
79

Instant Messenger Plus : Chat and voice calling
application

Dulanjaya Tennekoon
University of Moratuwa, Katubedda, Sri Lanka

dulanjayatennekoon@gmail.com

Abstract—The purpose of the Instant Messenger Plus Project is
to provide an efficient way of communication through instant
messaging by featuring with test messaging, file sharing and
voice calling over the internet. The goal of the project is to
develop a desktop application which follows the international
standards in implementing the above features. The system
development practices the Rational Unified Process (RUP) as
the system development methodology. The Model-View-
Controller (MVC) design pattern is used in the system design.
The end product is a standalone desktop application which
works according to the client server architecture. The Instant
Messenger Plus application comes with an attractive interface
for the user to engage in instant messaging, voice calling and
file sharing with other users.

Keywords—Client Server Architecture; Extensible Messaging
and Presence Protocol; Instant Messaging; Institute of Electrical
and Electronic Engineers; Rational Unified Process; Voice over
Internet Protocol

I. INTRODUCTION
The Instant Messenger Plus (IMP) is an instant

messaging application that allows users to send messages,
make calls and send files to other Instant Message Plus users.
The system is based on the client-server architecture which
has a server to maintain the overall communication and an
application for the client side. A user can send and receive
messages securely through this system which implements the
Extensible Messaging and Presence Protocol (XMPP) [1] in
both the server and the client sides. The messages that can be
sent through this system will be text messages, or images.
Users can also make calls to other users through Voice over
Internet Protocol (VoIP) methodology.

Instant messaging is a concept which is massively used
today by billions of people around the world. When
comparing the current GSM charges with the internet data
rates, the low expenditure for internet data lead people to use
instant messaging concepts widely in fulfilling modern
communication needs. The instant messaging applications
become popular in this context. The main motivation behind
the development of the Instant Messenger Plus system is to
provide a user with a comprehensive and a user friendly
application which provides instant messaging services in an
effective and a secured way.

Modern communication has become more prominent
with the manifestation of the internet. Instant messaging,
which is a use of the internet has become an efficient way of

addressing the modern needs in communication. However,
the security is a must in implementing the modern day
communication to protect the users from threats. The IMP, as
the main purpose, addresses the above communication need
in an effectual way. This system offers three ways of
communication; texting, voice-calling and file sharing and in
implementing each of the above systems, the IEEE
organization’s standards and recommended protocols are
used to provide the security of communication.

Instant Messenger Plus (IMP) is a desktop application
which works according to the client server architecture and
works with the Ignite Realtime Openfire server [7]. The
application is developed according to the Rational Unified
Process (RUP) software development methodology. The
design of the application follows the Model View Controller
Architecture. The end product is a client application that
works with the Openfire server application that can be
integrated for any organization by deploying the Openfire
server application on a reserved server for the organization.
The application can also be integrated for general users by
hosting the Openfire server application in a commercial
server.

II. LITERATURE REVIEW
Instant messaging (IM) and internet chat communication

has a huge growth among the present population [1] and
continues to display a strong growth in the market in recent
years [2]. Instant messaging application become popular in
this context having huge revenues and investors believe in
continuing rapid growth in the market of instant messaging
[3]. Therefore, developing an IM application by introducing
new features has a huge value. The IM applications are
becoming very important for internet companies accordingly
[4].

The Instant Messenger Plus application has been
developed considering the facts mentioned above. The
application communicates using the Extensible Messaging
and Presence Protocol. The XMPP is based on the Extensible
Markup Language (XML) which provides the near real-time
messaging and presence [5]. The Smack library which is an
open source client library [6] is used for the implementation
of the XMPP protocol in the Instant Messenger Plus
application as the library provides more flexible features in
implementing the communication functions. The IMP
system has the client server application architecture. Ignite
Realtime Openfire server which maintains the simplicity in

80

its deployment and which is a real time collaboration server
license under the open source Apache License [7] is used as
the communication management server while the IMP
application works as the client side application.

The development of the application is done by following
the Rational Unified Process which is an iterative software
development process framework [8]. The Graphical User
Interface of the application is very important as it can be the
difference between the application acceptance and rejection
[9]. JavaFX which is a set of graphics and media packages
that comes with the Java language is used for the
development of the rich client application [10] that operate
reliably and consistently.

The “Facebook” has the instant messaging feature with
the “Facebook messenger”, and is a widely used instant
messaging service. It provides the video calling feature as
well [11]. However, the “Facebook” itself has some privacy
issues which become more privacy concerns as for an instant
messaging application [4]. The “WhatsApp” application is
another messenger application which works with
WhatsApp’s own server [12]. However, the “WhatsApp”
instant messaging system cannot be implemented on a
private organization with their own server to enhance the
security. The ‘Spark’ application is an Open Source, cross-
platform IM client optimized for businesses and
organizations. It features built-in support for group chat,
telephony integration, and strong security [13]. But the user
interface of the ‘Spark’ application is not much appealing, is
very complex and does not offer a great end-user experience.

The Instant Messenger Plus application has considered
the above issues and comes up with features to avoid those
issues. The security of the applications is achieved through
the use of XMPP protocol. The system can be implemented
on a private organization only for the usage within the
company. The same client application can also be used as a
general instant messaging application available for the
general public after deploying the Openfire application
server in a commercial web server. The appealing user
interfaces of the Instant Messenger Plus application provide
a better usability and simplicity to the user. The application
is developed considering the user experience in a greater
extent.

III. SYSTEM MODELS

A. System Requirements
As functional requirements, initially the new user should

be able create a new account in the server. The registered
user needs to log in to the system with the user credentials.
The user account of the user should be maintained with the
details of the user and with a profile picture. As the main
functional requirement, the user should be able to share
instant messages with other users. The text messages which
are sent by a user to another user should be delivered to the
second user even though the second or the receiving user is
not available online. The system should make notifications
regarding the received messages and receiving calls.
Furthermore, the user should be able to send picture

messages to other users who are available online. The picture
messages should be appeared on the chat view of the
application. Moreover, the file sharing capability should be
in the Instant Messenger Plus application.

Both pictures and files which are received for a particular
user should be stored in a general folder in the file system of
the operating system, so that by clicking the file name
appeared on the chat view opens the file location
highlighting the received file. Furthermore, the user should
be able to make voice calls with the other users of the
system. The Instant Messenger Plus application should use
the computer mic and the speakers for the voice
communication. Moreover, the user should be able to create
group conversations and manage the group conversations.
The users should be able to join the conversations which are
already created. The system should have both open and
closed conversations so that the closed conversations have a
password to enter the group chat. The open conversations are
free for everyone to join, and any user who is interested in a
particular open group conversation can participate. Finally,
the application should have the ability to manage contact lists
with the features to add new contacts, to remove existing
contacts, to accept friend requests and to reject friend
requests. The messages received by the users should be
stored in the application for every user who logs in to the
server through a particular, same Instant Messenger Plus
instance. The user should be able to disable the chat history
storing feature and the notification feature of the received
messages from the application as well.

Fig. 1. Use Case Diagram

81

B. System Design
The logical view of the Instant Messenger Plus

application describes the most important classes of the
system and their organization. MVC design pattern has been
applied in the UML class diagram to enrich the quality of the
system architecture of the system and to make the application
in such a way that the business logic is independent of the
presentation logic. The system is based on the client server
architecture, so that the application works with the Openfire
server application. The connection management class builds
the connection with the server to build the client server
communication. The Smack API is used for the
implementation of the XMPP protocol in the application.

Fig 2. Domain Class Diagram (Business Logic)

The sequence diagram shows the interaction of making a
group conversation. The diagram depicts the flow of the
information among the objects instantiated with the
blueprints of the class diagram.

The information which is passed in the system includes
the communication in the client server system as well. The
information that passes in the client server system is done
through the implementation of the XMPP protocol in the
application using the Smack library.

C. Database Design
The Instant Messenger Plus applications uses a database

to manage the chat history of the user conversations. The
single user conversations which are created by the user with
another user will be stored in the database. The messages
stored in the database include all the text messages, picture
messages and the files. The database has only a link to a
received or a sent file or a picture, which is stored in the file
system of the computer.

Fig. 3. System Sequence Diagram

A single instance of the Instant Messenger Plus

application which is installed in a particular computer may
be used by multiple users. Therefore the database of an
instance of the IMP application keeps the records of every
user who logs in to the system through that application
instance. However, the application logic can control the
enabling and disabling of the chat history as well as the
features like clearing the chat history. The history of
messages in a group conversation is not stored in the
database as the chat history of a group conversation can be
obtained from the server.

Fig. 4. Database Schema Diagram

IV. SYSTEM IMPLEMENTATION

A. Implementation Procedure
The Instant Messenger Plus is a standalone desktop

application which is built according to the Client Server
Application Framework. The Ignite Realtime Openfire
Server application [7] is used as the server in the application
architecture. The Openfire server is an off the shelf product
developed by Ignite Realtime.

The Extensible Messaging and Presence Protocol
(XMPP) is used to employ a secured model in the application
and the Ignite Realtime Smack library is used in
implementing the XMPP protocol in the client application.
The XMPP protocol has a security built-in feature developed

82

by the Jabber cooperation as the protocol is being developed
introducing security and online presence features to the
existing HTTP protocol [5].

Development process is done in such a way that the
development follows up with unit testing. Junit serves as the
unit testing framework of the application development. The
development of the application is done using the NetBeans
IDE and using Java language version 1.8.0_91. Java default
packages and APIs are used in the development. The
graphical user interface (GUI) is designed with the use of the
JavaFX technology and associated libraries. Thus the user
interfaces are written in XML, the controller logic is written
in the Java language and the GUI design enhancement is
done using the Cascade Style Sheets (CSS).

The UX (User Experience) is a primary concern in the
application architecture. The available wire framing tools are
used to mock interfaces prior to build the final GUI design of
the application. The GUI design is done using the JavaFX
Scene Builder.

Furthermore, the application uses a Model View
Controller architecture pattern in the application design. Java
language has the new JavaFX design platform that consists
of an in-built view controller design. The business logic is
developed in parallel to the in-built design. Finally, as
resources, the instant messenger plus project is done with the
help of the documentation of the Smack API, XMPP
protocol and the community support of the Ignite Realtime.
The project is open collaborated as an open project in
GitHub.

B. The Algorithm
Initially, the user needs to login to the user account with

user credentials in order to send an instant message to
another user,. Once the user credentials are entered in the
login view, the application establishes the connection
between the application itself and the server. The connection
management is done from the connection manager class
which is a model class. If the server is not available or if
there is an internet connectivity problem, the connection
manager class throws an illegal state exception which is
handled in the logic controller class. Then the application
executes the login procedure and if the user credentials are
wrong, the application will handle that exception and
prompts a notification message. If the user credentials are
correct, then the login controller calls the main controller
class to view the main view of the application.

Fig. 5. Login Action – Pseudocode

Once the contact is chosen from the contact list of the main
view, the chat list view of the particular contact will appear.
The contact list runs with a contact listener in order to
implement this feature. Then the messages will be displayed
in the chat list if the user has a previous chat history with that
particular user. In this case, the system loads the chat history
from the application database. If the data is not available then
the application will create new contact id for that chat
instance and begins to record the chat history.

Fig. 6. Create a chat – Pseudocode

The messages which are to be sent will be first sent to the

contact. If the server is not available at that moment, then the
application will display the notifications regarding the
scenario. Once the message is successfully delivered, the
message will be stored in the database with the information
like the timestamp and the message type. Then the message
will be painted on the chat list. The same procedures are
followed in sending pictures and files too.

Fig. 7. Send a message – Pseudocode

If the message listener listens a receiving message, then
the received message will be stored directly in the database
with the sender’s and receiver’s identities and with the
timestamp. Then the message will be displayed in the chat
list view if the currently selected chat is in between the user
and the sender of that received message. The same procedure
is applied to the file and photo receiving scenarios as well.

V. MAIN INTERFACES
Initially, a user needs to enter the username and the
password in this view to login to the system as shown in
Figure 8.

Begin
Input user credentials
If the user credentials are correct then

Login to the system
Start message listener, call listener, file listener
Start roster listener

Otherwise
Display ‘Bad Credentials’

End

Begin
Choose a contact
Load contract view
Display contact information
If database contain previous chat history then

Display messages in the contact view
Otherwise

Create a chat id in the database
End

Begin
Enter a message
Send the message to the receiver
If the message sent successfully then

Save the data in the database
Display the message in the chat view

Otherwise
Display ‘Unable to send’

End

83

Fig. 8. Login View

Fig. 9. Register View

User can register in the system with a username and a
password as shown in Figure 9. Figure 10 shows the main
view of the system including the contact list, conversation
list, chat view and the account information. The current
conversation is loaded to this user interface. The user can
edit his or her user profile using the view shown in Figure
11 and the changes will be updated in the server once the
user press the save button.

Fig. 10. Main View

Fig. 11. Account View

VI. SYSTEM TESTING AND ANALYSIS

A. Testing Approach
The system tests are done in several approaches. Unit

testing is done in order to test the functionalities of the
system and each and every model class, and controller class
has been tested writing unit test cases. Junit testing
framework is used for the unit testing in the system.
Moreover the same framework is used for the database
testing as well. The database CRUD operations (Create,
Read, Update, and Delete) are tested for the verification of
the correct functionality of the database handler and database
access classes. This is done in such a way that the user
interface is completely isolated from the database.

Furthermore, the user interfaces have been tested for the
correct functionality and performance. User Interface testing
is carried out for JavaFX user interface of the application
using the JemmyFX browser. JemmyFX browser was ran on
the same IDE and UI tests were recorded. Then for each UI
test case, the unit tests were written.

The security testing is done using several approaches.
Wireshark software is used to analyze the communication
datagrams (packet data send to the server by the application
via the XMPP protocol) and verifies the system security that
can be violated by malicious hackers.

Configuration tests are done for the Microsoft Windows
Operating systems, by testing the application for the correct
functionality (i.e. establishing the connection between the
server and the client) without any security violation policies
from Windows’s firewalls, antivirus application’s firewall
and from router’s firewall.

Moreover, the performance testing is done with the
Microsoft Windows Resource Monitor tool for the limited
usage of memory. The application is tested further for any
memory leaks in the heap memory of the Java Virtual
Machine (JVM) by analyzing the heap memory of the JVM
by the ‘VisualVM’ software. Java test cases are written in
order to test the communication performance to be verified in
line with the system requirement specifications.

84

Unit testing is done for the business logic (model) classes
and the controller classes. The unit tests are written and
verified the correct behavior of each unit. A system bug is
once identified from unit testing, that misbehave system by
returning some malformed conversation jabber identities
(JID) for closed conversations.

B. Aspects related to performance, security and failures
Instant Messenger Plus application is highly concerns

with the performance of the communication. The application
is tested for the message latency of transfer and the
application succeeds the tests to keep the latency minimum
to be in line with the system requirements. Furthermore, the
application is tested for the memory usage. The tests are
done with the Microsoft Windows Resource Monitor.

The application security is an important aspect. The
application uses the XMPP protocol in order to implement
the communication system between the server and the client
application. By using the Wireshark tool, packets are
analyzed and the result is as same as the XMPP library
elaborates. The received messages are stored securely in the
application database and are needed to be protected in the
root access. However, the receiving files and photos are not
safeguarded as it is mentioned not to do in the system
requirement document.

Failures occurred before testing the application when the
server is being disconnected while the application is turned
on and fixed that bug. If the transferring messages are
corrupted, then it is natural to occur failures. However, the
application is developed in such a way that it guarantees the
delivery, as it confirms the message delivery report via the
server.

VII. CONCLUSION
As the conclusion, Instant Messenger Plus has the ability

to communicate among users efficiently. The main objective
of IMP was to provide an efficient way of instant messaging
which has verified to be the output of the proposed system.
The system can effectively communicate using the text and
picture messages, file sharing and voice calling. The
management of group conversations and single chats gives
the application a great usability. The user interfaces are very
fluid and much appealing. The application is developed in
such a way considering the user experience (UX) as a huge
concern for a chat application and the output of the project is
the successful Instant Messenger Plus application. All the
functional, nonfunctional requirements have been covered in
the final product.

The communication disciplines are adhered to the
standard protocols and therefore, the data and information
are safeguarded well. The application is developed in the
Object Oriented paradigm and has used the best coding
practices as well. The design patterns like MVC gives a
much understanding to the source codes and it enhance the

future works as well. The software engineering disciplines
that are applied to the system lead the system for the future
development.

The application is developed with the support of open
collaboration and the best solutions were obtained in
implementing the features and functionalities. Application is
committed to the GitHub as an open project. Furthermore,
the application can be developed further to enhance the video
conferencing feature as a function to the application, and the
user interface can also be improved further, to enrich the user
experience.

REFERENCES
[1] Raymond B. Jennings III, Erich M. Nahum, David P. Olshefski,

Debanjan Saha, Zon-Yin Shae, Chris Waters,
"www.cs.columbia.edu," 2006. [Online]. Available:
www.cs.columbia.edu/~nahum/papers/ieee-network-instant-
messaging.pdf. [Accessed 19 06 2016].

[2] A. T. M. R. FIRM, "Instant Messaging Market, 2015-2019," THE
RADICATI GROUP, INC., PALO ALTO, CA, USA, 2015.

[3] "AppMess," [Online]. Available: http://appmess.com/news/27538-
investors-believe-in-continuing-rapid-growth-of-messaging-market/.
[Accessed 19 06 2016].

[4] P. Sikka, "Market Realist," MArket Realist, 26 09 2014. [Online].
Available: http://marketrealist.com/2014/09/different-social-networks-
making-use-users-data/. [Accessed 19 06 2016].

[5] P. Saint-Andre, "Extensible Messaging and Presence Protocol
(XMPP): Core," Jabber Software Foundation, 08 2004. [Online].
Available: https://xmpp.org/rfcs/rfc3920.html. [Accessed 19 06 2016].

[6] "Ignite Realtime: Smack API," Ignite Realtime, [Online]. Available:
http://www.igniterealtime.org/projects/smack/. [Accessed 19 06
2016].

[7] D. Herzmann, "Ignite Realtime: Openfire Server," Ignite Realtime, 21
03 2016. [Online]. Available:
http://www.igniterealtime.org/projects/openfire/. [Accessed 19 06
2016].

[8] "Rational Unified Process - Wikipedia, the free encyclopedia,"
Wikipedia, 31 05 2016. [Online]. Available:
https://en.wikipedia.org/wiki/Rational_Unified_Process. [Accessed 19
06 2016].

[9] M. G. Miranda, "THE IMPORTANCE OF GRAPHIC USERS
INTERFACE, ANALYSIS OF GRAPHICAL USER INTERFACE
DESIGN IN THE CONTEXT OF HUMAN-COMPUTER
INTERACTION," in 3rd International Conference on Education and
New Learning Technologies, Barcelona, Spain, 2011.

[10] M. Pawlan, "What Is JavaFX?," ORACLE, 04 2013. [Online].
Available: http://docs.oracle.com/javafx/2/overview/jfxpub-
overview.htm. [Accessed 19 06 2016].

[11] Wikipedia, "Facebook Messenger - Wikipedia, the encyclopedia,"
[Online]. Available:
https://en.wikipedia.org/wiki/Facebook_Messenger. [Accessed 19 06
2016].

[12] "WhatsApp Legal Info," WhatsApp, 07 07 2012. [Online]. Available:
https://www.whatsapp.com/legal/. [Accessed 19 06 2016].

[13] "Ignite Realtime: Spark IM Client," Ignite Realtime, [Online].
Available: https://www.igniterealtime.org/projects/spark/. [Accessed
15 10 2016].

