obtain

improvement for each pre-processing approach when individually integrated with

the VecMap algorithm. Yet when both preprocessing approaches were combined

and integrated with the VecMap model we were unable to obtain substantial

gains. Hence to proceed further we selected the post-processing approach that

yielded the best results when combined with the initial VecMap algorithm which

is the linear transformation approach. We then proceeded to integrate the linear

transformation post-processing approach with the modified version of the VecMap

algorithm to gain the all-time highest results of BLI in Sinhala and English Lan-

guages.

34

Chapter 4

EXPERIMENTS

4.1 Experimental Setup

For the initial experiments, we used the Google Colab pro version with P100

and T4 with high-memory virtual machines. As the dataset grew, the memory

consumption increased and hence we conducted the rest of the experiments on

RTX 6000 NVIDIA GPU machine with 64GB RAM.

4.2 Data

4.2.1 Corpora and Embeddings

For the preliminary level experiments, we used the existing pretrained embed-

ding for both Sinhala and English languages1. This dataset consisted of 200k

embeddings with a dimension of 300. Since this gave us considerably diminished

results, we decided to experiment with comparable data. As Sinhala and English

news data can be considered excellent sources for comparable data we then pro-

ceeded to experiment with Sinhala and English data from multiple news sources

extracted by Rajitha et al. [49]. We then pre-processed the data as mentioned

in subsection 3.3.1. Then we manipulated the cleaned data to obtain several

different types of datasets(stats are at Table 5.1).

1. We trained both Word2Vec and FastText monolingual embeddings for each

news source for both Sinhala and English languages

2. Trained both Word2Vec and FastText monolingual embeddings for English

and Sinhala combining all the news sources for each language.

3. Created separate corpora for each language by combining news sources that
1https://fastText.cc

35

had similar writing styles (NewsFirst+Hiru) and trained both word2vec and

fastText monolingual embeddings for each language

4. Created separate corpora combining news sources that had different writing

styles (NewsFirst+Army) and trained both word2vec and fastText mono-

lingual embeddings for each language

5. As news first news source has given the best results when applied VecMap,

we have crawled more news first data to increase the corpora size (approx-

imately doubled the size of the news corpora) and trained both fastText

and word2vec embeddings for this larger corpora.

All the mentioned embedding models trained were of dimension 300.

Table 4.1: Dataset

Dataset Si Embeddings En Embeddings

Pre-trained emb. 200,000 200,000
Combined news 153,431 162,301

NewsFirst 64,535 75,438
Hiru 56,045 58,545
Army 36,243 43,245

NewsFirst+Hiru 72,043 79,635
NewsFirst+Army 65,344 79,326

4.2.2 Evaluation dictionaries

We have evaluated the results against a few different types of evaluation dictio-

naries to observe how the results of BLI depend on the nature of the evaluation

dictionary. The dictionaries we used are as follows.

1. Standard dictionary - This is an existing standard Sinhala and English

dictionary consisted about 36,000-word translation pairs between Sinhala

and English languages [50].

36

2. High-frequency dictionary - Dictionary consisted of high-frequency word

translation pairs that appeared in our dataset(subsection 3.3.2). This dic-

tionary consisted of about 500-word translation pairs.

3. Low-frequency dictionary - Dictionary consisted of low-frequency word trans-

lation pairs that appeared in our dataset(subsection 3.3.2). This dictionary

consisted of about 500-word translation pairs.

4. Parallel corpus dictionary - Dictionary created using Sinhala-English par-

allel dataset. This dataset consisted of 74,000 Sinhala-English parallel

sentences. This dictionary also consisted of about 500-word translation

pairs.(subsection 3.3.2)

4.3 Experiments

4.3.1 Comprehensive analysis

We first trained the VecMap model to obtain cross-lingual word embeddings for

Sinhala and English languages using an existing pre-trained monolingual embed-

ding set and evaluated the results against the standard dictionary.

We then experimented with Sinhala English comparable news data. We trained

both fastText and word2vec embeddings for each corpora type mentioned in sub-

section 4.2.1. We then applied the VecMap algorithm for the embeddings created

using corpora created by combining all news sources. We evaluated the results

against the Standard dictionary, high-frequency dictionary, and low-frequency

dictionary. We then applied the VecMap algorithm for the embeddings created

using each news source separately. Then we evaluated the results using the high-

frequency dictionary and low-frequency dictionary. As the NewsFirst news source

presented the best results thus far to further validate the results, we evaluated

the NewsFirst cross-lingual embedding results against the parallel data dictionary

next. We then doubled the size of NewsFirst corpora and trained monolingual

embeddings using both fastText and word2vec models and applied the VecMap

model. Evaluated the obtained cross-lingual embedding model against the high-

37

frequency dictionary, low-frequency dictionary, and parallel data dictionary.

Upon manual inspection, we noticed that some news sources had different writing

styles while some of the news sources had similar writing styles. Hence we have

created two different corpora by combining two similar writing-styled corpora

and two different writing-styled corpora. we then proceeded to train both fast-

Text and word2vec embeddings for the aforementioned corpora and applied the

VecMap algorithm. We evaluated the results against high-frequency dictionaries

and parallel data dictionary.

4.3.2 Post-processing pretrained embeddings

Since the NewsFirst news source dataset gave the best results across all news

sources when evaluated against all types of dictionaries we selected the NewsFirst

dataset for the next part of the experiment set.

1. Linear transformation: In this step we post-process the source pretrained

embedding vector X to X/
↵s and Target pretrained embedding vector Y to

Y /
↵t . This requires tuning two hyperparameters ↵s and ↵t for source and

target languages respectively. As a consequence of lacking the necessary

resources to tune the hyperparameters, we manually specified a subset of

the hyperparameter space based on the experiments conducted by Vulic

et al. [22]. We post-processed the NewsFirst dataset for both source and

target languages for the hyperparameter values [-0.5, -0.25, -0.15, 0, 0.15,

0.25, 0.5]. We then obtained cross-lingual word embeddings by applying

the VecMap model to each value pair for both languages and evaluated the

results against the parallel data dictionary. This experiment was conducted

for both fastText and word2vec embeddings.

2. Effective dimensionality reduction: We proceeded to apply dimen-

sionality reduction with post-processing algorithm 3.4.3 as the next step

of our research. We started the dimension of our original embeddings as

300. We then halve the size of the dimension for both source and target

pretrained embeddings to obtain embeddings with 150 dimensions as the

38

post-processed embedding set following the steps of Raunak et al. [23]. We

then obtained cross-lingual word embeddings for dimensionality-reduced

word vectors by applying the VecMap algorithm and evaluated the results

against a parallel data dictionary. This experiment is conducted for both

fastText and word2vec embeddings.

4.3.3 Post-processing with modified VecMap model

As the next step of our research, we selected the best suitable hyperparameters

based on the results of section 4.3.2. For fastText embeddings hyperparameter

values selected were ↵s = 0.15 and ↵t = 0.5 while the hyperparameter values

selected for word2vec model is ↵s = 0.15 and ↵t = �0.15. We then applied effec-

tive dimensionality reduction for these the post-processed embeddings using the

aforementioned hyper-parameter values. We also applied linear transformation

on a dimensionality-reduced embedding set. Next, we applied the VecMap algo-

rithm to both post-processed embedding sets. We evaluated the results using the

parallel data dictionary. As combining both post-processing techniques dimin-

ished our results, for the next part of our experiments we decided to only apply

the technique that improved the results best. Hence we selected linear transfor-

mation as the post-processing technique for the latter part of our experiments.

Next, we improved the VecMap algorithm by iteratively increasing the dimen-

sionality of the embeddings(Algorithm 2). Evaluated the results of the improved

VecMap model using the parallel data dictionary. Finally, we further improved

the results by applying the post-processing technique linear transformation, on

the pretrained embeddings before applying the improved VecMap algorithm.

39

Chapter 5

RESULTS AND DISCUSSION

All the results for experiments conducted were reported by precision@K according

to the standard practice. precision@K is the number of correct translations in the

top k set out of the retrieved result set and we report the results when k equals

1.

5.1 Comprehensive Analysis

5.1.1 Pre-trained fastText embeddings

Table 5.1: BLI Results For Pre-trained fastText Embeddings

Dictionary fastText P@1%

Standard Dic. 0.02
Parallel data Dic. 1.04

The results of the pre-trained embedding were evaluated against the standard

existing dictionary and the parallel dictionary and can be seen in Table 5.1. As

can be observed, when evaluated against the standard existing dictionary the

result for the BLI is considerably low. However, the results were improved even

though the result is still extremely poor when evaluated against the parallel data

dictionary as an ablation test.

Even though the standard dictionary consisted of a considerably larger number

of word translation pairs in comparison to the parallel data dictionary, the Sin-

hala word translation in the standard dictionaries was rarely used every day as

a practice. This phenomenon is further discussed in the next subsection (subsec-

tion 5.1.2.)

40

5.1.2 Combined News Data

Table 5.2: BLI Results For Combined News Data

Dictionary Word2Vec P@1% fastText P@1%

Standard Dic. 0.60 0.43
High frequent term Dic. 12.14 8.05

Parallel data Dic. 8.73 7.87

It is apparent that the results (Table 5.2) for BLI improve dramatically when

the dataset is at least slightly comparable. Also, it is observable that the results

improve drastically when evaluated against the high-frequent term dictionary and

parallel data dictionary. Theoretically, as the standard dictionary consists of a

large number of translation pairs compared to the other two dictionaries used, the

probability of retrieving a correct translation pair to match from the standard

dictionary should be higher. However, upon manual inspection, it is apparent

that the translation pairs that appeared in the standard dictionary are rarely

used in everyday use. Examples can be seen in the Figure 5.1.

Figure 5.1: Translation Difference Examples

Similar to the example most of the words that appear in the dictionary do

not appear in the dataset. Hence, even when the correct translation is retrieved,

when evaluated against the standard dictionary the translation will be taken as

incorrect reducing the accuracy of the results. Also, it can be seen that the re-

41

sults increase drastically when evaluated against the high-frequency dictionary.

In view of the fact that the word translation pairs in the high-frequency dictio-

nary appear in the dataset used, is the cause for higher results.

In addition, it can be seen that the results, when evaluated against the parallel

data dictionary, are slightly lower than the results evaluated against the high-

frequency dictionary, although it is still significantly greater than when evalu-

ated against the standard dictionary. The parallel dictionary is created from the

government documents, which is an entirely different domain from the dataset

domain news. Therefore it can be argued that the frequent word translation pairs

that appear in the parallel dictionary are different to some extent from the news

domain. However, the translation pairs that appeared in the parallel dictionary

are used in everyday applications and therefore give significantly better results in

comparison with those evaluated against the standard dictionary. In conclusion,

it is evident that the nature of the evaluation dictionary highly impacts the re-

sults of BLI.

We also made the observation that word2vec results were slightly better

throughout when evaluated against all the dictionaries. This phenomenon is

further discussed in the next subsection 5.1.3.

5.1.3 Separate news sources

Table 5.3: BLI Results For Each News Source Separatelyfit to pg width

Dictionary Word2Vec P@1(%) fastText P@1(%)

NewsFirst Hiru Army NewsFirst Hiru Army

High frequent term Dic. 42.57 40.01 27.55 40.33 37.75 27.79
Low frequent term Dic. 35.34 32.27 27.48 40.94 36.15 28.38

Parallel data Dic. 28.47 29.58 20.59 27.78 30.63 24.77

The news data that was extracted for each news source for both languages

are in the same time frame (i.e., monolingual NewsFirst data collected for both

Sinhala and English is in the same time frame, and similarly, Hiru news data

42

extracted for both Sinhala and English is in the same time frame). Hence it

is safe to assume that the news articles in the two languages will roughly dis-

cuss the same topics. Therefore monolingual corpora from separate news sources

will be more comparable compared to the corpora built by combining all the

news sources together. Therefore to survey how the nature of the data affects

the results of BLI, we evaluate the BLI results for each news source separately

against the high-frequency dictionary, low-frequency dictionary, and the parallel

dictionary. As reflected in Table 5.3, we were able to gain substantial gains on

the result set when evaluated against all three dictionaries. The highest results

we were able to gain were when evaluated against high-frequency dictionary for

NewsFirst news source for word2vec model and the lowest results were obtained

was when evaluated against parallel data dictionary for Army news source for

word2vec model.

Also when evaluated against the high-frequency dictionary, results were always

higher or slightly different for the word2vec embedding model. However, when

evaluated against the low-frequency dictionary, results were always higher for the

fastText embedding model. We noticed that most of the terms that appeared in

the low-frequency dictionary were rare terms which are either inflected terms of

high-frequency terms or named entities. Since the fastText model better accom-

modates sub-wording information in comparison to the word2vec model fastText

model was able to acquire a better mapping for inflected terms. Therefore fast-

Text model was able to obtain better translations for rare inflected terms. Hence

it can be concluded that a fastText embedding model is a superior option in re-

spect of BLI for rare terms.

Also, it can be observed in Table 5.3 that the results were slightly dropped when

evaluated against the parallel data dictionary throughout all news sources and

embedding types. As discussed in the subsection 5.1.2 parallel dictionary has a

relatively different domain compared to the dataset and the high-frequency and

low-frequency dictionaries having the same domain as the dataset is the cause of

this.

As an ablation test and to observe how the size of the dataset affects the results,

43

we increased the size of the NewsFirst dataset by crawling more data. We then

proceeded to clean and train monolingual embeddings for this large NewsFirst

dataset. We then performed the VecMap algorithm to obtain cross-lingual word

embeddings for both fastText and VecMap embedding models. The results for

the fastText embedding model increased to 31.77 from 27.78 resulting in a gain of

5.99, whereas results of the word2vec embedding model were improved to 33.75

from 28.47 causing an increment of 5.28 when evaluated against the parallel data

dictionary. As it can be observed that the size of the dataset is largely increased

the results were improved albeit by about 4 percent for both embedding models.

Hence it is evident that the nature and the size of the dataset directly impact the

results of BLI.

5.1.4 Combined news data based on writing styles

Upon manual inspection, it was apparent that each news source had a unique

writing style concerning the sentence styles, the vocabulary used, etc and it can

be observed that some of the news sources had similar writing styles while some

news sources had completely different writing styles.

To further observe how the nature of the dataset affect BLI, we created separate

corpora combining two similar writing-styled news sources(Hiru+NewsFirst) and

two different writing-styled news source(Army+NewsFirst). As it can be observed

in Table 5.4 and Table 5.3 when the similar writing-styled news sources were

combined(NewsFirst+Hiru) results were slightly diminished lower than NewsFirst

data, yet the results remained higher than the Hiru news data when evaluated

against frequency dictionaries. Additionally, when evaluated against the parallel

dictionary the results dropped trivially lower for the combined Hiru+NewsFirst

dataset than the results of Hiru or NewsFirst data alone.

However, as can be observed from Table 5.4 and Table 5.3 when differ-

ent writing-styled news sources were combined (NewsFirst+Army), the results

dropped substantially lower than the results of either NewsFirst or Army news

data alone when evaluated against all three dictionary types. By combining dif-

44

Table 5.4: BLI Results For Few News Sources Combined

Word2Vec P@1(%) fastText P@1(%)
Dictionary NewsFirst+ NewsFirst+ NewsFirst+ NewsFirst+

Hiru Army Hiru Army

High-frequency Dic. 40.98 17.38 38.85 16.02
Low-frequency Dic. 33.68 14.21 36.98 17.44
Parallel data Dic. 28.26 10.56 26.87 13.67

ferent news source data, the comparability of the source corpus and target corpus

will reduce causing a drop in the results. Furthermore, the embedding models

used for the experiments consider contextual information to build the embedding

space. It can be assumed that when the context drastically changes in the cor-

pora, finding a mapping between the created embedding spaces for source and

target could be increasingly difficult. Thus, the results of this experiment further

reinforce the conclusion that the nature of the dataset used for BLI is highly

relevant and affect the results of BLI.

5.2 Post-processing Pre Trained Embeddings

This set of experiments was conducted for the large NewsFirst dataset and all

the results were evaluated against the parallel dictionary. The parallel dictionary

is used since the dataset used is different from the dataset used to create the

embedding models and hence can be considered as a more accurate means to

evaluate the results.

5.2.1 Linear transformation

As discussed in the subsection 4.3.2 we first post-processed the pretrained embed-

dings using the linear transformation technique for both fastText and word2vec

embedding models for both Sinhala and English languages for a few different

hyper-parameter values. The results for fastText embeddings can be seen in Ta-

ble 5.5 and the results for the word2vec embedding model are demonstrated in

Table 5.6. Although several hyper-parameter values were able to improve the

existing results the maximum increment over the results was obtained for the

45

Table 5.5: BLI Results For Linear Transformation fastText Embeddings

En
Si

-0.5 -0.25 -0.15 0 0.15 0.25 0.5

-0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-0.25. 0.00 32.44 31.77 32.44 2.34 0.33 0.33
-0.15 0.00 0.33 33.44 1.67 32.78 0.67 1.67

0 0.00 6.69 0.67 31.77 34.11 34.78 33.44
0.15 0.00 2.01 30.77 0.67 34.78 33.44 35.12

0.25 0.00 0.00 31.44 32.44 33.44 33.11 34.11
0.5 0.00 0.33 0.00 1.00 0.00 29.43 25.75

Table 5.6: BLI Results For Linear Transformation word2vec Embeddings

En
Si

-0.5 -0.25 -0.15 0 0.15 0.25 0.5

-0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-0.25. 0.32 0.32 2.84 32.49 29.02 30.28 25.87
-0.15 0.32 0.63 33.12 33.12 0.00 0.63 26.50

0 0.00 32.49 0.00 33.75 32.81 31.55 25.24
0.15 0.00 33.75 34.87 32.81 33.44 0.32 25.55
0.25 0.00 32.49 33.12 31.86 32.81 32.18 26.50
0.5 0.00 0.00 0.00 30.28 29.65 29.97 23.97

46

fastText model when the ↵s = 0.15 and ↵t = 0.5. For the aforementioned hyper-

parameter values, we were able to improve the results to 35.12% from the 31.77%

for the fastText model when evaluated against the parallel data dictionary.

Similarly we were able to obtain improved results for word2vec embeddings for

several hyperparameter values as can be observed in the Table 5.6. However the

maximum improvement was obtained when ↵s = 0.15 and ↵t = �0.15. We were

able to improve the results for the word2vec embedding model from 33.75% to

34.87%. It can be observed that the improvement gained for the fastText embed-

ding model was far more significant compared to the improvement gained for the

word2vec embedding model using the linear transformation model.

5.2.2 Effective dimensionality reduction

As already mentioned in the subsection 4.3.2, we next post-processed the raw

pre-trained embeddings using effective dimensionality reduction with the post-

processing algorithm 1. As this technique caters to efficiency without compro-

mising the results we were able to obtain the results considerably faster. However,

the improvement in the results for both models was diminutive. In relation to

fastText embeddings, the results were improved to 32.02% from 31.77% when

applied dimensionality reduction with the post-processing algorithm. The results

were increased from 33.75% to 33.86% for the word2vec embedding model when

applied dimensionality reduction with the post-processing algorithm. The results

were evaluated against the parallel data dictionary.

5.2.3 Linear transformation + Effective dimensionality reduction

Next, we combined two post-processing methods before obtaining cross-lingual

word embeddings by applying the VecMap algorithm. In this step, we used the

hyperparameter values that gave the best results based on the experiments done

in subsection 5.2.1. We first applied effective dimensionality reduction on linearly

transformed embeddings for both fastText and word2vec embedding models. We

reduced the dimensionality by half(to 150) for the linearly transformed word2vec

47

embeddings using the hyper-parameters ↵s = 0.15 and ↵t = �0.15 and for the

linearly transformed fastText embeddings using the hyperparameters ↵s = 0.15

and ↵t = 0.5. The results obtained by this step are considerably lower compared

to the original results where results for fastText embeddings diminished from

31.77% to 27.34% while word2vec results dropped from 33.75% to 28.32%.

As the results were reduced for the previous experiment, we tried to improve the

results of dimensionality-reduced embeddings by applying linear transformation

as a post-processing step to the low-dimensional embeddings. Although it has

not been proven that the best hyper-parameters to use for these low dimensional

embeddings obtained were the same as the ones we used for high dimensional

embeddings with the limited time frame, we proceeded to use the above-obtained

hyper-parameters that gave the best results for higher dimensions. Hence we used

hyper-parameters ↵s = 0.15 and ↵t = �0.15 for the word2vec embeddings and

hyperparameters ↵s = 0.15 and ↵t = 0.5 for the fastText embeddings. We were

unable to gain improvement over the original results in this step again and the

results were diminished compared to the original results. The results of word2vec

embeddings dropped from 33.75% to 29.01%, while results for the fastText em-

beddings dropped to 28.46% from 31.77%.

In future work, we are expecting to run experiments for all the hyperparameter

values to validate if the results can be improved with a different linear transfor-

mation with dimensionality reduction. We were unable to improve the results by

combining two post-processing techniques in the scope of this research.

5.2.4 Improved VecMap model

As a further step, we introduced an improvement to the existing robust mapping

algorithm VecMap. We introduced dimensionality increment in each iteration of

the VecMap algorithm where the first iteration starts with a very low dimension

to find a better initial solution(Algorithm 2). We were able to obtain significant

improvements in the results by introducing this enhancement to the VecMap

model for both embedding models. To ensure the resulting improvement we ran

48

experiments for two different news sources NewsFirst and Hiru and then the

results were evaluated against the parallel dictionary.

Table 5.7: BLI Results For Comparison for Iterative Dim. Reduction

Word2Vec P@1(%) fastText P@1(%)
Algorithm NewsFirst Hiru NewsFirst Hiru

VecMap 33.75 29.58 31.77 30.63
Iterative dim. reduction with VecMap 35.77 31.21 34.96 32.44

As can be observed in Table 5.7, results were improved for both word2vec and

fastText embedding models for both news sources. Therefore, it can be concluded

that iterative dimensionality reduction improves the BLI results substantially

across multiple embedding models for comparable monolingual data.

5.2.5 Post-processing pretrained embeddings+Improved VecMap model

Table 5.8: BLI Results For NewsFirst data in all steps

Algorithm Word2Vec fastText
VecMap 33.75 31.77

Effective Dim. reduction+VecMap 33.86 32.02
Linear transformation+VecMap 34.87 35.12

Linear transformation+Effective Dim. reduction+VecMap 28.32 27.34
Effective Dim. reduction+Linear transformation+VecMap 29.01 28.46

Iterative dim. reduction with VecMap 35.77 34.96
Linear transformation+Iterative dim. reduction with VecMap 37.89 38.06

As the next step of our research, we combined the post-processing pretrained

embeddings with the enhanced VecMap algorithm to obtain better cross-lingual

word embeddings. Since the linear transformation approach gave us better re-

sults compared to effective dimensionality reduction, we only used linear trans-

formation as the primary post-processing method for pretrained embeddings. In

this step, we first post-processed the pretrained embeddings of both fastText

and word2vec embedding models for the hyperparameters that gave the best re-

sults when incorporated with the VecMap model. Hence hyper-parameter values

↵s = 0.15 and ↵t = �0.15 were used for word2vec embeddings while hyper-

parameter values ↵s = 0.15 and ↵t = 0.5 were used with fastText embeddings.

49

In this step, we first post-processed the embeddings and then applied the im-

proved VecMap algorithm with iterative dimensionality increment to the post-

processed fastText and word2vec embeddings. The experiments were conducted

for both Hiru and NewsFirst datasets. By incorporating these two techniques, we

were able to gain substantial improvement for fastText and word2vec embedding

models for both news sources used for the experiments when evaluated against

the parallel data dictionary. Hence it is evident that this approach can improve

the results of BLI substantially across different datasets and embedding models

(table 5.8).

5.3 Summary

We have conducted an extensive set of experiments to identify the factors that

affect BLI. We conducted experiments to find how the size and the nature of

the dataset, the type of the evaluation dictionary, and the type of the embed-

ding model used affect the results of BLI. Although existing research claims to

find a mapping between low-resource languages using non-comparable corpora by

applying the VecMap algorithm, we were unable to obtain a competitive result

for Sinhala and English languages when using completely unrelated monolingual

corpora. Results were improved drastically when used comparable corpora to

create the embedding models. Also, results were very low for the existing stan-

dard dictionary due to the lack of use of the terms in the dictionary in the actual

dataset. Also, it can be observed that the word2vec model was better when

finding translations for frequent words while the fastText model is better when

finding translations for rare terms.

We have also post-processed the pretrained embeddings using the techniques of

effective dimensionality reduction and linear transformation. Applying linear

transformation improved the results significantly in comparison to effective di-

mensionality reduction. Further, we improved the VecMap model by introducing

incremental dimensionality reduction. Finally, we combined the post-processing

of pretrained embeddings with the improved VecMap model to obtain even better

50

results.

51

Chapter 6

CONCLUSION AND FUTURE WORK

Existing research for BLI has been dominantly conducted on HRLs. Only a

handful of research was conducted for LRLs [53, 54, 55, 3]. None of the existing

research conducted a comprehensive analysis of the factors that affect the results

of BLI and scarcely any research focused on improving the existing approaches

for BLI.

In this research, we conducted an extensive set of experiments w.r.t the factors,

size, and the type of the dataset, type of the evaluation dictionary and the embed-

ding model used, and how these factors affect the results of BLI. We conducted

the experiments on the Sinhala-English low resource domain and used the exist-

ing robust VecMap model to obtain the cross-lingual word embeddings. Further-

more, we improved the obtained results by applying sophisticated post-processing

techniques linear transformation and effective dimensionality reduction on top of

pretrained embeddings. Additionally, we further improved the VecMap algorithm

by introducing a novel technique of incremental dimensionality reduction in each

iteration of the VecMap model. Finally, we further improved the results and in-

troduced a novel technique for BLI by incorporating post-processing of pretrained

embeddings with the improved VecMap algorithm.

It is evident that the size and the nature of the dataset, type of evaluation dic-

tionary and the embedding model highly impact the results. It is apparent from

the results that to obtain competitive results for LRLs similar to Sinhala dataset

needs to have a substantial amount of comparable data. Furthermore, as the

results for the BLI varied across different types of evaluation dictionaries used to

evaluate, it can be concluded that the type of evaluation dictionary used can in-

fluence the results of BLI. Moreover, results concluded that word2vec embedding

was able to find translation between frequent words whereas the fastText embed-

ding model performed better when it comes to rare terms due to the fastText

52

models’ capability to capture sub-wording information.

It was apparent that for LRLs such as Sinhala results of BLI can be significantly

improved by applying suitable post-processing techniques on top of pretrained

embeddings before obtaining cross-lingual word embeddings. Although, we were

able to improve the results of BLI using the two different post-processing ap-

proaches effective dimensionality reduction and linear transformation, we were

able to obtain substantial gains by applying the latter technique only. Also, as

the improved VecMap algorithm delivered notable improvement over the VecMap

algorithm across all the data when evaluated against different dictionaries it can

be concluded that starting the algorithm in a lower dimension to get a better ini-

tial mapping is quite beneficial. Ultimately combining multiple techniques such

as post-processing pre-trained embeddings with the modified VecMap algorithm

is proven to be expedient to obtain superior results in BLI.

In the future, we plan to further improve the model to accommodate morphology-

rich, high inflectional natures of LRLs similar to Sinhala. Furthermore, we are

intending to incorporate the results obtained by this research into a task-specific

downstream task such as Neural Machine Translation, Named Entity Recognition,

or sentiment analysis to improve the results of the entire task.

53

REFERENCES

[1] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-

tion of word representations in vector space. arXiv preprint arXiv:1301.3781,

2013.

[2] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. Exploiting similarities

among languages for machine translation. arXiv preprint arXiv:1309.4168,

2013.

[3] Anushika Liyanage, Surangika Ranathunga, and Sanath Jayasena. Bilingual

lexical induction for sinhala-english using cross lingual embedding spaces.

In 2021 Moratuwa Engineering Research Conference (MERCon), pages 579–

584. IEEE, 2021.

[4] Wikipedia contributors. Bilingual lexicon — Wikipedia, the free encyclope-

dia, 2019. [Online; accessed 22-March-2022].

[5] Nan Jiang. Lexical representation and development in a second language.

Applied linguistics, 21(1):47–77, 2000.

[6] Davide Turcato. Automatically creating bilingual lexicons for machine trans-

lation from bilingual text. arXiv preprint cmp-lg/9807010, 1998.

[7] Dhouha Bouamor, Nasredine Semmar, and Pierre Zweigenbaum. Automatic

construction of a multiword expressions bilingual lexicon: A statistical ma-

chine translation evaluation perspective. In Proceedings of the 3rd Workshop

on Cognitive Aspects of the Lexicon, pages 95–108, 2012.

[8] Ruotian Ma, Minlong Peng, Qi Zhang, and Xuanjing Huang. Simplify the

usage of lexicon in chinese ner. arXiv preprint arXiv:1908.05969, 2019.

[9] Ann Irvine and Chris Callison-Burch. A comprehensive analysis of bilingual

lexicon induction. Computational Linguistics, 43(2):273–310, 2017.

54

[10] Surangika Ranathunga, En-Shiun Annie Lee, Marjana Prifti Skenduli, Ravi

Shekhar, Mehreen Alam, and Rishemjit Kaur. Neural machine translation

for low-resource languages: A survey. arXiv preprint arXiv:2106.15115, 2021.

[11] Mikel Artetxe, Gorka Labaka, and Eneko Agirre. Learning bilingual word

embeddings with (almost) no bilingual data. In Proceedings of the 55th

Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 451–462, 2017.

[12] Yoav Goldberg and Graeme Hirst. Neural network methods in natural lan-

guage processing. morgan & claypool publishers(2017). 9781627052986 (zi-

tiert auf Seite 69).

[13] Sahar Ghannay, Benoit Favre, Yannick Esteve, and Nathalie Camelin. Word

embedding evaluation and combination. In Proceedings of the Tenth Interna-

tional Conference on Language Resources and Evaluation (LREC’16), pages

300–305, 2016.

[14] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer,

and Richard Harshman. Indexing by latent semantic analysis. Journal of

the American society for information science, 41(6):391–407, 1990.

[15] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.

Distributed representations of words and phrases and their compositional-

ity. In Advances in neural information processing systems, pages 3111–3119,

2013.

[16] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:

Global vectors for word representation. In Proceedings of the 2014 conference

on empirical methods in natural language processing (EMNLP), pages 1532–

1543, 2014.

[17] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. En-

riching word vectors with subword information. Transactions of the Associ-

ation for Computational Linguistics, 5:135–146, 2017.

55

[18] Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. Normalized word embed-

ding and orthogonal transform for bilingual word translation. In Proceedings

of the 2015 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, pages 1006–

1011, 2015.

[19] Peter H Schönemann. A generalized solution of the orthogonal procrustes

problem. Psychometrika, 31(1):1–10, 1966.

[20] Samuel L Smith, David HP Turban, Steven Hamblin, and Nils Y Hammerla.

Offline bilingual word vectors, orthogonal transformations and the inverted

softmax. arXiv preprint arXiv:1702.03859, 2017.

[21] Mikel Artetxe, Gorka Labaka, Inigo Lopez-Gazpio, and Eneko Agirre. Un-

covering divergent linguistic information in word embeddings with lessons for

intrinsic and extrinsic evaluation. arXiv preprint arXiv:1809.02094, 2018.

[22] Ivan Vulić, Anna Korhonen, and Goran Glavaš. Improving bilingual lexi-

con induction with unsupervised post-processing of monolingual word vector

spaces. In Proceedings of the 5th Workshop on Representation Learning for

NLP, pages 45–54, 2020.

[23] Vikas Raunak, Vivek Gupta, and Florian Metze. Effective dimensionality

reduction for word embeddings. In Proceedings of the 4th Workshop on Rep-

resentation Learning for NLP (RepL4NLP-2019), pages 235–243, 2019.

[24] Christopher M Biship. Pattern recognition and machine learning (informa-

tion science and statistics), 2007.

[25] Peter D Turney and Patrick Pantel. From frequency to meaning: Vector

space models of semantics. Journal of artificial intelligence research, 37:141–

188, 2010.

[26] Enrique Alfonseca, Massimiliano Ciaramita, and Keith Hall. Gazpacho and

summer rash: lexical relationships from temporal patterns of web search

56

queries. In Proceedings of the 2009 Conference on Empirical Methods in

Natural Language Processing, pages 1046–1055, 2009.

[27] Taylor Berg-Kirkpatrick and Dan Klein. Simple effective decipherment via

combinatorial optimization. In Proceedings of the 2011 Conference on Em-

pirical Methods in Natural Language Processing, pages 313–321, 2011.

[28] Alexandre Klementiev and Dan Roth. Weakly supervised named entity

transliteration and discovery from multilingual comparable corpora. In Pro-

ceedings of the 21st International Conference on Computational Linguistics

and 44th Annual Meeting of the Association for Computational Linguistics,

pages 817–824, 2006.

[29] Charles Schafer and David Yarowsky. Inducing translation lexicons via di-

verse similarity measures and bridge languages. In COLING-02: The 6th

Conference on Natural Language Learning 2002 (CoNLL-2002), 2002.

[30] Alexandre Klementiev, Ivan Titov, and Binod Bhattarai. Inducing crosslin-

gual distributed representations of words. In Proceedings of COLING 2012,

pages 1459–1474, 2012.

[31] Stephan Gouws and Anders Søgaard. Simple task-specific bilingual word

embeddings. In HLT-NAACL, pages 1386–1390, 2015.

[32] Omer Levy, Anders Søgaard, and Yoav Goldberg. A strong baseline for

learning cross-lingual word embeddings from sentence alignments. arXiv

preprint arXiv:1608.05426, 2016.

[33] Tianze Shi, Zhiyuan Liu, Yang Liu, and Maosong Sun. Learning cross-lingual

word embeddings via matrix co-factorization. In Proceedings of the 53rd

Annual Meeting of the Association for Computational Linguistics and the

7th International Joint Conference on Natural Language Processing (Volume

2: Short Papers), pages 567–572, 2015.

57

[34] Aitor Ormazabal, Mikel Artetxe, Gorka Labaka, Aitor Soroa, and Eneko

Agirre. Analyzing the limitations of cross-lingual word embedding mappings.

arXiv preprint arXiv:1906.05407, 2019.

[35] Liangchen Wei Zhi-Hong Deng. A variational autoencoding approach for

inducing cross-lingual word embeddings. 2017.

[36] Barun Patra, Joel Ruben Antony Moniz, Sarthak Garg, Matthew R Gormley,

and Graham Neubig. Bilingual lexicon induction with semi-supervision in

non-isometric embedding spaces. arXiv preprint arXiv:1908.06625, 2019.

[37] Mikel Artetxe, Gorka Labaka, and Eneko Agirre. Generalizing and improving

bilingual word embedding mappings with a multi-step framework of linear

transformations. In Thirty-second AAAI conference on artificial intelligence,

2018.

[38] Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic De-

noyer, and Hervé Jégou. Word translation without parallel data. arXiv

preprint arXiv:1710.04087, 2017.

[39] Meng Zhang, Yang Liu, Huanbo Luan, and Maosong Sun. Adversarial train-

ing for unsupervised bilingual lexicon induction. In Proceedings of the 55th

Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 1959–1970, 2017.

[40] Mladen Karan, Ivan Vulić, Anna Korhonen, and Goran Glavaš.

Classification-based self-learning for weakly supervised bilingual lexicon in-

duction. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, pages 6915–6922, 2020.

[41] Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris Dyer, Eduard Hovy,

and Noah A Smith. Retrofitting word vectors to semantic lexicons. arXiv

preprint arXiv:1411.4166, 2014.

[42] Nikola Mrkšić, Diarmuid O Séaghdha, Blaise Thomson, Milica Gašić, Lina

Rojas-Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen, and Steve

58

Young. Counter-fitting word vectors to linguistic constraints. arXiv preprint

arXiv:1603.00892, 2016.

[43] Kim Anh Nguyen, Sabine Schulte im Walde, and Ngoc Thang Vu.

Neural-based noise filtering from word embeddings. arXiv preprint

arXiv:1610.01874, 2016.

[44] Igor Labutov and Hod Lipson. Re-embedding words. In Proceedings of

the 51st Annual Meeting of the Association for Computational Linguistics

(Volume 2: Short Papers), pages 489–493, 2013.

[45] Sascha Rothe, Sebastian Ebert, and Hinrich Schütze. Ultradense word em-

beddings by orthogonal transformation. arXiv preprint arXiv:1602.07572,

2016.

[46] Jiaqi Mu, Suma Bhat, and Pramod Viswanath. All-but-the-top: Sim-

ple and effective postprocessing for word representations. arXiv preprint

arXiv:1702.01417, 2017.

[47] Takashi Wada, Tomoharu Iwata, Yuji Matsumoto, Timothy Baldwin, and

Jey Han Lau. Learning contextualised cross-lingual word embeddings and

alignments for extremely low-resource languages using parallel corpora.

arXiv preprint arXiv:2010.14649, 2020.

[48] Goran Glavaš and Ivan Vulić. Non-linear instance-based cross-lingual map-

ping for non-isomorphic embedding spaces. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, pages 7548–7555,

2020.

[49] MD Rajitha, LL Piyarathna, MMD Nayanajith, and S Surangika. Sinhala

and english document alignment using statistical machine translation. In

2020 20th International Conference on Advances in ICT for Emerging Re-

gions (ICTer), pages 29–34. IEEE, 2020.

59

[50] Aloka Fernando, Surangika Ranathunga, and Gihan Dias. Data augmen-

tation and terminology integration for domain-specific sinhala-english-tamil

statistical machine translation. arXiv preprint arXiv:2011.02821, 2020.

[51] Yanyang Li, Yingfeng Luo, Ye Lin, Quan Du, Huizhen Wang, Shujian Huang,

Tong Xiao, and Jingbo Zhu. A simple and effective approach to robust un-

supervised bilingual dictionary induction. arXiv preprint arXiv:2011.14874,

2020.

[52] Georgiana Dinu, Angeliki Lazaridou, and Marco Baroni. Improving zero-shot

learning by mitigating the hubness problem. arXiv preprint arXiv:1412.6568,

2014.

[53] Tasnim Mohiuddin, M Saiful Bari, and Shafiq Joty. Lnmap: Departures

from isomorphic assumption in bilingual lexicon induction through non-

linear mapping in latent space. arXiv preprint arXiv:2004.13889, 2020.

[54] Anders Søgaard, Sebastian Ruder, and Ivan Vulić. On the limitations of un-

supervised bilingual dictionary induction. arXiv preprint arXiv:1805.03620,

2018.

[55] Long Duong, Hiroshi Kanayama, Tengfei Ma, Steven Bird, and Trevor Cohn.

Learning crosslingual word embeddings without bilingual corpora. arXiv

preprint arXiv:1606.09403, 2016.

60

		2023-02-04T12:40:33+0530
	Surangika Ranathunga

