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17 Abstract- In order to obtain maximum power output of a Wind Energy Conversion 
18 System (WECS), the rotor speed needs to be optimised for a particular wind speed. 
19 However, due to inherent inertia, the rotor of a WECS cannot react instantaneously 
20 according to wind speed variations. As a consequence, the performance of the system 
21 and consequently the wind energy conversion capability of the rotor are negatively 
22 affected. This study considers the use of a time series Adaptive Linear Prediction (ALP) 
23 technique as a means to improve the performance and conversion efficiency of wind 
24 turbines. The ALP technique is introduced as a real time control reference to improve 
25 optimal control of wind turbines. In this study, a wind turbine emulator is developed to 
26 evaluate the performance of the predictive control strategy. In this regard, the ALP 
27 reference control method was applied as a means to control the torque/speed of the 
28 emulator. The results show that the employment of a predictive technique increases 
29 energy yield by almost 5%. 
30
31 Keywords
32 Wind energy conversion systems; Wind turbine; Linear adaptive prediction; Power 
33 mapping technique; Wind speed sensor technique; Wind speed estimation.
34
35
36
37 1. Introduction
38 Growth in wind energy is at an unprecedented level. At the end of 2015 there was in 
39 excess of 433 GW of installed capacity (globally) [1], with wind energy supplying 3.7% 
40 of global electricity [2]. Indeed, the Global Wind Energy Council (GWEC) in their 2015 
41 annual update, reported that the average annual growth (year-on-year) in wind energy 
42 capacity is 22% since 2000 [1]. The International Energy Agency (IEA) further 
43 emphasise the potential for wind energy by suggesting that 15-18% of global electricity 
44 will come from wind power by 2050 [2]. The growing trends in wind energy technology 
45 are motivating researchers to work in this area with the aim of optimising the energy 
46 extraction form the wind and the injection of quality power into the grid [3]. This 
47 growth is partly due to the technological improvement of wind turbines, which has led 
48 to significant decrease of wind power cost, allowing the energy source to compete with 
49 conventional generation methods [4].
50
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51 Although the operational speed at which WECS generate can be fixed or variable, 
52 variable wind speed turbines – in attempting to maintain a constant rotational speed to 
53 wind speed ratio – offer the only means to maximise the energy extracted from the wind 
54 [5]. While any generator can operate at a fixed or variable speed [4], the permanent-
55 magnet synchronous generators (PMSG) have been found to be superior owing to their 
56 advantages of higher efficiency, higher power density, lower maintenance costs and 
57 better grid compatibility [6].  Wind speeds are continuously varying and although the 
58 rotor of a WECS is required to drive at an optimal rotor speed for a particular wind 
59 speed, it cannot be instantaneously changed due to the moment of inertia of the rotating 
60 parts. Therefore, the response of the rotor to wind speed variations affects the 
61 performance of the system. 
62
63 There are many different maximum power point tracking (MPPT) control strategies [3]. 
64 These range from optimising the relationships among various system parameters i.e. 
65 optimum relationship-based (ORB) control [3], to optimising torque through an optimal 
66 torque (OTC) control [4]. Others seek to maximise power efficiency (tip-speed-ratio 
67 (TSR) control), where the MPPT strategy is extremely reliant on the accuracy of the 
68 wind speed [7], whereas in the perturb & observe (P&O) / Hill-climb search (HCS) 
69 control strategy, the necessity of speed sensors is eliminated [8].
70
71 In this paper, time series linear predictions are considered as a means to improve the 
72 optimum control performance of wind turbines. Real time control parameters are 
73 adjusted to achieve the optimum operating point of the system by considering the future 
74 value of the control reference signals. Time series prediction through an adaptive linear 
75 prediction method is evaluated by using measured wind data is proposed in this regard. 
76 The introduction of predicted wind speed estimates facilitates a prediction (forecast) of 
77 the control reference point for power harnessing enhancement. Such an approach can 
78 be incorporated into any type of MPPT technique. The paper therefore, proposes 
79 possible energy harvesting improvements through an optimised wind sensor method, in 
80 conjunction with power or torque mapping techniques, which are commonly used for 
81 many commercial wind turbines already.
82
83 Wind speed-time series data typically exhibit autocorrelation, which can be defined as 
84 the degree of dependence on preceding values. Autocorrelated time series models are 
85 commonly used for the wind speed prediction [9] In an autocorrelated wind speed-time 
86 series, the value of wind speed in any one time step is strongly influenced by the values 
87 in previous time steps. Based on a number of historical data, pattern identification and 
88 parameter estimation, model checking are utilized to make a mathematical model of the 
89 time series data prediction[10]. Statistical models have been used for time series 
90 analysis and these models can be divided as follows: autoregressive models (AR), 
91 moving average models (MA), auto regressive moving average models (ARMA) and 
92 auto regressive integrated moving average model (ARIMA). The seasonal ARIMA 
93 model presents a better sensitivity to the prediction of wind speed. However, when the 
94 number of training vectors is increased for the ANN model, its performance would be 
95 improved [11].
96
97 The utilisation of artificial neural networks (ANN) offer promising techniques for 
98 predicting time series wind data [9]. Prediction performance of ANN is superior to the 
99 AR model and capable to use for multi-step prediction [12]. Alternatively, fuzzy logic 

100 control can be implemented. Fuzzy logic controllers such as the multivariable 
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101 predictive control (FMMPC) presented in [13] offer a methodology to satisfy the double 
102 objective of simultaneously regulating for both rotor speed and electrical power [13]. 
103 Other techniques include metaheuristic optimization techniques such as a fuzzy 
104 controller using particle swarm optimi sation [14]. Indeed, in the context of synergising 
105 techniques into control systems applicable to wind energy, the potential for ANN is 
106 enhanced through the application of fuzzy logic. In this regard and as reported by 
107 Sideratos and Hatziagyriou[14], satisfactory results can be derived through this 
108 combination. . 
109
110 The focus of this paper is to establish the potential for MPPT enhancement though the 
111 integration of a wind speed input reference model. In this regard, an Adaptive Linear 
112 Prediction methodology is employed. This method, as will be established in section 2, 
113 displays good characteristics in the context of turbulent wind conditions.
114
115 A wind turbine emulator is subsequently developed to evaluate the effectiveness of 
116 linear predictions for optimal controllability of small wind turbines using the ALP 
117 prediction algorithm. Digital Signal Processing (DSP) techniques were used to control 
118 the wind turbine emulator. A typical wind speed sensor method and in conjunction with 
119 power mapping through a wind speed sensorless method were also evaluated with and 
120 without time series prediction techniques. The results suggest that the proposed control 
121 reference point prediction methodology offers performance improvement possibilities 
122 for WECS. In the context of the methodology proposed in this paper, a 5% increase was 
123 achieved.
124
125 The structure of the paper is as follows. Section 2 discusses adaptive linear prediction 
126 as a methodology to derive time series predictions for wind speed and in this regard, a 
127 relevant methodology for real-time predictions is chosen. Section 3 outlines the 
128 characteristics of a PM WECS system followed by a study in section 4 that incorporates 
129 a comparative analysis of both the wind speed sensor and a power torque mapping 
130 consideration with and without linear wind speed predictions. Section 5 explains how 
131 the system was compiled experimentally with sections 6 and 7 detailing the results and 
132 acquired conclusions respectively.
133
134 2. Adaptive linear prediction
135 If time series data of a signal exhibits autocorrelation, an adaptive filter in prediction 
136 mode can be exploited for time series linear predictions. In Figure 1, the input signal, 
137 delayed by  time unit, is fed into an adaptive filter. The non-delayed input serves as 
138 the desired signal for this adaptive filter. An error signal, e(n), is computed as 
139 e(n)=d(n)–y(n), which measures the difference between the output of the adaptive filter 
140 [y(n)] and the desired signal [d(n)]. The filter weights adapts and converges to produce 
141 a best least-squares estimation of the delayed signal to minimize the error signal[e(n)] 
142 [15].
143
144 In this study the coefficients [W(n)] of the adaptive filter in predictive mode are also 
145 estimated by the Recursive Least Squares (RLS) algorithm, which is more suitable for 
146 real-time applications [16]. The optimal ‘weightings’ are copied into a “slave filter” in 
147 which input is non-delayed signal and output is a best least squares prediction of the 
148 input  time units into the future.
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150 Figure 1: The Adaptive linear prediction technique

151
152 Thus in the context of this paper, an ALP technique through an RLS methodology 
153 (ALP-RLS) is employed as the control parameter for MPPT. The selected parameters 
154 for the ALP-RLS filter in predictive mode include, a filter order of 8, a forgetting factor 
155 of 1 and initial value of filter weightings as 0, where the forgetting factor (0 to 1) 
156 specifies how quickly the filter "forgets" a past sample [15]. The measured (real) wind 
157 data are used to investigate the effectiveness of the ALP-RLS predictions of wind speed 
158 data. In order to measure the accuracy of predictions, the root mean square error 
159 (RMSE) was used. 
160

161 RMSE = (1)
1
𝑛∑𝑛

𝑖 = 1(𝑣𝑖 ‒ 𝑣𝑖𝑝)2

162
163 where n is the total number of data points (5000), are actual values of wind 𝑣𝑖
164 speeds and  are the predicted values for . 𝑣𝑖𝑝 𝑣𝑖
165
166 The root mean square error (RMSE) m/s of predictions for 1s logging time is 
167 considered in terms of actual wind data collected at Blyth, UK is 0.345. Figure 2 
168 illustrates a box-plot comparison between the recorded wind speed and the ALP-RLS 
169 derived predictions. The RMSE of the ALP-RLS prediction methodology is 0.3458 m/s 
170 or 14% of the mean wind speed observed over the sample (2.44 m/s) 
171
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172
173 Figure 2: ALP-RLS box-plot comparison in terms of recorded wind speed sample

174
175 3. Wind Rotor Model
176
177 3.1 Aerodynamic characteristics of the wind rotor

178 Based on the wind turbine aerodynamic behaviour, the wind rotor converts only a 
179 portion of the kinetic energy contained in the wind [17]; that is:
180

181               (2)pra CvRP  32

2
1 

182
183 where Pa is the captured power by the wind rotor, Rr is the radius of the wind 
184 rotor,  is the air density and v is the speed of the incident wind. 
185
186 The proportion of the useful power is defined by the power coefficient Cp, which for a 
187 given wind turbine rotor, depends on the pitch angle of the wind rotor blades and on the 
188 tip speed ratio (); defined as:
189

190 (3)
v
Rr




191
192 where  is the rotational speed of the rotor. 
193
194 The wind rotor aerodynamic characteristics are represented by the Cp- relationship. In 
195 the context of variable speed wind turbines; when wind speed varies, the wind turbine 
196 rotor speed should be adjusted proportionally to maintain optimum tip speed ratio for 
197 maximum power extraction. Using equation (2) the aerodynamic torque (Ta) developed 
198 by a wind rotor can be obtained as follows:
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199   (4)


 p
ra

C
vRT  23

2
1

200

201  where (5)tra CvRT .....
2
1 23


p

t

C
C 

202
203 where Ct is the torque coefficient and Ta is the Aerodynamic torque of wind 
204 rotor. The Cp & Ct -   relationship of the wind turbine, which is considered in this 
205 study, is shown in Figure 3. 
206
207 For wind turbine-generator systems with a gearbox, the aerodynamic torque can be 
208 expressed as , where K is the gear ratio of the gearbox.aKT
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225 Figure 3: Cp & Ct -  relationship of the wind turbine
226
227 3.2 Electromagnetic torque of the generator 

228 Generally, three phase permanent magnet generators (PMGs) are used for small scale 
229 wind turbines. In this system, a three-phase bridge rectifier is used to convert a.c. to d.c. 
230 and it is used for battery charging or inverting again to a.c. for grid connection. 
231 Configuration of the small wind power system is shown in Figure 4. Equivalent d.c. 
232 circuit for a PMG and a three phase rectifier is shown in Figure 5; adapted from [18]. 
233
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236
237 Figure 4: Configuration of the small wind power system
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252 Figure 5: Equivalent d.c. circuit of a PMG
253
254 For an equivalent d.c. circuit of a PMG (Figure 5) as it is incorporated with a three 
255 phase rectifier, the effective armature resistance (Rdc) is approximately twice the phase 
256 resistance [18]. i.e.
257
258            (6)phdc RR 2
259
260 The overlap resistance is given by [18],
261

262           (7)phsover LR 

3



263
264 where , Lph is the phase inductance, s is the rotational speed of  ps 
265 electric field and p is the number of pole pairs.
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266 Then, the wind turbine terminal d.c. voltage is;
267
268           (8) overdcdd RRIEV  0

269
270 Let overdc RRR 
271
272 Therefore; RIVE dd 0

273
274 ,      as           (9)RIVk dd  kE 0

275
276 Torque is derived by electric power at the armature for loss-less operation ( ) dE IEP 0
277 and rotational speed ( ).
278

279           (10)d
ddE

e IkIkIEPT 







0

280
281 The generator torque is a function of generator current (Id), magnetic flux linkage and 
282 number of pole pairs [19]. For a particular generator is a fixed parameter depending k
283 on magnetic flux linkage and number of pole pairs. Therefore electromagnetic torque 
284 of a generator (Te) can be varied by controlling the current. 
285

286 4. Optimal Control of WECSs
287

288 4.1 Predictive control of wind turbines

289 According to wind speed variations, a quick response of wind turbine rotor speed is not 
290 practicable/possible due to the moment of inertia of rotating parts. Therefore exact 
291 control is unrealistic with control reference point estimation by real time parameters. If 
292 future reference wind turbine rotor speed is predicted, appropriate rate of change of 
293 wind rotor speed ( ) can be established to achieve an optimal operating point after dtd
294 the predicted time step. The predictive control criterion is presented in Figure 6.
295

296

297

298

299

300

301

302

303

304 Figure 6: Predictive control criterion
305
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306 According to Figure 5, the required rate of change of the rotor rotational speed ( ) t
307 to achieve the optimal operating point after predicted time step (t) can be derived as 
308 follows;

309            (11)
tt

tttref






  )()(


 

310 Torque interaction of the wind rotor and the generator can be expressed as;

311            (12)fae TJ
dt
dKTT 


312
313 where J is momentum of inertia of rotating parts, Tf is torque due to friction 
314 losses.
315
316 The electromagnetic torque of a generator (Te) is controllable. Aerodynamic torque of 
317 the wind rotor (Ta) and torque due to friction (Tf) depend on uncontrollable external 
318 parameters (as well as; Tf << Ta and Tf << Te). Therefore the rate of change of rotational 
319 speed ( ) can be controlled by varying electromagnetic torque of the generator (Te) dtd
320 and it is expressed as follows;
321

322            (13)
J

TTKT
dt
d fea 




323

324 The response time of rotor speed variation (from 1 to 2);

325                      (14) 


2

10





d
TTKT

Jdtt
fea

t

326
327 The required maximum time ahead prediction is dependent on the response time of the 
328 system. However prediction error will increase with size of the time step [20]. In this 
329 study prediction time step is lower than the response time of the system. If prediction 
330 time step of reference is more than response time of the system, optimal control will 
331 not be realised.
332
333
334 4.2 Control strategies

335 Different types of power electronic converter topologies are available for wind turbines 
336 and these implement different control scheme optimality [21]. The optimum operating 
337 point of a wind turbine system is usually determined in order to achieve the highest 
338 aerodynamic efficiency of the wind rotor. Generally, a controller that employs a wind 
339 speed sensor (or in some cases, sensor-less control) is used to control the wind turbine. 
340 In systems that employ wind speed sensors, the wind sensor provides the turbine speed 
341 reference to the controller. The reference control point is evaluated by using equations 
342 (6), (7) and Cp- curve (see Figure 3). This reference is compared with the actual turbine 
343 speed. A control diagram of wind speed sensor method is shown in Figure 7. A PI 
344 controller is used for this comparison study.  Gains of the PI controller were manually 
345 adjusted by considering Zieger-Nichols PI tuning rules for step change of reference 
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346 rotational speed[22]. For the PI controller, selected proportional gain (kp) is 0.052 and 
347 integral gain (ki) is 0.324.
348
349 In the sensor-less control technique, anemometry is not employed to provide the wind 
350 speed information; hence, it is essential to estimate the wind speed by using 
351 predetermined system characteristics. At steady state ( ) and  wind 0dtd ae TT 
352 speed can be estimated by the generator outputs. Predetermined power output in terms 
353 of output d.c. voltage curves are correlated with corresponding wind speed values.  This 
354 can be described by equations (9), (13), (14) and the Ct - curve (see Figure 4). 
355 Generally, the generator speed (or output d.c. voltage) and power (or torque) mapping 
356 techniques are used to estimate the reference control point [23]. At steady state, power 
357 output versus output d.c. voltage curves of the wind turbine are presented in Figure 8. 
358 In the power mapping method, estimated control reference is compared with the 
359 measured parameter.
360
361 The control diagram of power or torque mapping method is shown in Figure 9. For this 
362 paper, a comparative study was performed to evaluate performances of the wind speed 
363 sensor method and the power mapping method with and without linear predictions. Test 
364 results are presented in the section 6. 
365
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369 Figure 7: Control diagram of wind speed sensor method

370
371
372
373
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380

381 5. Experimental Setup
382
383 5.1 The Wind turbine emulator
384 The wind turbine emulator developed in this study is a prime mover (shunt motor), 
385 which has the torque-speed characteristics of a real wind rotor and driven by time series 
386 wind speed data. The prime mover is coupled with a suitable generator to represent a 
387 WECS. A wind turbine emulator was introduced in this study to evaluate and compare 
388 the performance of different control strategies of WECSs. This is necessary, since the 
389 performance of a real wind turbine is subjected to variable wind conditions. Therefore, 
390 it is more difficult to carry out in practice. The performance comparisons of each control 
391 system were evaluated for the same time series wind speed data set under the same wind 
392 condition, which were supplied to the wind turbine emulator. Real time torque and 
393 rotational speed measurements of the system are required for controlling the prime 



ACCEPTED MANUSCRIPT

12

394 mover according to the pre-loaded real wind rotor characteristics and wind speed data. 
395 In addition, this allows control of the rotational speed of a d.c. shunt motor by an 
396 external control signal. This system was adapted as a real time wind turbine emulator 
397 with the help of Digital Signal Processing (DSP) techniques based on a dSPACE 
398 DS1103 PPC control and data acquisition board [24].  The wind turbine emulator was 
399 operated with a 1s logging time of measured wind speed data to imitate a real situation. 
400 The effects of coning and flapping of the rotor blades are assumed to be negligible and 
401 hence were not considered in this wind turbine emulator. Also for the analysis 
402 considered here, the tower shadow effect is negligible [25][26]. As this study is carried 
403 out for a comparison work based on small-scale WECS (SS-WECSs), the effects due 
404 to the tower shadow and cnning & flapping deformation of the wind rotor blades can 
405 be ignored. Normally in SS-WECSs, the wind rotor is directly coupled to the generator 
406 by a short shaft. The power transmission drive train configuration of SS-WECSs is 
407 similar to the drive train of the motor-generator set used in the proposed emulator and 
408 then drive trains are not required to be separately model by this wind turbine emulator.
409
410 In this research study, the model reference control criterion is proposed to control the 
411 emulator[26]. The Reference model is the mathematical model of the wind rotor and 
412 the plant model is the “Feedback” Torque & Speed control module [27]. As non-linear 
413 characteristics of the “Feedback” control module, the Nonlinear Autoregressive 
414 Moving Average (NARAM) model [28] is introduced to characterize the integrated 
415 system of the “Feedback” Torque & Speed Control module and the d.c. shunt motor.
416
417 5.2 Model Reference Control
418 A d.c. shunt motor is connected to the “Feedback” Torque & Speed control module, 
419 which allows the rotational speed to be controlled by an external signal. The model 
420 reference control strategy was used to control the d.c. shunt motor through the 
421 “Feedback” Torque & Speed control module. The reference model (implanted through 
422 the digital signal processing (DSP) board) calculates the required output reference of 
423 the plant according the emulated wind rotor characteristics. The model reference 
424 controller evaluates a suitable plant input based on the plant model with a feedback 
425 loop. The plant model therefore represents the plant input and output relationship. The 
426 concept of the model reference control strategy is presented in Figure 10 [29], with 
427 Figure 14 providing the context of where the feedback resides in the overall control 
428 strategy. In this system, the reference model is the wind rotor whilst the plant model is 
429 the d.c. shunt motor incorporated with the Torque & Speed control module. A 
430 mathematical model of the wind rotor was used as the reference model. Modelling of 
431 the “Feedback” Torque & Speed control module proved to be difficult to develop as 
432 parameters and specifications are unknown. Therefore, an empirical model, which is 
433 represented by an artificial neural network model (trained by the experimental data), of 
434 the d.c. shunt motor and the “Feedback” Torque & Speed control module was 
435 considered to represent the plant model of this system. 
436
437
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440 Figure 10: Concept of the model reference control strategy
441
442 The aerodynamic torque delivered by the wind rotor is described by equation (7). The 
443 dynamic aerodynamic torque is derived by applying a lead-lag filter transfer function 
444 to the static aerodynamic torque [30].
445
446 Rate of change of the rotational speed ( ) of the wind rotor can be expressed by dtd
447 considering the momentum of inertia of the wind rotor and torque interactions in the 
448 time domain. Therefore, real time reference rotational speed (ref) can be determined 
449 by integrating the rate of change of the rotational speed ( ) with relevant initial dtd
450 conditions.
451
452 Torque interactions of the wind rotor and the generator is described by the relationship 
453 of the aerodynamic torque developed by the wind rotor (Ta), the electromagnetic torque 
454 of the generator (Te), the torque due to angular acceleration ( ) and the frictional J
455 torque (Tf). 
456
457        (15)fea TTJT  .
458 The rotational speed at a time “t” is subsequently provided as (by integrating equation 
459 14);

460         (16) 






 


t
fea

ref dt
J

TTT

0
.

461
462 where J is the momentum of inertia of rotating parts, Ta is the aerodynamic 
463 torque by the wind rotor, Te is the electromagnetic torque of generator and Tf is the 
464 torque due to friction losses
465
466 The real time rotational speed and shaft torque are used to evaluate the reference 
467 rotational speed(s) for a given time series wind speed data. The reference wind rotor 
468 model during dynamic state is shown in Figure 11. 
469 The wind rotor size for the wind turbine emulator was selected based on the maximum 
470 wind speed and the rating of the “Feedback” d.c. shunt motor (200W). The d.c. shunt 
471 motor should be capable to imitate the wind rotor by delivering the relevant power for 
472 the associated dynamic state ( ) and given wind speed.dtd
473
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476
477 Figure 11: The wind rotor reference model
478
479 The “Feedback” Torque & Speed Control module operates in speed control mode and 
480 this allows for demanding required rotational speeds by an external control input (0-
481 10V). The real time rotational speed and torque of the d.c. shunt motor can be measured 
482 by two output signals (0-10V) from the “Feedback” Torque & Speed Control module. 
483 These output signals were calibrated with a standard tachometer and a torque meter. 
484 The measured rotational speed and torque value versus the output signal voltage are 
485 shown in Figure 12 and 13 respectively.  
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488 Figure 12: Rotational speed versus Voltage
489
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491
492 Figure 13: Torque versus Voltage
493
494 It can be noted that the measured values of speed and torque are fairly linear with the 
495 output voltage signals. The least square errors of measured data were calculated for 
496 curve fittings of each data set, which are represented by the linear relationships of 
497 rotational speeds and torques with measured voltage. These linear relationships were 
498 used to measure real time rotational speeds and torque values of the system by the 
499 output voltage signals of the “Feedback” Torque & Speed Control module. 
500
501 The rotational speed is acquired by varying the external control voltage signal according 
502 to the performance of the wind turbine for different load conditions and for particular 
503 time series wind speed data. To evaluate the plant model performance, time series 
504 rotational speed and external control voltage data of the system were collected with 
505 0.001s sampling time through the DSP board. The input/output (I/O) unit of the 
506 dSPACE DS1103 board is a set of on-board peripherals that includes digital to analogue 
507 (DAC) channels and analogue to digital (ADC) channels [24]. Subsequently, the DSP 
508 unit of the dSPACE DS1103 board can communicate with an external analogue system 
509 by using the DAC and ADC facilities of The I/O unit. 
510
511 According to the collected data, external control input voltages (Vc) are not linear with 
512 demanded rotational speeds at dynamic condition ( & ) and hence 0dtd 0dtdTe

513 this characteristic cannot be represented by a linear model. Therefore a nonlinear 
514 control technique is required to implement control of the d.c. shunt motor according to 
515 the reference model. The Nonlinear Autoregressive Moving Average (NARMA) model, 
516 which was introduced by Narendra and Mukhopadhyay, can be used to represent the 
517 input and output  characteristics of a nonlinear system [31]. The classical PID controller 
518 cannot be used effectively since it is based on linear system theory. To overcome this 
519 problem, a NARMA-L2 Controller was designed and implemented in real time [32] for 
520 the research presented here. An approximate NARAM-L2 model was used to represent 
521 the operation of the integrated system of the “Feedback” Torque & Speed Control 
522 module and the d.c shunt motor. The NARMA-L2 controller transforms nonlinear 
523 system dynamics into linear dynamics by cancelling the nonlinearities and this can be 
524 simply accomplished by Neural Network model [33]. The neural network was trained 
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525 offline in batch form by back-propagation. The measured external control input voltage 
526 (Vc) values for each rotational speed () value of the d.c shunt motor and for different 
527 load and  conditions, which are consistent with real wind speed variations, were dtd
528 used for training the neural network. The Levenberg-Marquardt algorithm was used to 
529 train this network by using 40000 data sets, which were collected by using the dSPACE 
530 data acquisition system [34].  The NARMA-L2 model is represented as follows; 
531

532              
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533 (17)
534
535 Functions “f” and “g” are estimated by using the neural network. 
536 Using the NARMA-L2 model, the control voltage signal can be obtained as;
537

538                       (18)
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539
540 where ref(k+d) is the reference signal to be tracked. Vc(k+1) is the plant 
541 (“Feedback” system) input, (k) is the plant output. 
542
543 The NARMA-L2 neural network controller shown in Figure 14, provides the control 
544 input signal Vc to the “Feedback” Torque & Speed Control module. In this control 
545 system, the control reference rotational speed (ref) is estimated by the reference model. 
546 The NARMA-L2 controller determines the control input (Vc) by considering Tapped 
547 Delayed Values (TDV) of real time rotational speed () and control input (Vc). In this 
548 process, the output of the system () follows the control reference (ref) [35]. 
549
550 The parameters for system identification are shown in Table 1. 
551
552
553 Table 1: NARMA-L2 neural network controller system identification parameters
554

Parameters values
Input range (Vc) [0, 6] V
Sample time 0.001s
Delayed input (m) 25
Delayed output (n) 25
Hidden layer size 15

555

556 5.3 Digital Signal Processing (DSP) Control Techniques

557 The wind turbine emulator was implemented with a DSP control & data acquisition 
558 board. The reference model and the plant model incorporated with the NARMA-L2 
559 model reference controller were performed in the dSPACE environment (which is 
560 linked to a computer). All control models were developed in SIMULINK and then 
561 embedded system models were rebuilt in the dSPACE environment (by using the real 
562 time workshop option in SIMULINK) for real time operation. Real time rotational 
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563 speed and shaft torques time series data of the system should be acquired in order to 
564 estimate the wind turbine emulator control signal Vc. Therefore, “Speed-out” and 
565 “Torque-out” facilities of the “Feedback” Torque & Speed Control module were used 
566 to get real time rotational speed and shaft torque values and these time series data were 
567 processed by the DSP board. The output signals of the “Feedback” Torque & Speed 
568 Control module are ‘noisy’ and they could not be directly used to control the system. 
569 Therefore, the high frequency noise components of the signals were removed by using 
570 a low-pass digital filter, developed for this purpose by using MATLAB Digital Signal 
571 Processing tool box. 
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574
575 Figure 14: NARMA-L2 neural network d.c. shunt motor controller
576
577 5.4 Validation of the Model Reference Controller
578 For proper operation of the wind turbine emulator, the NARMA-L2 controller should 
579 estimate the control signal (Vc) for controlling the system output to follow the control 
580 reference. In this control strategy, the reference model estimates the control reference 
581 signal (Vc) according to the mathematical model of the wind rotor. To evaluate the 
582 performance of the model reference NARMA-L2 controller, the system output 
583 parameters are compared with the control reference values, which are calculated for the 
584 wind rotor mathematical model. In the proposed wind turbine emulator, the rotational 
585 speed is the control parameter, which is evaluated in accordance with the given wind 
586 speed variations and system torque values. Therefore the control error can be evaluated 
587 by the difference of the calculated control reference and the measured real value (ref -
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588 ). The validation results are presented in Figure 15 and the validation results show 
589 that the maximum rotational speed control error is +/-1.2 rad/s. 
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591 Figure 15: Validation results of the wind turbine emulator
592
593 5.5 Test rig
594 The experimental setup was based on a wind turbine emulator coupled to a three-phase 
595 permanent magnet generator. The wind turbine emulator is a prime mover (d.c. motor), 
596 which follows output torque-speed characteristics of a real wind rotor for given time 
597 series wind speed data. A load controller of the generator is implemented for maximum 
598 power point tracking of the WECS.  In this experimental setup, the d.c. motor and power 
599 output of the generator were separately controlled by two independent digital control 
600 modules. The d.c. motor was controlled as a wind turbine emulator according to given 
601 time series real wind data. Measured wind speed values with 1 second logging time data 
602 were used for the test rig. Power output of the generator was controlled by considering 
603 each optimum control strategy. In this test rig, a single dSPACE control board 
604 (DS1103), which is a single-board system with real-time processor and comprehensive 
605 I/O (dSPACE Inc) [29], was utilised to simultaneously perform both d.c. motor and 
606 generator control systems. The dSPACE control board can be used with the Real-Time 
607 Interface (RTI) of the MATLAB/Simulink® block diagram environment. The wind 
608 turbine emulator/generator test rig is shown in Figure 16 The Torque & Speed Control 
609 module was directly connected to the dSPACE I/O control board as voltage limits of 
610 the input and output signals are compatible. 
611
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613 Figure 16: Test rig configuration
614
615 The three phase a.c. output of the generator was converted to d.c. by using a full wave 
616 bridge rectifier. The d.c. voltage and current values were measured by using a voltage 
617 sensor (N2772A 20 MHz Differential probe) and a current transducer (HY5-P). These 
618 two signals were fed to the dSPACE control board by considering calibrated gain 
619 parameters of the sensors. The electrical load on the generator was controlled by 
620 varying the duty cycle ratio (PWM) of the d.c.-d.c. converter (see Figures 5 and 11) 
621 [36]. The PWM signal was generated through the dSPACE control board. The host 
622 computer was used to build the Simulink control models and linked for Real-Time 
623 Interface (RTI) with the dSPACE control board.  
624
625 The wind turbine emulator specifications are provided in Table 2;
626
627 Table 2: Wind turbine emulator specifications as utilised in the test-rig
628

Wind Rotor Generator
Parameters values Parameters values
Radius of the wind rotor (R) 0.7 m Phase resistance (Rph) 35.5 
Number of blades 2 Phase inductance (Lph) 0.080987 H
Moment of inertia of rotating 
parts (J) 2 kg.m2 k’ (as described in equations 

(12) and (13)) 2.1

629

630
631 6. Experimental Results 
632 The wind turbine emulator was used to evaluate the effectiveness of the time series 
633 linear prediction for optimal control of wind turbines. This is necessary since it is more 
634 difficult (if not impossible) to carry out an appropriate comparative study of the 
635 performance of a real wind turbine subjected to variable wind conditions. The wind 
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636 turbine emulator was operated with a 1 second logging time measured wind speed data 
637 to imitate real conditions with effects of momentum of inertial of the rotating part of 
638 the WECS. The effects of coning and flapping of the rotor blades are assumed to be 
639 negligible and hence were not considered in this study. Also for small scale wind 
640 turbines, the tower shadow effect is negligible [25][26] and the wind rotor is directly 
641 coupled to the generator by a short shaft. Thus the power transmission drive train 
642 configuration of WECSs is similar to the drive train of the motor-generator set used in 
643 the proposed emulator.
644
645 For comparison, the performance of each control system was evaluated for the same 
646 time series wind speed data set (same wind condition), which can be employed to the 
647 wind turbine emulator. 
648

649 The DSP board-1103 was used to control the duty cycle of the d.c.- d.c. converter and 
650 therefore the loading on the generator. The loading is controlled by considering the 
651 wind speed sensor method and the power mapping control method with and without 
652 linear predictions of wind speed. Each system was emulated for measured (real) wind 
653 data. The energy extraction for each method - over 2500 seconds - are presented in 
654 Table 3. It is evident that the energy yield from a wind energy conversion system is 
655 increased by almost 5% with the use of linear prediction techniques.  
656 Table 3: Energy extraction
657

wind speed sensor 
control method (J)

Power mapping 
control method (J)

Extracted energy without prediction 121478.7 117371.3
Extracted energy with prediction 127333.9 121771.8
Increase in energy yield % 4.82% 3.75%

658

659 7. Conclusions
660 As a consequence of inertia, the rotational speed of a wind rotor cannot be changed 
661 instantaneously. By predicting wind speeds at time-ahead time intervals, the prediction 
662 of a wind rotor rotational speed control reference facilitates system control to acquire 
663 optimal maximum power operating point. Wind speed can be predicted with reasonable 
664 accuracy based on historical time series data. Experimental tests conducted using a 
665 WECS emulator showed that energy capture of WECSs can be improved by predicting 
666 the control reference and this can increase the energy yield by almost 5%. 
667
668 The rotational speed of a wind rotor is controlled by varying the restoring torque of the 
669 generator (Te), which is proportional to the generator current (Id). Some physical 
670 limitations are identified to control the system in acquiring the optimal rotational speed 
671 for particular wind speed value.  Even though the control reference is accurately 
672 predicted, the variation of rotational speed ( ) is limited by rating capacity of the dtd
673 generator current (Id) and due to limitations of the structural strength of the wind 
674 turbine.
675
676 The experimental results obtained in this study show that the performance of the wind 
677 sensor method is better than the power mapping wind sensorless method. This is 
678 because in the power mapping technique, it is difficult to estimate the relevant control 
679 reference at dynamic state ( ) by the predetermined system characteristics. 0dtd
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680 However, in practice it is difficult to accurately measure the wind speed by an 
681 anemometer installed close to the wind turbine, as the wind turbine experience different 
682 forces due to wake rotation.    
683
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