
21

Easy Tuner 1.0 - Guitar & Violin tuning

application

R.A.C.L.Mendis

Department of Computer Science &Engineerin, University of Moratuwa

Sri Lanka

cresclux.10@cse.mrt.ac.lk

Abstract – This paper presents the main steps

followed during the development of Easy Tuner, a

brief discussion on each step, justifications for the

choices made and most importantly, special/different

methodologies used in the application.

 Index Terms - Audio Record, Media

Recorder, Zero Crossing Method, Fast Fourier

Transform, Pulse Code Modulation

I. INTRODUCTION
 Easy Tuner is a guitar and violin tuning

application for the Android platform. Even though

there are guitar tuning applications in the Google

Play Store, most of them lack usability, which is

one of the most important requirements. Therefore,

the basic idea of this application is to provide a

user-friendly interface that makes this task easy,

even for a beginner. The following sections will

provide an overview of the main activities carried

out.

II. SELECTING A STRING

A. Select an instrument

 Initially, the user is asked to select either guitar

or violin as the instrument. After the selection is

made, the user will be shown a screen with an

image of the strings of the selected instrument.

B. Select a string

 By touching a string, the user can proceed

to tune that string. Soon after the touch event, the

application will display a dialog box, which

requires confirmation whether the user wants to

proceed with tuning or not. This is to avoid

responses for unintended touch events that may

occur while utilizing the application.

C. Specific points to note

 The images of guitar and violin strings

appear as background images. Therefore, it would

be compatible in any Android device.

 On the other hand, by using the Android

view API method getWidth() (which was

deprecated in API level 13) allows the application

to get the width of the display and calculate the x

coordinate of each string based on a pre-determined

scale (on a specific Android device). Since the

touch event cannot be restricted to a particular x

and y coordinate, this application allows 20 units to

either side of every string. Touching in between

strings won’t create a dialog box as mentioned

above.

For instance, if the width of Nexus 4 display is 480

units, x-coordinate of high E/E4 string is 424 (pre-

determined scale). Therefore, if the width returned

from the getWidth() method is stored in width, the

respective region for a particular string is

calculated as follows;

[width * (424/480) - 20] && [width * (424/480) +

20]

III. GETTING THE INPUT FROM MICROPHONE

 In Android, there are two classes in the

Android Media API which can be used to collect

the input from a microphone. One is the

AudioRecord class and the other is MediaRecorder

class. But both of these classes have different

applications.

A. AudioRecord

 If the user needs to perform analysis while a

recording is still in progress, you need to use

AudioRecord. At the time of creating an instance of

the AudioRecord class, we need to define the audio

source, sample rate, channel configuration, Audio

Format and the buffer size in bytes. After calling

startRecording(), you need to poll the data yourself

from the AudioRecord instance using the method

read(). Also, you must read and process the data

fast enough so that the internal buffer will not be

overrun. In simple terms, AudioRecord just gives

you the raw sound stream and you have to

compress it by yourself.

B. MediaRecorder

 MediaRecorder is a black box which gives

compressed audio file on the (as mp3, wav and

etc.) output.

C. Choice for Easy Tuner

 In most cases MediaRecorder is the best

mailto:cresclux.10@cse.mrt.ac.lk

22

choice except those in which some complicated

sound processing is made, and access to the raw

audio stream is needed. Therefore, upon the need to

process the sound, AudioRecordwas selected.

D. Recording time

 Starting from the first time the user touches the

‘Start Recording’ button, the application enters into

a while loop and takes the input from the

microphone for a duration of 6 seconds. At the end

of each while loop, it analyzes the frequency of

each set of buffer values, encoded in PCM.

E. Challenges

 In most of the available guitar tuning

applications, the input is collected without any

‘start recording’ button. However, in Easy Tuner,

recording and analyzing processes start soon after

touching the ‘start recording’ button. Therefore, it

can be considered as a potential drawback of

application, compared to other similar software.

 On the other hand, Easy Tuner does not have a

function/method to filter the background noise, of

the input signal. Therefore, the application assumes

that the user is in an environment where

background noise is minimal.

IV. ANALYSING THE WAVEFORM

In order to find out the frequency of the input

signal, various algorithms can be used. Few

examples being Zero crossing method, FFT, phase-

locked loops, delay-locked loops, auto correlation

or an intelligent combination of these methods.

Below is a brief introduction to the methods that

were developed, and reasons for discarding.

A. Zero-crossing method

 A "zero-crossing" is a point where the sign of

a function changes (e.g. from positive to negative),

represented by a crossing of the axis (zero value) in

the graph of the function. Counting zero-crossings

is also a method used in speech processing to

estimate the fundamental frequency of speech.

 Therefore, during the first phase, a Zero-

crossing algorithm was developed to analyze the

frequency. However, due to the lack of background

noise filters and not using a complex analytic

signal [1], a correct frequency was never achieved.

B. Fast Fourier Transform

 Due to the failure of the Zero-crossing method,

a more accurate method named FFT was found.

However, due to the complexity of the algorithm,

implementing it from scratch was hard.

Therefore, after careful research I found a

library named jtransforms [2], which is capable of

signal analysis in Java. jtransforms is the first, open

source, multithreaded FFT library written in pure

Java.

By instantiating a DoubleFFT_1D object and

calling the realForward() function along with the

array of short elements, it writes complex values to

the same array. Then this array is used to calculate

the fundamental frequency of that set of buffer

values. This is done at the end of each while loop,

until 6 seconds run out.

Below are the code segments showing the

steps in calculating the maximum index of the

complex array, when the buffer size is even/odd

(parameter double[] a is the complex array).

Fig. 1 Java code segment to calculate the maximum

index of the complex array when buffer size is even

Fig. 2 Java code segment to calculate the maximum

index of the complex array when buffer size is odd

 By using the maximum index returned by the

above functions, the fundamental frequency is

calculated as follows.

Fig. 3 Java code segment to calculate the

fundamental frequency of a set of buffer values

23

V. MAKING THE FINAL DECISION

 At the end of each loop, after calculating the

fundamental frequency, it is compared with the

standard frequency of that particular string. When

comparing, a +1.52% and -1.52% error is allowed.

Based on the comparison, a global string variable

named decision is set to ‘matched’, ’high’ or ‘low’.

Then a count is kept for each type of string.

 In a test with 50 samples, it was observed the

count of ‘matched’ string is at least equal to 1

when the string is tuned. and 0 otherwise.

 As the while loop ends, the application will

display a notification indicating whether the string

is tuned or not. If it is not tuned, the notification

will display whether the string should be tightened

or loosened (based on the relationship of frequency

and tension).

 Thereafter, the user can carry out the necessary

action and then touch the ‘start recording’ button

and proceed as earlier until the string is tuned. Or

else, the user could also go back to the selecting

Guitar/Violin string or main menu, and change the

instrument.

ACKNOWLEDGMENT

I sincerely thank my parents, lecturers, and friends,

especially Dhanushka and Jayaruwan, who helped

me in carrying out this research. Last, but not least,

the Android Developer website and the people who

have expressed their views for questions in Stack

Overflow forum.

REFERENCES

[1] Thomas, N., Leeman, S., "Mean frequency via zero
 crossings [medical ultrasound]," Ultrasonics Symposium,

 1991. Proceedings., IEEE 1991 , vol., no., pp.1297,1300

 vol.2, 8-11 Dec 1991 doi: 10.1109/ULTSYM.1991.234055

[2] Wendykier, Piotr, JTransforms version 2.3. Retrieved

 September 1, 2013,
 [Online]. Available:

 https://sites.google.com/site/piotrwendykier/software/jtran

 sform

