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Abstract

This thesis presents a non linear automatic unmanned aerial vehicle (UAV) control simu-
lation demonstrating high maneuverability and precise tracking performance on a simulation
testbed. High maneuverability leads to satisfy the requirements of future missions. Much of
the recent research on UAVs focus on multiple UAV coordination planning and path planning
and the high maneuverability controllers are given minimal attention. Major requirements for
the high maneuverability are better dynamic stability with fast response and low coupling be-
tween control commands. This research work is presented that way to modify classical system
with merging with modern concepts to achieve high maneuverability. State feedback method,
decoupling techniques and duel loop method are used for autopilot controller implementation.
Simulation results confirm the validity of proposed techniques, which have been used to enhance
autopilot capabilities with less complexity. Non liner effects due to normal mission profile were

also measured.
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