DEVELOPMENT OF A GUIDELINE TO DETERMINE STRUCTURAL CAPACITY OF DEMOLITION WASTE AS A ROAD CONSTRUCTION MATERIAL

V.W.P.JAYASOORIYA

(08-8017)

University of Moratuwa, Sri Lanka.

Electronic Theses & Dissertations

Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of

Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science

Department of Civil Engineering

University of Moratuwa Sri Lanka

January 2011

DECLARATION BY CANDIDATE

"I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text"

Date: 30th November 2010

V.W.P.Jayasooriya

Department of Civil Engineering

University of Moratuwa University of Moratuwa, Sri Lanka.

i

DECLARATION BY SUPERVISOR

"I have supervised and accepted this thesis for the submission of the degree"

Date:

Dr. W.K.Mampearachchi

Department of Civil Engineering

University of Moratuwa

DEDICATION

To My Dear

Father, Mother and to my wife Imesha

For their continuous dedication and encouragement for my advancement

ACKNOWLEDGEMENT

I wish to thank a few people for aiding in bringing this research to completion. I gratefully

acknowledge my supervisor, Dr. W.K.Mampearachchi, for giving me the opportunity to

undertake this research study and providing valuable advice and support throughout the

research period. I would like to acknowledge and appreciate the advice given by Professor

J.M.S.J Bandara, coordinator of my research and Dr (Mrs). H.L.D.M. A. Judith, Road

Development Authority, Sri Lanka.

Sincere gratitude is extended to particularly to Prof. R. Rameezdeen, for granting necessary

funds from European Union for this study. Fellow students Mrs. J.K.U.Gayani and Mr. W.P.H

Gunarathne helped collect data and offered suggestions for improving this manuscript.

The support has given by Prof.W.P.S. Dias (Former Head, Department of Civil Engineering) is

acknowledged.

I owe a very special gratitude to research students at the Transportation Engineering Division

of the Department of Civil Engineering, University of Moratuwa for giving me the support

throughout the research. University of Moratuwa, Sri Lanka.

Electronic Theses & Dissertations

I would like to take this opportunity to extend my heartfelt appreciation to all the academic and

non academic staff of the University of Moratuwa, who has assisted me in numerous occasions.

V.W.P.Jayasooriya

İν

ABSTRACT

The use of demolition waste as pavement base material is a promising but unproven technique for road rehabilitation and construction. A survey was conducted by Building Economics Department of university of Moratuwa found that demolition waste is infrequently used in this application due primarily to a lack of practical knowledge about the engineering properties of the material. Therefore, this research was aimed at evaluating the physical properties, strength parameters, and durability characteristics of demolition waste to use as pavement base material.

The study included extensive laboratory and prototype model testing. Laboratory tests included flakiness index value, elongation index, aggregate impact value, Los Angeles abrasion value test, California bearing ratio, unconfined compressive strength and durability evaluations. Prototype modeling was utilized to compare demolition waste with respect to general base materials. It included a plate load _test and dynamic cone penetrometer. The prototype model demonstrated that the demolition waste base layer was susceptible to stiffness changes due primarily to changes in moisture.

Prototype model results have been verified using 'Everstress' back-calculation software and it can be shown that the layer coefficient of CCM is equivalent to 0.134. And also this material shows a very high variability with respect to conventional base materials i.e. DGAB. Therefore it is recommended to use this material as a base material for a traffic load of 20kN or less. And it will perform a strong correlation as given in design charts & tables.

Finally it was possible to evaluate a structural capacity of demolition waste and develop a design chart to replace dense graded aggregate base course from demolition waste base layer for construction of roads. Therefore it is recommended to introduce demolition waste material instead of conventional base material based on the developed design guidelines.

TABLE OF CONTENTS

DECLARATION BY CANDIDATE	I
DECLARATION BY SUPERVISOR	II
DEDICATION	III
ACKNOWLEDGEMENT	IV
ABSTRACT	V
TABLE OF CONTENTS	VI
LIST OF FIGURES	IX
LIST OF TABLES	XI
LIST OF ACRONYMS	XII
CHAPTER 1 University of Moratuwa, Sri Lanka.	
INTRODUCTION Electronic Theses & Dissertations	
www.lib.mrt.ac.lk 1.1 GENERAL	1
1.2 OBJECTIVES	
1.3 SIGNIFICANCE OF THE RESEARCH	
1.4 THESIS OVERVIEW	
CHAPTER 2	
LITERATURE REVIEW	5
2.1 INTRODUCTION.	5
2.2 CONSTRUCTION & DEMOLITION (C&D) WASTE	5
2.2.1 CONSTRUCTION (PROCESS) WASTE	5
2.2.2 PROPERTIES OF PROCESS WASTE	6
2.2.3 DEMOLITION WASTE	8
2.2.4 DEMOLITION METHODS	8
2.2.5 PROPERTIES OF DEMOLITION WASTE IN SRI LANKA	10

2.3 CONSTRUCTION & DEMOLITION MATERIAL APPLICATIONS	14
2.4 QUALITY CONTROL REQUIREMENT	16
2.5 SUMMARY	17
CHAPTER 3	
EXPERIMENTAL INVESTIGATIONS	18
3.1 INTRODUCTION	18
3.2 LABORATORY EXPERIMENTS	18
3.2.1 CHARACTERIZATION TESTING ON PROCESS WASTE	18
3.2.2 CHARACTERIZATION OF PROCESS WASTE	22
3.2.3 STRENGTH TESTING	22
3.2.4 TESTING ON DEMOLITION WASTE	26
3.2.5 GRADATION OF CCM	27
3.2.6 PREDICTION ON SAMPLE SELECTION BASED ON CBR VALUE	28
3.2.7 PARTICLE SHAPE VARIATION	32
3.2.8 DURABILITY TESTING University of Moratuwa, Sri Lanka.	34
3.2.9 CALIFORNIA BEARING RATIO	40
3.3 EVALUATION OF STRUCTURAL COEFFICIENT OF CCM	
3.3.1 PLATE LOAD TESTING ON PROTOTYPE MODEL	44
3.3.2 TESTING SCHEDULE	45
3.3.3 STATIC PLATE LOAD TESTING ON PROTO TYPE MODEL	49
3.3.4 IDENTIFICATION OF FAILURE LOAD	50
3.4 DEVELOPMENT AND VERIFICATION OF PLATE-LOAD DEFLECTIONS	S 54
3.4.1 GENERAL	54
3.4.2 DEVELOPMENT OF BACK-CALCULATION PROGRAM	54
3.4.3 BASIC ASSUMPTIONS AND INPUT DATA	57
3.5 LAYER COEFFICIENT OF CCM (BASED ON AASHTO GUIDELINE)	58
3.6 DEVELOPMENT OF DESIGN CHART	59
3.6.1 SELECTION OF BEST-FIT LINE	60
2.7 CLIMAN A DAY	(2)

CHAPTER 4

DEVELOPMENT OF GUIDELINE	63
4.1 CURRENT PRACTICES	63
4.2 REQUIRED PROPERTIES OF DGAB	64
4.3 REQUIREMENT FOR CCM	64
CHAPTER 5	
CONCLUSIONS AND RECOMMENDATIONS	67
5.1 CONCLUSION	67
5.2 FINDINGS	67
5.3 RECOMMENDATION	69
REFERENCES	71
APPENDIX A	75
APPENDIX BUniversity of Moratuwa, Sri Lanka.	
APPENDIX C. Electronic Theses & Dissertations www.lib.mrt.ac.lk	83
APPENDIX D	86
APPENDIX E	88
APPENDIX F	93
APPENDIX G	98

LIST OF FIGURES

FIGURE 2.1: WASTE QUANTIFICATION PROCESS	6
FIGURE 2.2: CONSTRUCTION WASTE COMPOSITION	7
FIGURE 2.3: SELECTIVE DEMOLITION OF STRUCTURES	9
FIGURE 2.4: SORTED BROKEN CONCRETE STOCKPILED SEPARATELY	9
FIGURE 2.5: DEMOLITION WASTE COMPOSITION	11
FIGURE 2.6: COMPONENTS OF A FLEXIBLE PAVEMENT	14
FIGURE 3.1: DRY DENSITY VS. MOISTURE CONTENT OF PROCESS WASTE	19
FIGURE 3.2: PARTICLE-SIZE DISTRIBUTION OF PROCESS WASTE	20
FIGURE 3.3: LIQUID LIMIT PLOT	21
FIGURE 3.4: SWELLING VARIATION WITH CUMULATIVE TIME OF PROCESS WASTE	23
FIGURE 3.5: 4-DAY SOAKED CBR TEST FOR PROCESS WASTE	24
FIGURE 3.6: CBR TEST FOR PROCESS WASTE AT OMC	25
FIGURE 3.7: COMPARISON OF WET SIEVING OVER DRY SIEVING FOR CCM	28
FIGURE 3.8: CBR VARIATION WITH DIFFERENT GRADATION FOR CCM SAMPLES	29
FIGURE 3.9: UPWARD AND DOWNWARD GRADATION VARIATION OF CCM SAMPLES	30
FIGURE 3.10: FLAKINESS INDEX TEST	
FIGURE 3.11: ELONGATION INDEX TEST. Of Moratuwa, Sri Lanka.	33
FIGURE 3.12: MAGNESIUM SULFATE SOUNDNESS TEST FOR COARSE AGGREGATE OF CCM	35
FIGURE 3.13: MAGNESIUM SULFATE SOUNDNESS TEST FOR FINE AGGREGATE OF CCM	35
FIGURE 3.14: LAAV VARIATION WITH DIFFERENT CATEGORIES OF CCM	39
FIGURE 3.15: BEFORE LOS ANGELES ABRASION TEST	40
FIGURE 3.16: AFTER LOS ANGELES ABRASION TEST	40
FIGURE 3.17: 37.5MM MAXIMUM AGGREGATE CBR VARIATION WITH MC FOR CCM	41
FIGURE 3.18: 28MM MAXIMUM AGGREGATE CBR VARIATION WITH MC FOR CCM	42
FIGURE 3.19: 20MM MAXIMUM AGGREGATE CBR VARIATION WITH MC FOR CCM	42
FIGURE 3.20: CBR VARIATION WITH MC FOR CCM	43
FIGURE 3.21: PROTOTYPE EXPERIMENT SETUP.	44
FIGURE 3.22: DYNAMIC CONE PENETROMETER TEST	46
FIGURE 3.23: GRADING CURVE FOR DGAB SAMPLE	47
FIGURE 3.24: FIXING OF LOADING ARRANGEMENT	48
FIGURE 3.25: DIAL GAUGE ARRANGEMENT FOR DEFLECTION READINGS	48
FIGURE 3.26: SETTLEMENT WITH DIFFERENT LAYER THICKNESSES FOR 20KN	50
FIGURE 3.27: IDENTIFICATION OF FAILURE LOAD FOR DGAB	53

Figure 3.28: Identification of failure load based on defelction basins	53
FIGURE 3.29: ILLUSTRATION OF BACK-CALCULATION TO ESTIMATE LAYER MODULUS	
FIGURE 3.30: COMMON ELEMENTS OF BACK-CALCULATION PROGRAMS	
FIGURE 3.31: THE BACK-CALCULATION PROCESS	
FIGURE 3.32: DESIGN CHART FOR REPLACEMENT OF DGAB	
Figure 4.1: Flow Chart of Designing Procedure	

LIST OF TABLES

TABLE 2.1: CONSTRUCTION WASTE COMPOSITION	
TABLE 2.2: DEMOLITION WASTE COMPOSITION	
Table 2.3: Aggregate grading, binder content and thickness requirements	16
Table 3.1: Dry density variation of SIX samples of Process waste	19
TABLE 3.2: PARTICLE-SIZE DISTRIBUTION OF PROCESS WASTE	20
TABLE 3.3: LIQUID LIMIT TEST DATA FOR PROCESS WASTE	2
TABLE 3.4: PLASTIC LIMIT TEST DATA FOR PROCESS WASTE	2
Table 3.5: Swelling test results of process waste	23
TABLE 3.6: 4 DAY SOCK CBR TEST FOR PROCESS WASTE	24
Table 3.7: CBR test for process waste at OMC	25
TABLE 3.8: DIFFERENCE IN WET-SIEVE & DRY-SIEVE PASSING FOR CCM	27
TABLE 3.9: CBR VARIATION WITH DIFFERENT GRADATIONS	3
Table 3.10: Gradation difference of CCM	32
TABLE 3.11: FLAKINESS & ELONGATION TEST OF CCM	33
Table 3.12: Soundness Test of Coarse Aggregate of CCM	
Table 3.13: Soundness Test of Fine Aggregate of CCM	37
TABLE 3.14: LAAV TESTING CATEGORIES CITED IN ASTM C 131	38
Table 3.15: Los Angeles Abrasion Value Test for different categories of CCM	39
TABLE 3.16: 37.5MM NOMINAL MAXIMUM AGGREGATE CBR VARIATION WITH MC FOR CCM	I 4
Table 3.17: 28mm Nominal Maximum aggregate CBR variation with MC for CCM	42
Table 3.18: 20mm Nominal Maximum aggregate CBR variation with MC for CCM	43
Table 3.19: MC variation for different maximum aggregate sizes of CCM	44
Table 3.20: Used material properties for base preparation	47
TABLE 3.21: LAYER THICKNESS WITH BASE MATERIAL	48
Table 3.22: Plate load deflection readings for 20 kN load	50
Table 3.23: Identification of failure load for DGAB	52
Table 3.24: Material Unit Weight	57
TABLE 3.25 : ASSUMED POISSON'S RATIO	57
TABLE 3.26: BACK-CALCULATION BY EVERCALC- SUMMARY OUTPUT	58
TABLE 3.27: LAYER COEFFICIENT OF CCM	59
Table 3.28: Summary of comparison	60
TABLE 3.29: REQUIRED CCM THICKNESS FOR REPLACEMENT OF DGAB	6

LIST OF ACRONYMS

AASHTO American Association of State Highway and

DGAB Aggregate Base Course

AIV Aggregate Impact Value

ASTM American Society for Testing and Materials

BS British Standard

C & D Construction & Demolition

CBR California Bearing Ratio

CCM Crushed Concrete Material

CNSA Cumulative Number of Standard Axles

C-S-H Calcium Silicate Hydrate

DCP Dynamic Cone Penetrometer oratuwa, Sri Lanka.

DGAB

Dense Graded Aggregate Base

Dissertations

ESAL Estimated Standard Axle Load

FEM Finite Element Model

LAAV Los Angeles Abrasion Value test

MC Moisture Content

MDD Maximum Dry Density

NA Natural Aggregate

OMC Optimum Moisture Content

PCC Portland Cement Concrete

RCA Recycled Concrete Aggregate

RDA Road Development Authority

SSCM Standard Specification for Construction Material of Roads and Bridges

UCS Unconfined Compressive Strength

