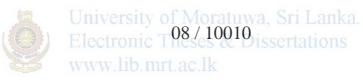

Recognition of Inscriptions in Ancient Sri Lanka


Faculty of Information Technology

University of Moratuwa

September 2010

Recognition of Inscriptions in Ancient Sri Lanka

T.M.T.H. Peiris

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfilment of the requirements of the Degree of MSc in Artificial Intelligence

September 2010

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

T.M.T.H. Peiris Name of Student

Signature of Student Date

Jniversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Supervised by Prof. Asoka S. Karunananda Name of Supervisor(s)

Signature of Supervisor(s) Date

Dedication

This Thesis is Dedicated to My Parents, My Husband Ramesh and Prof. Asoka S. Karunananda.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgements

It is a great pleasure for us to acknowledge the assistance and contributions of a large number of individuals to this effort.

I am heartily thankful to my supervisor, Prof. Asoka S. Karunananda, whose encouragement, supervision and support from the preliminary to the concluding level enable me to develop an understanding of the project. And also many thanks for conducting various fruitful discussions and guiding us to improve our research skills.

A special word of thanks goes to the staff of Department of Archaeology, Sri Lanka for giving me a great support during period of study.

I would like to thank the developers of the GIMP and NeuroSolutions for providing great tools and also for the publishing well made simple tutorials.

I express my heartfelt thanks to my parents, brother and husband and all friends for the affectionate guidance and encouragement for the successfulness of this project.

I also acknowledge the numerous references made to text books and websites which are too many to mention individually.

Finally I wish to thanks all those not mentioned individually who have contributed directly or indirectly to make this project successful.

Abstract

Recognizing the content in the ancient inscriptions unlocks many gateways to the undiscovered historical events since inscriptions were used as a major communication mechanism in ancient Sri Lanka. Currently these inscriptions are read through naked human eye with a great effort. This manual process is not only time consuming but also can generates uncertain outputs sometimes due to the noise that is available in the inscriptions.

We hypnotize that the noise removal of a textual document can be resolved through communication among lexical, structure analyst and semantic agents of a multi agent solution. This is inspired by the real world scenario where noisy outputs can be resolved by experts through their knowledge in morphology, sentence structure and semantics of a particular context.

This thesis is an attempt to recognize the Brahmi characters in ancient Sri Lankan inscriptions. The overall solution comprises of several agents namely: artificial neural network agent, lexical agent, structure analyst agent and semantic agent. The input for the proposed system is an ancient Sri Lankan inscription, this particular inscription image is pre processed using different image processing techniques and segmented into isolated characters. The artificial neural network agent analyzes the pixel intensity of the isolated characters, extract the features and recognize the relevant Brahmi character using the trained neural network. The recognized character string could contain Brahmi characters which have identified erroneously due to the high noise availability. The lexical, structure analyst agent and semantic agents plays a major role to correct the mistakenly identified characters by communicating with each other. The output of the system consists of relevant Sinhala Unicode characters for the recognized Brahmi character string.

Experiments were carried out to evaluate the recognition rate of the system by using 12 inscriptions that were found in archaeological sites – Wessagiriya, Handagala Vihara etc. 84% of inscriptions were completely recognized and among the rest 8% of inscriptions were partially identified.

Contents

	Page
Chapter 1 - Introduction	01
1.1 Introduction	01
1.2 Introduction to Brahmi Optical Character Recognition System	01
1.3 Aim	03
1.4 Objectives	03
1.5 Resource Requirements	04
1.6 Summary	04
Chapter 2 - Ancient Sri Lankan Inscriptions and Optical Character Recognition	05
2.1 Introduction	05
2.2 Ancient Sri Lankan Inscriptions	05
2.3 Optical Character Recognition – The State of Art	06
2.3.1 Hand Written Character Recognition Lanka	06
2.3.2 Printed Character Recognition Sectations	09
2.4 Multi Agent Systems in Problem Solving	11
2.5 Summary	15
Chapter 3 - Technology Adapted	16
3.1 Introduction	16
3.2 Neural Networks in Pattern Recognition	16
3.3 Multi Agent Technology	17
3.4 Summary	18
Chapter 4 - Approach to Recognition of Ancient Sri Lankan Inscriptions	19
4.1 Introduction	19
4.2 Artificial Neural Network and Multi-Agent System based	
Approach	19
4.3 Summary	21

01111	· · · · · · · · · · · · · · · · · · ·	
Inscrip	otions	22
	5.1 Introduction	22
	5.2 Image Processing Module	23
	5.3 Pre – Processing Module	23
	5.4 Recognition Module	24
	5.5 Post Processing Module	25
	5.5.1 Lexical Agent	26
	5.5.2 Structure Analyst Agent	26
	5.5.3 Semantic Agent	26
	5.5.4 Common Message Space	27
	5.5.5 Ontology	27
	5.5.6 Interaction between Agents	27
	5.6 Brahmi to Sinhala Converter Module	29
	5.7 Summary	29
	University of Moratuwa, Sri Lanka.	
_	er 6 - Implementation nic Theses & Dissertations	30
	6.1 Introduction WW.lib.mrt.ac.lk	30
	6.2 Image Processing Module	30
	6.3 Pre – Processing Module	30
	6.4 Recognition Module	33
	6.4.1 Preparation of Training Data	33
	6.4.2 Architecture of the Neural Network	34
	6.4.3 Intermediate File Format	35
	6.5 Post Processing Module	36
	6.5.1 Ontology	36
	6.5.2 Common Message Space	37
	6.5.3 Lexical Agent	37
	6.5.4 Structure Analyst Agent	39
	6.5.5 Semantic Agent	41
	6.6 Brahmi to Sinhala Converter Module	41
	6.7 Summary	41

Chapter 5 - Analysis and Design of Recognition of Ancient Sri Lankan

Chapter 7 - Evaluation	42
7.1 Introduction	42
7.2 Evaluation of the Recognition Module	42
7.3 Evaluation of the Post Processing Module	42
7.4 Evaluation of the Overall System	46
7.5 Summary	46
Chapter 8 - Conclusion & Further Work	47
8.1 Introduction	47
8.2 Overall Conclusion of the System	47
8.3 Objective Achievements	47
8.4 Problems Encountered	48
8.5 Further Work	49
8.6 Summary	49

References

Appendix A

University of Moratuwa, Sri Lanka.50Electronic Theses & Dissertations53www.lib.mrt.ac.lk53

List of Figures

	Page
Figure 1.1 - Sample Input Inscription Image	02
Figure 5.1 - High Level Design Diagram of Ancient Sri Lankan Inscription	
Recognition System	22
Figure 5.2 - Design Diagram of Post Processing Module	25
Figure 5.3 - AUML Collaboration Diagram	28
Figure 6.1 - Fragment of Vertical Projection Graph	31
Figure 6.2 - Fragment of Horizontal Projection Graph	32
Figure 6.3 - 30 X 30 Pixel Image Segmented into 9 Squares	32
Figure 6.4 - 30 X 30 Pixel Image Segmented into 3 Layers	32
Figure 6.5 - The Training Process of the Neural Network	34
Figure 6.6 - A Sample Record in the Word Statistical Information File	37
Figure 6.7 - Spelling Correction Process	39
Figure A.1 - A loaded Inscription	53
Figure A.2 - Line Segmentation ty of Moratuwa, Sri Lanka.	54
Figure A.3 - Character Segmentation leses & Dissertations	54
Figure A.4 - A Sentence Rejected by Agent Negotiation	55
Figure A.5 - A Sentence Accepted by Agent Negotiation	56

List of Tables

	Page
Table 2.1 - Comparison on Technologies used in Optical Character Recognition	
Research Projects	11
Table 5.1 - Output with Different Number of Hidden Layers	24
Table 5.2 - Interaction Order	28
Table 6.1 - Input File Format of the Artificial Neural Network	35
Table 6.2 - Sample Data in the Dictionary Table	36
Table 6.3 - Process Flow of the Lexical Agent	38
Table 6.4 - Process Flow of the Structure Analyst	40
Table 7.1 - Test Setup	43
Table 7.2 - Test Scenario 01	44
Table 7.3 - Test Scenario 02	46
Table 7.4 - Results of Overall System Evaluation	46

University of Moratuwa, Sri Lanka Electronic Theses & Dissertations www.lib.mrt.ac.lk