
109

VMS – Virtual Meeting System
M. Vidanapathirana, IEEE Student Member

Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka.

madhawa.13@cse.mrt.ac.lk

Abstract— The Project VMS is a solution developed to allow
virtual meetings between two remote business meeting rooms.
The solution is designed so as to complement the facilities
provided by a typical meeting room environment. The system
consists of a single Server subsystem, two Facilitator
subsystems and Presenter subsystems. In the production
environment, each meeting room would have a central
Facilitator subsystem of its own, used by the meeting facilitator
who controls the meeting. Each Facilitator subsystem is
connected to Presenter subsystems installed in PCs of meeting
participants inside the room. The Server subsystem connects
two Facilitator subsystems in order to materialise the Virtual
Meeting between two meeting rooms. The system supports
sharing of presenter screens and voice between meeting rooms.
Additionally, the facilitators maintain a shared list of tasks
which could be assigned to presenters, whom would be notified
upon assignment. In materialising aforementioned, the system
uses Client-Server Architecture between connected subsystems.
The major output of the project can be identified as the three
subsystem applications developed, which together would
revolutionize Virtual Meetings. This can be identified as a
major step taken forward from the use of internet video calls to
materialize virtual meetings.

Keywords —Virtual Meeting; Business Meeting Room; Client-
Server Model; Central Subsystem; Presenter Screen; Presenter
Voice; Shared Tasks; Facilitator; Presenter

I. INTRODUCTION
The business community started using Virtual Meetings

for internal communication purposes; making emails
constrained to Formal Communication. Virtual Meetings
introduced many advantages to business over conventional
email such as “reducing time taken to resolve an issue due
to real-time communication” and “enhancing clarity of
communication due to inclusion of tone of communication”.

The motivation of developing the VMS system is to
address some drawbacks of existing systems that provide
Virtual Meeting facilities. Most of the existing solutions are
not tailor-made for Business Virtual Meetings, thus not
complimenting infrastructure inside a meeting room. Most

solutions relay on 3rd party infrastructure, thus raising
concerns related to privacy of information. Furthermore,
most solutions available for virtual meetings does not
represent the role of Facilitator in a meeting. The VMS
solution addresses the above mentioned issues through the
tailor made solution it provides for Business Virtual
Meetings.

VMS – Virtual Meeting System makes it very
convenient for formal meetings between offices of a
business. VMS makes it possible to cast the screen of
presenter through the projectors available at two connected
meeting rooms. It also transfers the voice of presenter to the
remote meeting room. The aforementioned functionality is
jointly controlled by the two facilitators at two meeting
rooms. Furthermore, the system provides functionality for
the meeting facilitators to keep track of meeting objectives
through Shared Task Management System. The Shared Task
Management System allows facilitator to assign
responsibilities to participants of the meeting.

The VMS System provides aforementioned functionality
through a combination of 3 subsystems, Server subsystem,
Facilitator subsystem and Presenter subsystem. The person
who is in charge of a meeting room is known as the
facilitator. The facilitator uses a machine with Facilitator
subsystem to control the meeting. This machine is
connected to the projector and the speaker system of the
meeting room. The participants inside a meeting room
connect to the Facilitator subsystem of the meeting room
using the Presenter subsystem application installed to their
Laptop computer. Two Facilitator Systems are
interconnected by Server, thus making a Virtual Meeting
between two remote meeting rooms.

This paper describes the design and implementation of
above mentioned VMS system. The Section II provides a
literature review of Virtual Meeting Systems. The Section
III describes the design and functionality of the System. The
Section IV describes matters related to implementation of

110

VMS System. The Section V describes testing procedures
and results of VMS System. The Section VI suggests
probable future improvements of the system.

II. LITERATURE REVIEW

A. Theoretical Aspects
The developed VMS System is based on streaming of

user perceptions between remote locations. The perceptions
considered here are screen of users’ PC and voice of user.
Fig. 1 explains this process in diagram.

Fig. 1. Process of Streaming Perceptions

The aforementioned functionality is implemented by the
livestream component which is developed specially for
project VMS. The VMS system uses and controls the
livestream component to properly exchange perceptions
between sources and destinations.

B. Comparison to Existing Systems
The functionality of VMS at its core is similar to an

internet conference video calling service. However, in case
of VMS, the features are customised to suite the virtual
meeting requirements of the businesses. However, in this
short literature review, VMS would be compared against
both Virtual Meeting solutions and Internet Conference
Video Calling solutions.

Skype [1] provides a conference video calling feature to
its premium customers as a paid service. This feature can
also be used for Virtual Meetings. However, this is best
suitable for meetings with very less number of participants
at each location. AnyMeeting [2] is a commercially
available web-based virtual meeting solution. It is focussed
on joining multiple meeting rooms with very less number of
particpants at each meeting room. Join.me [3] is another
online service that is focussed upon screen sharing, audio
sharing and text chat among a group of participants. Similar
to AnyMeeting, this solution is not tailor made to use the
physical infrastructure of a meeting room.

All the solutions mentioned above are not tailor made to
use the physical infrastructure of a meeting room. They do
not recognise Presenters and Facilitator as two different
subjects with different responsibilities. Neither of the
solutions mentioned above are capable of utilising the
projector of meeting room as required for a business
meeting. Neither of them provide a mechanism for
assignment of responsibilities to meeting participants.

Cisco WebEx [4] is an industry grade solution for
Business Virtual Meetings. It offers a free tier which
supports upto three participants per meeting. However,

WebEx doesn’t facilitate the role of facilitator which would
be required to maintain proper control structure of a
meeting.

The developed VMS solutions surpasses existing
products in the market due to its ability to complement the
physical infrastructure of a business meeting room.
Additionally, the VMS solution provides benefits such as
centralised control and Shared Task Management system.
Furthermore, VMS solution encourages user to use their
own infrastructure to host the server instead of 3rd party
service provider. This ensures security of business
information.

III. SYSTEM MODELS

A. System Requirement
The VMS system consists of 3 subsystems, Server

subsystem, Facilitator subsystem and Presenter subsystem.
These subsystems jointly deliver the requirements
mentioned in this section.

The VMS system is required to manage connection
between its subsystems. This includes pairing mechanism
between server and facilitator in addition to the Passkey
based connection mechanism between Facilitator and
Presenter. The system is also required to facilitate
connection and disconnection of presenters from a live
meeting. The system should also support sharing of screen
and voice of presenters connected to the system. The shared
screens are displayed at the projectors connected to two
Facilitator subsystems at two meeting rooms. The voice of
the presenter should also be transferred to the remote
meeting room via the speakers connected to the remote
facilitator subsystem. Apart from aforementioned
communication, VMS also provide proper control facilities
to the meeting. The presenters can raise share requests,
requesting opportunity to share their screen or voice. The
facilitator should accept these requests in order to allow a
presenter to be active. Alternatively, the facilitator is able to
change the active screen sharer/active speaker according to
his/her will among the group of presenters connected to
itself. Additionally, the facilitators are provided with the
facility to assign responsibilities to presenters, who are
notified upon assignment.

Facilitator
Presenter

Manage Server
Connection

Set Active Presenter

Respond Share Request

Manage Presenter
 Connection

Manage Shared Tasks

Raise Share Request

Allow/Block Share

View Assigned
Shared Tasks

<<extend>>

Fig. 2. Main Use Case Diagram of VMS System

111

Fig. 2, identifies major use cases of Facilitator and
Presenter. Additionally, there is a System Administrator
who is responsible to manage the Server, not identified in
the aforementioned diagram. The use case “Allow/Block
Share” associates the consent of presenter to let their
screen/voice be shared. This requirement fulfils privacy
requirement of presenter. When the facilitator accepts a
share request raised by a presenter, it actually sets the active
presenter. Thus, the use case “Respond Share Request”
extends the Use case “Set Active Presenter”.

Considering the non-functional requirements, the
system is required to work in a network with Server to
Facilitator bandwidth not more than 8 Mbps. The system
should maintain time gap between two screen shares less
than 3 seconds. The system requires the connection between
subsystems to be authenticated. The VMS system should be
capable of running across multiple operating systems. Thus,
its implementation is undertaken in JAVA.

B. System Design
The VMS system consists of three subsystems, Server

subsystem, Facilitator subsystem and Presenter subsystem.
The subsystems are interconnected using the Client Server
Architecture. The Facilitator subsystem acts as the client of
server in Facilitator Server connection. The Presenter
subsystem acts as the client of Facilitator subsystem in the
Facilitator Presenter connection. These Client-Server
connections are based on JAX-WS WebService Technology
which uses SOAP messages for communication. In the
context of this paper, the term Console is used to identify
WebServices that are uniquely published for the use of a
particular client. (e.g. – Facilitator Console 1 published for
Facilitator 1 by Server to undertake Facilitator 1 – Server
communication)

Additionally, the system architecture can be broken
down into low level architecture and the high level
architecture. The low level architecture is engraved into
livestream component which handles transfer of screen
captures and audio captures across subsystems. Livestream
also handles capture of perceptions (screen and voice) at
source and synthesis of perceptions at destination. It follows
the Pipe and Filter Design Pattern. The high level
architecture manages the functionality provided by
livestream component for streaming perceptions.

Server::FacilitatorConsole
<<WebService>>

+disconnect() : void

0..2 PresenterConsole

+notifyAlive() : void

-consoleId : String

+setFacilitatorName(name : String):void
+getFacilitatorName() : String

Server::ScreenShareConsole
<<WebService>>

+updateInterval : Integer
+isEnabled() : bool

+getInScreenShareConsoleId() : String
+getOutScreenShareConsoleId() : String

2

ScreenShareConsole

Server::VirtualMeeting
<<WebService>>

+activeScreenFacilitatorId : String

+addTask(sharedTask : SharedTask) : void

+activeScreenPresenterId : String

+activeSpeechFacilitatorId : String
+activeSpeechPresenterId : String

-virtualMeetingId : String

+getInAudioRelayConsoleId() : String
+getOutAudioRelayConsoleId() : String
+requestAudioAccess(presenterId : String) :
bool

Server::AudioRelayConsole
<<WebService>>

+consoleId : String
+isEnabled() : bool

LiveStream::FrameBuffer
<<WebService>>

...

...

0..1RawDataStream

2AudioRelayConsole

+removeSharedTask(taskId : String) : void

+getSharedTasks() : SharedTask[]
+getStatus() : SessionStatus

+modifySharedTask(taskId : String, title :
String, description : String) : void
+assignSharedTask (taskId : String, facilitatorId
: String, presenterId : String)
+unassignSharedTask(taskId:String):void

0..1 RawDataStream

...
+isEnabled() : bool

+requestScreenAccess(presenterId : String,
includeAudio : bool) : bool

2

2

Fig. 3. Class Diagram of Services offered by Server Subsystem

Fig. 3 demonstrates main classes of Server subsystem.
Each Facilitator subsystem connected to the Server is given
a dedicated FacilitatorConsole. The facilitators raise
requests from Server using the FacilitatorConsoles. The
WebService VirtualMeeting contains state variables of the
virtual meeting. It is being shared between both Facilitators.
Additionally, FacilitatorConsole contains reference to two
AudioRelayConsoles and ScreenShareConsoles that allows
transfer of perceptions between Facilitator and Server. The
ScreenShareConsoles and AudioRelayConsoles mentioned
above are contained in the VirtualMeeting WebService.
Both AudioRelayConsoles and ScreenShareConsoles utilise
FrameBuffer of livestream component to hold streaming
data.

Fig. 4 demonstrates class diagram of major classes of
Facilitator subsystem. These classes are also WebServices
offered to Presenter Subsystem.

112

Facilitator::Facilitator
<<WebService>>

-name : String

+getFacilitatorName() : String

-port : Integer
-passkey : String

+connect(presenterName:String,
passKey:String) : Integer

Facilitator::PresenterConsole
<<WebService>>

+disconnect() : void
+notifyAlive() : void

-presenterId : String

+setPresenterName(name :
String):void

+getPresenterName() : String

+getOutScreenShareConsoleId() :
String
+getOutAudioRelayConsoleId() :
String

+requestScreenAccess(includeAudio :
bool) : bool
+requestAudioAccess() : bool

2 ScreenShareConsole

2

AudioRelayConsole

0..*

Presenters

+getVMState() :
VirtualMeetingSnapshot

Facilitator::VirtualMeetingSnapshot

+activeScreenFacilitatorId : String
+activeScreenPresenterId : String
+activeSpeechFacilitatorId : String
+activeSpeechPresenterId : String

+getAssignedTasks():SharedTaskSnap
shot[]

+generateSnapshot(vm:Server::VirtualMeeting) : VirtualMeetingSnapshot

+checkConnectionRequestStatus()
Presenter::ConnectionRequestState

Facilitator::ScreenShareConsole
<<WebService>>

+updateInterval : Integer

+isEnabled() : bool
+consoleId : String

Facilitator::AudioRelayConsole
<<WebService>>

+consoleId : String
+isEnabled() : bool

LiveStream::FrameBuffer
<<WebService>>

...
0..1

RawDataStream

0..1 RawDataStream

Fig. 4. Class Diagram of Facilitator Subsystem

The Facilitator WebService is the WebService used by
Presenter subsystems to establish connection with
Facilitator. Upon successful connection establishment, the
Facilitator subsystem creates and offer a unique
PresenterConsole WebService to each Presenter.

VirtualMeetingSnapshot is a static copy of
VirtualMeeting WebService provided to presenter
subsystem upon request through getVMState method. The
method getAssignedTasks of PresenterConsole returns the
list of tasks assigned to Presenter. The PresenterConsole
contains reference to ScreenShareConsole (discussed
previously) and AudioRelayConsole (discussed previously)
objects in order to allow presenter to transmit perceptions to
facilitator.

The key process of VMS system can be identified as the
Control Loop Process. Two subsystems Facilitator and
Presenter utilise their own Control Loop processes. The
control loop processes control exchange of audio and screen
between subsystems.

Fig. 5 demonstrates Control Loop of Facilitator
subsystem.

The Control Loop firsts read VM Status variables from
the server and then adjust the subcomponents of livestream
hosted by Facilitator subsystem to undertake proper data
transfer. The ToServer Multiplexer directs active presenter’s
data to server. The receivers receive screen and audio inputs
from server and synthesize them through projector and
speaker system. It also notifies presenter subsystems on
whether they should transmit to facilitator.

Control Loop - Facilitator Subsystem

Facilitator Subsystem Server Subsystem

P
ha

se

Obtain Virtual Meeting Snapshot

Check Virtual Meeting State
Variables

Provide Virtual
Meeting Snapshot

Set Input URL for ToServer
Multiplexer

Set Input FrameBuffer of Receivers

Sleep for Update Interval

[Meeting Finished]

[Meeting Active]

Update Enabled Status of
ScreenShare and Audio Relay

Consoles of Presenter

Fig. 5. Activity Diagram of Facilitator Control Loop

IV. SYSTEM IMPLEMENTATION

A. Implementation Procedure
The VMS system is implemented using three JAVA 1.7

executable applications based on Swing UI framework. The
3 executables represent the 3 subsystems of the system. The
coding is done entirely using IntelliJ Idea IDE and user
interfaces are designed using the Swing UI Builder of Idea.

The common functionality used by all 3 subsystems are
separated into a separate module called Foundation. This
module exposes WebServices such as ScreenShareConsole
and AudioRelayConsole which are used by all 3 subsystems
of the system.

Each subsystem contains two modules, Core module
and UI module. The Core modules (e.g. Server module,
Facilitator module, and Presenter module) implement core
functionality of subsystems. They expose APIs for the UI
modules. The core modules depend on the Foundation
module to obtain common functionality. The UI modules
(Server-UI module, Facilitator-UI module and Presenter-UI
module) are Swing based Executable JAVA applications.
The Server-UI module is capable of operating in both Swing
UI and Command Line mode.

The subsystems utilise JAX-WS Web Services for the
communication between subsystems. The Server and
Facilitator subsystems expose JAX-WS WebService
Interfaces to their respective clients Facilitator subsystem
and Presenter subsystem. The URLs used to host the
WebServices are based on the format
http://0.0.0.0:[port]/[console_type]/[console_id] and
http://0.0.0.0:[port]/[console_type]/[console_id]. The
console_id is a random generated string which is unique to
each console. The port is provided at the initial
configuration of the system.

113

The persistent storage mechanisms were implemented
to the UI layer modules as they are convenient to be
separated from core modules. The core modules are
focussed on network based functionality. The Two modules
Server and Facilitator uses persistent storage for purposes
such as storage of Pair Keys. The core modules use methods
and events to communicate with UI layer in order to read
and update persistent storage. The persistent storage is based
on Serializable classes of Java. The passwords exchanged
between subsystems or stored in persistent storage are
encrypted using SHA-256 [5] algorithm exposed by
MessageDigest API of JAVA. Additionally, the persistent
storage files are encrypted in order to safeguard the pair
keys stored in them. The encryption is based on the
Advance Encryption Standard (AES) [6] available in
javax.crypto.

The implementation methodology followed a parallel
development of 4 modules Foundation, Server (Core
module), Facilitator (Core module) and Presenter (Core
module). The 3 latter modules mentioned above were
initially tested using prototype user interfaces. At the latter
stage of development, the 3 UI modules were developed.

The largest storage of materials used by VMS system is
the storage of its pair keys. The pair keys are generated by
the server upon a pair request from Facilitator subsystem.
Then, the two keys are stored in the encrypted persistent
storage of both subsystems.

B. The Algorithm
The Control Loop algorithms can be identified as the core

algorithms of VMS system. The Control Loop controls flow
of screen-share/audio-relay data across subsystems. Fig. 6,
demonstrates the main control loop of Facilitator subsystem.

Begin
Start Loop
 Call FacilitatorConsole->NotifyAlive()

 Set vm := virtualMeeting.getSnapshot()

 ProcessScreenShare(vm, facilitatorId)

 ProcessAudioRelay(vm, facilitatorId)

 updateSharedTasks(vm, facilitatorId)

 if vm.status == adjourned

 Raise event meeting adjourned
 Break Loop
 If no connectivity error incurred above
 Notify Connectivity Manager that
 _Server Connection is alive
 Raise Control Loop Cycle
 _Completed Event
 Sleep(1000 milliseconds)
Do Loop
End

Fig. 6. Facilitator Control Loop Pseudo-code

Fig. 7 demonstrates the ProcessScreenShare support
function used by Facilitator Control Loop. The function
ProcessAudioRelay of Facilitator subsystem is implemented

similar to above mentioned ProcesScreenShare function.
The aforementioned pseudo-codes are explained in their
relevant comments.

Function ProcessScreenShare(vm,facilitatorId)
Begin

//Identify active screen share presenter. Enable its
Screen Share Console. Disable other Screen share
consoles.
For pConsole in facilitator.presenterConsoles
 Set pConsole.enabled = False
End Loop

Set selectedPC := facilitator.presenterConsoles
 _where presenterConsole.consoelId ==
 _vm.activeScreenFacilitatorId
Set selectedPC.screenShareConsole.enabled = True
//Set screenSwitcher to obtain input of selectedPC
If selectedPC is not null

 Set screenSwitcher.InputURL := URL of
 selectedPC FrameBuffer
Else If selectedPC is null

 Set screenSwitcher.InputURL := NULL
End If

//Update screenSwitcher to send frames to server
If outputScreenShareConsole.enabled == true and
 _screenSwitcher.running == false
 Call screenSwitcher.start()
Else If outputScreenShareConsole.enabled == false
_and screenSwitcher.running == true
 Call screenSwitcher.stop()
End If

//Update screenReceiver to receive screens from
Server, if required

If inScreenShareConsole.enabled == true and
 _screenReceiver.running == False
 Call screenReceiver.startReceiving()
Else If inScreenShareConsole.enabled == false and
_screenReceiver.running = true
 Call screenReceiver.stopReceiving()
End If
End

Fig. 7. Facilitator Screen Share Control Loop

Begin
Start Loop
 Call presenterConsole->notifyAlive()

 Set serverAcceptsAudioShare :=

 _audioRelayConsole.isEnabled()

 Set serverAcceptsScreenShare :=

 _screenShareConsole.isEnabled()

 //Start/Stop Screen Capture

 If serverAcceptsScreenShare == True And

 _allowedScreenShare == True

 Call screenCapture.startCapture()

 Raise event SCapture Started
 Else

114

 Call screenCapture.stopCapture()

 Raise event SCapture Stopped
 End If
 //Start/Stop Audio Capture (Similar to above)
 If no connectivity error incurred above
 Notify Connectivity Manager that
 _Facilitator Connection is alive
 Raise Control Loop Cycle Completed Event
 Sleep (1000 milliseconds)

Do Loop
End

Fig. 8. Presenter Subsystem Control Loop Algorithm

Fig. 8, demonstrates Control Loop of Presenter
subsystem. The Control Loop determines whether the
Presenter subsystem should transfer audio captures and/or
screen captures to Facilitator subsystems. The variables
allowedAudioShare and allowedScreenShare determine
whether presenter has given consent to share his/her screen
and/or voice.

C. Main Interfaces
Fig. 9, demonstrates the Virtual Meeting tab of

Facilitator Control Panel. This tab is used to control the
virtual meeting. The share requests are displayed in the left
panel of user interface. The centre panel is used to manage
the Shared Task Management System. The right panel is
used to determine which presenter is allowed to share screen
or speech. The finish meeting button is used to adjourn the
virtual meeting.

Fig. 9. Virtual Meeting Tab of Facilitator Control Panel – Centre and
Right Section

Fig. 10. Presenter Subsystem Main User Interface

The Presenter subsystem user interface demonstrated in
Fig. 10. This interface is used by participants of virtual
meeting to share screen/speech of themselves. The assigned
tasks to the presenter are displayed in the Presenter
subsystem user interface. The Allow Screen Sharing and
Allow Audio Sharing check boxes are used by the presenter
to notify the consent of presenter to share his/her screen.
The sharing would not happen if the consent is not provided.

V. SYSTEM TESTING AND ANALYSIS
The testing techniques used for VMS system are unit

testing, system integration testing, configuration testing,
user interface testing and performance profiling. The unit
tests and system integration tests were written using TestNG
[7] testing framework. User interface tests were undertaken
using Marathon ITE UI testing framework [8] on all
subsystems of VMS system. Tests were written to cover
connection establishment, screen/audio share requests,
screen/audio transfer and Shared Task Management System.

Configuration tests were undertaken on all subsystems
by varying configuration such as Operating System and
Network Configuration. Ubuntu Linux, Mac OS X and
Microsoft Windows were used for Operating System testing.

Fig. 11 Network Usage of Server with Two Facilitator Connections

Performance profiling were undertaken using JProfiler
[9] Java Profiler. Fig. 11, demonstrates network usage of
Server subsystem involving Server Facilitator network
communication over Wide Area VPN Network. All 3

115

Systems performed exceptionally well in the tests
undertaken.

VI. CONCLUSION AND FUTURE WORK
The VMS system developed can be identified as a

competitive candidate among the solutions that provide
virtual meeting facility. The system performs well within
enforced constraints such as network bandwidth limit.
Additionally, the VMS system is capable of complementing
the physical infrastructure available at a general business
meeting room environment. The Presenter subsystem
developed is lightweight and can be easily installed in the
participant’s machines. The user interface of Presenter
subsystem is simple. It contains only 3 sections “Assigned
Tasks List”, consent checkboxes and share buttons.
Furthermore, testing of Presenter subsystem on Laptop
machines has indicated that most Laptop machines have
sufficiently sensitive inbuilt Microphone systems to capture
the voice of presenter. The Facilitator subsystem is also
made user friendly by providing step-by-step instructions to
user. Additionally, the system provides details of active
presenter to the audience through the projector screen. Most
importantly, the system has provided total control of the
system to facilitators. The Shared Tasks Management
System is a shared resource among both facilitators allowing
both facilitators to allocate tasks to any presenter. The
Server subsystem is developed in two modes, UI mode and
console mode. The console mode is capable of operating in
a headless server environment such as a cloud hosted virtual
machine. Additionally, the server is capable of handling
multiple consecutive virtual meetings.

As future improvements of VMS system, it is possible
to improve the server subsystem to be able to handle
multiple simultaneous virtual meetings. It is also possible to
introduce features to record virtual meetings. The bandwidth
used for screen share can be reduced by introducing motion
image compression technology. This would make sure that

screen sharing can be undertaken at a higher frame rate.
Currently, VMS system relies on encryption provided by
VPN network of user to provide security to Server –
Facilitator connection. However, as a key future
improvement, encryption can be introduced to this link,
making VPN infrastructure not necessary. The pair-keys can
be used as encryption keys of Server Facilitator connections.
As per the current implementation, the Server subsystem
behaves as a single point of failure. This could be eliminated
by improving the Facilitator subsystems to automatically
connect to a backup server subsystem upon unavailability of
primary server. In this process, the two Facilitator
subsystems should re-initiate a virtual meeting with backup
server. Afterwards, they should update the state of virtual
meeting in backup server to suite the last known state of
primary server.

Virtual meetings has revolutionised internal
correspondence of businesses. VMS introduced by this
paper can be identified as a major breakthrough in this
evolvement, where business virtual meeting was made
closer to physical meetings.

REFERENCES
[1] “Skype,” [Online]. Available: https://www.skype.com/.
[2] “AnyMeeting,” [Online]. Available: https://www.anymeeting.com.
[3] “JoinMe,” [Online]. Available: https://www.join.me/.
[4] Cisco, “Cisco Webex Meetings,” Cisco, [Online]. Available:
https://www.webex.com/products/web-conferencing.html.
[5] “How To Generate SHA256 Hash in Java,” [Online]. Available:
http://www.quickprogrammingtips.com/java/how-to-generate-sha256-hash-
in-java.html.
[6] “Java : Encryption and Decryption of Data using AES Algorithm with
example code ~ Code 2 Learn,” [Online]. Available:
http://www.code2learn.com/2011/06/encryption-and-decryption-of-data-
using.html.
[7] “TestNG - Welcome,” [Online]. Available: http://testng.org/.
[8] “Test Automation for Java/Swing Applications » Marathon,”
[Online]. Available: https://marathontesting.com/.
[9] “Java Profiler - JProfiler,” [Online]. Available: https://www.ej-
technologies.com/products/jprofiler/overview.html.

