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ABSTRACT

Bilingual Lexicons are important resources appertaining to Natural Language

Processing (NLP) applications such as Neural Machine Translation and Named

Entity Recognition (NER). However, Low Resource Languages (LRLs) equivalent

to Sinhala lack such resources. Manually producing millions of word translations

between languages is exhaustive and almost impossible. An increasingly popular

approach to automatically create such resources is Bilingual Lexical Induction

(BLI).

We created the first-ever BLI model for English and Sinhala language pair using

the existing popular model VecMap. Currently, no prior work has conducted

a sufficient evaluation with respect to the factors, nature of the dataset, type of

embedding model used, or the type of evaluation dictionary used on BLI and how

these factors affect the results of BLI. We fill the gap by executing an extensive

set of experiments with regard to the aforementioned factors on BLI for Sinhala

and English in this thesis.

Furthermore, we enhance the pre-trained embeddings to cater to the application

by applying sophisticated post-processing approaches. Linear transformation and

effective dimensionality reduction are applied to the pre-trained embeddings be-

fore obtaining cross-lingual word embeddings between Sinhala and English by

applying VecMap. Furthermore, we have introduced dimensionality reduction to

the VecMap algorithm where the algorithm starts the first iteration from a low

dimension to initialize a better solution. Subsequently, the dimensionality of the

embeddings is increased in each iteration until embeddings reach the original di-

mension in the final iteration. We were able to improve the results considerably

by learning a better initial solution and hence an improved final solution. Finally,

we combined the post-processing step with the modified VecMap model to obtain

even better mapping for Sinhala-English language pair which in turn is applicable

in task-specific downstream systems to improve the results of the entire system.

Keywords: Sinhala; embedding spaces; embedding models; bilingual lexicon induction
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