
iSeS: Intelligent Semantic Search Framework

M. Jayarathne, D. Fernando, C. D. Arachchi,

I. Haththotuwa, S. Perera
Department of Computer Science and Engineering,

University of Moratuwa,

Moratuwa, Sri Lanka

S. Weerakoon
Zone 24x7 (Pvt.) Ltd.

Colombo, Sri Lanka
sajithw@zone24x7.com

Abstract—With vast amounts of data being produced, present

world is overwhelmed with information and searching for

appropriate content has turned out to be harder than ever

before. Semantics, which typically focuses on the relationship

between signifiers, such as words, phrases, signs and symbols,

and what they stand for is now being used more and more in

search engines to provide the user with more meaningful content.

Further it is no more the case that users are interested in search

results that the majority of users would agree to, but are more
interested in results being personalized to them.

In this research paper we present iSeS: Intelligent Semantic

Search Framework, which is a search framework that a custom

web site or an application can adapt. We focus on using

underlying semantics of the content being indexed in providing

more meaningful search results personalized to each user. We

look into both latent semantic indexing and metadata extraction

based methods for providing semantically rich search results.

Collaborative filtering and how it is used to personalize search

results is also explored in this paper.

Keywords-component; Semantics; Metadata; Search; Indexing;

Latent Semantic Indexing

I. INTRODUCTION

Today the websites in the World Wide Web are becoming
increasingly sophisticated and contain vast amounts of data.
The busy schedule of humans today means that they would not
like to or they would be unable to spend time browsing a
particular website in search of some particular item. Therefore
the easiest option has been to use a search engine to find the
required information.

 Even though sites like "Google" offer amazing search
results and also personalized to some extent based on the past
user behavior, in general individual sites lack efficient and
relevant internal search engines for searching within its site.
Almost all the search engines use text based search where it
matches the query string with the text in the files. The search
result is generated mostly based on the number of occurrences
and this doesn„t take the real meaning of the query string into
account. The same applies to an application where the user is
trying to find help details.

 These search engines merely focus on parameters such as
count of the search query in the document/webpage. However
in today's context this is not merely enough. The user is in need
of a personalized search as well as the relationship between the
search results in order to make the relevant choice. This would

save a significant amount of time for the user who will
otherwise have to navigate into the website to find the
relationship.

What the industry lacks is a platform integrated with
semantic search and personalized aspects whereby the
developer can directly plug in the framework after customizing
it to the personal requirements.

II. BACKGROUND

This section carries a detailed description of related areas of
study and the relevant concepts about the project‟s subject
matter.

A. Searching based on Semantics of Data

Semantic search is the method of searching through
documents considering more than syntactic level of keyword
matching [1]. This is useful to conduct an intelligent search,
unlike in keyword-matching based methods, where the search
is uninformed and monotonous. A resulting document/data
source that is very much related to a search query might not
have even a single word or phrase common to it. But still,
when the semantics of the search query is considered, that
particular result might be the most relevant one. But a keyword
based search fails to capture such results, since there are no
matching keywords present. For searching methods which
compare the actual meaning of data, all the steps which are
related to the search should be aware of the semantics of data
[2]. Semantic languages are used for keeping track of
metadata/semantics of a data source. To develop a simple
hierarchy of semantics for a web page or a local data file,
simple concepts such as generalization, aggregation,
association etc. can be used.

B. Latent Semantic Analysis

Latent Semantic Analysis (LSA) is a statistical technique
for extracting and analyzing relations of expected contextual
usage of words in documents. It is not a traditional natural
language processing or an artificial intelligence based
mechanism and takes only raw text parsed into words defined
as unique character strings and separated into meaningful
passages or samples as inputs. [3], [4].

In LSA first we need to represent the text as a matrix in
which each row stands for a unique word and each column
stands for a text document/passage. Each cell contains the
frequency with which the word of its row appears in the
passage denoted by its column. Next, the cell entries are

subjected to a preliminary transformation in which each cell
frequency is weighted by a function that expresses both the
word‟s importance in the particular passage and the degree to
which the word type carries information in the domain in
general.

Next, LSA applies singular value decomposition (SVD) [5]
to the matrix. This is a form of factor analysis. In SVD, a
rectangular matrix is decomposed into the product of three
other matrices. One component matrix describes the original
row entities as vectors of derived orthogonal factor values,
another describes the original column entities in the same way,
and the third is a diagonal matrix containing scaling values
such that when the three components are matrix-multiplied, the
original matrix is reconstructed. One can reduce the
dimensionality of the solution simply by deleting coefficients
in the diagonal matrix, ordinarily starting with the smallest.

C. Personalization and Collaborative filtering

Traditional search engines are optimized to provide search
results which the majority of users would agree to. However
the latest tendency in the field has been to provide search
results personalized to each user. There are two flavors to
search results personalization, whereby in the first flavor one
user would get a search result different from another based on
his/her preferences/profile. In this case personalization is
tightly coupled to search functionality and in the other flavor
personalization is done by reordering the search results
returned by the search functionality.

1) Collaborative Filtering
Collaborative filtering is a promising approach in deriving a

profile for the user based on the users who have historically
had similar tastes [6] and is extensively used in
recommendation systems. Collaborative filtering overcomes
one of the major limitations in other approaches, which is data
sparseness. It has been very successful in both research and
practice, and both in information filtering such as search results
filtering as well as E-commerce applications [7].

Item based collaborative filtering is a collaborative filtering
algorithm presented by Badrul Sarwar et al in [8] and it tends
to overcome a number of limitations in the traditional
collaborative filtering algorithms. The first and the foremost
challenge is to overcome is the scalability problems faced by
other collaborative filtering algorithms. Item based
collaborative filtering algorithm avoids the bottleneck of
searching for neighbors among a large user population of
potential neighbors by exploring the relationship between items
first, rather than the relationships between users.
Preferences/scores are computed by finding items that are
similar to other items the user has liked. Since the relationships
between items are relatively static, item-based collaborative
filtering is able to provide results with less online computation.

On the other hand SlopeOne algorithm is one of the
simplest forms of non-trivial algorithms for collaborative
filtering based on ratings/preference values. However it has
been proven that this simple algorithm is on par with more
complex and computationally expensive forms of collaborative
filtering algorithms. In [9], the authors highlight the need to
keep the algorithms simple in order to make the processing

efficient as well as to enhance the scalability, i.e. it is not
recommended to compromise the simplicity of the algorithm
for minor increases in accuracy. Further, SlopeOne can
integrate new ratings without any delay and these new ratings
change the output instantaneously. Moreover, SlopeOne
performs well when the user is fairly new to the system, i.e. a
user with few ratings receives valid outputs from SlopeOne
algorithm.

III. METADATA BASED INDEXING

The index created using extracted metadata is very much
different from a usual index created by a search engine. This
index is a sort of a semantic map representing the information
acquired by metadata extraction process. Four types of data are
considered in creating this index. They are social tags, topic
tags, entities and relationships. These entities were extracted
using the OpenCalais web service [10].

Social tags try to determine how particular content would
be tagged. As an example, a document about various sports
should be tagged with the social tag „Sports‟. Topic tags are the
most relevant social tags in the document which OpenCalais
identifies as the topic for the content. Most of the time it only
identifies one topic per document. Entities are the locations,
people, countries, etc. OpenCalais defines a set of such data
that can be extracted, which appear in the indexed documents.
Without indexing these as plain text, they are indexed in such a
way that the original meaning is preserved. Relationships are
the relations between various entities.

Main algorithm used for metadata based indexing extracts
the data from a given local/web repository such as a folder or
web site. In the case of a local folder, the folder structure is
navigated recursively to obtain the files. The main types of file
formats include .pdf files, .docx files, .doc files and .odt files
etc so that the user does not have to carry out separate
implementations for different file formats. Extracted text is
then submitted to OpenCalais web server to get the metadata
extracted. For handling limitations of the web server, a long
text stream is divided in to chunks of meaningful data before
submitting, typically lesser than a length of 30,000 characters.

The tags extracted are then used to create the index. For
efficiency purposes, the main thread spawns separate worker
threads to create the index. Therefore, other than the main
thread, the index uses a thread pool to perform the indexing.
Using a thread pool instead of creating individual threads is
more efficient since the overhead is less.

As the thread pool builds, it populates the index with the
necessary data and finally shuts down. Since the indexing
process is a onetime process, and the index built should be
persistent, it is stored in a database to be used as the base for
conducting the search. If needed this index can be updated later
to add more files/web pages.

Since OpenCalais is remotely hosted as a web service, there
might be network issues in transferring the data between the
applications. The exceptions and error messages from the web
server are handled appropriately at the connection point to
make sure the framework can recover from such issues.

After metadata are extracted from OpenCalais, those tags
have to be stored in a semantic manner in the database. Jena
[11] is used for this purpose. Using Jena, metadata tags are
indexed in a unique way which is convenient to perform a
search preserving the semantics of metadata tags.

RDF [12] structures metadata in the form of subject-
predicate-object which is called a triple. The same concept is
used when creating this index as well. First a model for the
whole data store is created using Jena. Then the model can be
updated by inserting triples to the model. Figure 1 shows how
the metadata tags are indexed as a graph.

Figure 1 - Index diagram

 In the model a graph is created for each file. The social
tags of the file are added to the graph using the predicate
VCARD.ROLE. VCARD is a constant class which consists of
objects that represent all the definitions in the VCARD schema.
Jena also enables users to create predicates with meaningful
names. Then as shown in the graph, all the social tags have
been added to the “Social Tag” node and their literal and
importance values have also been added using predicates
defined by the system. More important social tags have the
value 1 and less important ones have the value 2. Likewise
topic tags were also added to the model using the
VCARD.TITLE predicate.

Names of all the nodes are in the URI(Uniform Resource
Identifier) format. “FN” is the URL(Uniform Resource
Locator) or the address to the resource and the string after “#”
is the URN(Uniform Resource Name) or the name of the
resource. Literals have only the string representation of the
node and this was done intentionally for ease of querying and
searching.

Entity tags are sent by OpenCalais after categorizing them
in to predefined entities such as “Person”, “Organization” etc.
OpenCalais considers entity disambiguation when identifying
and categorizing entities. Entity disambiguation is the process
of resolving the identity of entities. For example “George
Bush” and “George W. Bush” has to be identified as the same
person. Those uniquely identified entities are given a relevance
value which is based on the relevance of each entity to the
document. It‟s a value between 0 and 1 where 1 is the value for

most relevant entities. Also for some entities there are
additional tags, such as “personType” and “nationality” for
entities in the category of “Person”.

The identified categories are added to the file using the
property VCARD.CATEGORY and entities of each category is
added using the predicate VCARD.NAME. Then for each
entity the name, relevance and the additional tags are added
with predicates defined by the system.

Likewise for each file, such a graph is created with social
tags, topic tags and entity tags. This index is used to perform
the metadata based semantic search.

IV. METADATA BASED SEMANTIC SEARCH

Search based on metadata can‟t simply use the keywords
from the query and match them with keywords form the
indexed data. This should consider the meaning of the data that
are being search for, and also the meaning of the query as well.
This can be done in several ways.

A. Conceptual Graph Matching

Semantic similarity can be considered as matching of
objects and relations appropriately. This can be considered to
be done using several criteria. They are; considering the
similarity between nodes, considering the similarity between
arcs (predicates) and/or considering the similarity between
graphs [13]. These can be considered as pattern matching, and
differ from granularity from each other.

Similarity between nodes can be determined with regard to
the concept of semantic distance. Semantic distance is the
distance between nodes. Therefore, the semantic similarity can
be defined as the complement of the semantic distance.

Similarity between arcs is figuring out similarities between
the relationships between nodes. Arc similarity can be
compared by considering the type of the relationship, parent-
relationships and child-relationships. But, it is not a simple
procedure.

Similarity between graphs is the extent up to which a graph
generated by the query can be matched with a sub graph of the
index.

Figure 2 - Query Graph

FN#Sports

1

“Sports” score

 name

FN#Social Tag

NAME

FN#Test Cricket

“Test Cricket”

name

1

importance

NAME

FN#Cricket

“Cricket” name

1
importance

NAME

FN#Batting

“Batting” name

1
importance

FN#Position

FN#Prince

NAME

0.079 “Prince”

name

relevance

FN#SportsGame

FN#bowling

NAME

0.257 “bowling”

name

relevance

“Political”

personType

FN#Person

FN#Edward

NAME

0.079 “Edward”

name

relevance

FN

TITLE

CATEGORY

CATEGORY

CATEGORY

ROLE

Entity tags

Topic tags

Social tags

Figure 3 - Candidate result sub graph

B. Complete and Minimal Answers

Complete and minimal answers is another concept which is
associated with RDF based data retrieval. This can be applied
to a search based on an index built on RDF.

A complete answer is a result in the form of an RDF node
which along with all its descendants contain all query terms.
Ideally, the query terms should be the terms which are
generated by a query analysis. However, if it‟s not feasible or if
it‟s not possible to analyze the query, the query terms can be
used as they appear.

A minimal answer is an answer such that,

∀𝑘 ∈ 𝑄 ∶
 𝑣 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑘 𝑂𝑅 ∋
𝑢 𝑠𝑜𝑛 𝑜𝑓 𝑣 𝑠. 𝑡 𝑢 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑘 𝐴𝑁𝐷 𝑢 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎𝑛𝑠𝑤𝑒𝑟

Here, k is the set of tags of the query, Q is the query itself
and u, v are RDF nodes [14]. What is meant by this definition
is that a minimal answer is a node, where the tags match the
tags appearing in the sub tree rooted at the original node, and
no node on this sub tree should be a complete answer to the
query (with all tags in the query). Therefore, the search task is
to get a set of such minimal answers, with a suitable score
function to determine the most relevant results.

C. Developed Algorithms

iSeS framework uses several custom algorithms to deliver
the required results. Specially for searching, the framework
uses two such algorithms, which were designed and fine tuned
by the iSeS team.

1) Best Guess/ Entity Search Algorithm
This is a typical algorithm which demonstrates the

uniqueness of a search based on semantics rather than a search
based on keywords only. This algorithm attempts to guess the
best match for a given query. This does not give a list of most
related documents as the final result of the search, but tries to
suggest a set of entities which are related to a search query with
the related scores. For an example, for an index created on
cricketers, a query „Sri Lankan bowler‟ might give the result
„Muttiah Muralitharan‟ as the best guess. But, since there can
be only one or a very few results for a question type query; it is
difficult to identify only the best matching result(s) separately.

Instead this search algorithm defines a set of results, of which
the first one is the best guess.

The implementation looks at the tags of an entity of the
semantic map and tries to compare it with the search query.
The entity which has been tagged with majority of tags related
to the query can be selected as a good match. The algorithms
require the user to specify a part of the query as the „most
important‟ part. Ideally this should happen automatically, but
extracting the most important part of a query is another project
by itself. Therefore, the easier option is to get the user to
highlight a section of the query as the most relevant/important
section.

After comparing the entity tags with the query, to get the
best matching entity/ set of entities, it is important to specify a
score to each entity. In determining the best guess(es), it is
essential to take into account the relevancy of an entity to the
document it‟s appearing in. For example, a sports document
carrying a political figure might be less related to a query on
politics than the same entity appearing in a document related to
politics. Therefore, the scoring function needs to take this fact
in to account other than the number of tags matched.

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑦 𝑆𝑐𝑜𝑟𝑒

= log Relevancy determined by metadata extraction

∗ metadata weight value +
matching tags in the entity

total tags in the query

∗ query tag weight value +
matching tags in the entity

total tags in the entity

∗ entity tag weight value

This function takes into account the relatedness of an entity
to the appearing source document using the relevancy
determined during metadata extraction and the proportion of
the number of tags tagged in the entity to the total number of
tags in the query. This approach enables to select the entities as
the best results those which are most related to the source and
the search query as well.

2) Semantic Search Algorithm
This is the semantic version of the usual keyword based

search algorithm. Unlike being limited to comparing keywords
in the search query and the index, the semantic nature of the
search has been preserved. Thus, even though the indexed text
does not contain any terms in the query itself, if that text source
is relevant to the search, it might be returned as a result.

Initially the search was designed to query the RDF index
each time the user enters a search query. But querying RDF
index through Jena frequently was time consuming. Therefore
we introduced three tables to the database which are being
updated while the RDF index is created. These three tables
contain the data required to do the calculations for the semantic
search. This made the running time about 20 times faster.

The semantic search algorithm has two major steps. First
the files are filtered by comparing the query tags and the social
tags of files. Then the filtered files are assigned with a score
and they are ranked based on that assigned score.

a) Filter files based on social tags

iSeS can be deployed in a file system or a web site which
would be having hundreds and thousands of files in it. Since it
is not viable to calculate scores to every file each and every
time the user enters a query, there should be a filtering
mechanism as the initial stage of the search algorithm. Social
tag based filtering was used for this purpose. Social tags are the
tags produced by the OpenCalais considering the context of the
document. These literals might not be there in the text but
would be the collection of words which best describes the
context.

A file is selected as a filtered file if the social tags of that
file match with at least one tag of the query. For this filtering
social tags were chosen over entity tags since social tags are
more semantically related to the document. Therefore this
would filter the documents which are more semantically closer
to the search query. These filtered set of files is then passed to
the second step of the search.

b) Rank the filtered files based on score

Ranking of files is done based on a score assigned to each
file. When assigning a score to files the entity tags are taken
into account. This score has three components. One component
is the similarity of pair of tags in a file that are matched with
the query tags. Second component is the value assigned based
on the number of tags matched in the document. Third
component is a score based on the percentage of query tags
matched with the tags in the document. In these calculations
the “relevance” factor of each entity is given a very high
importance. This is because relevance reflects how much that
entity is semantically related to the document.

The logic behind the similarity calculation is to check
whether the identified entity tags are closely related or not.
This is quite closer to the proximity search in keyword based
search where it gives a higher rank if tags are located close to
each other. But in the semantic search the location of the tags is
not considered but the semantic proximity is considered. If a
considered node in the index is located near to another such
node, those two nodes are considered as being semantically
similar, and vice versa.

For each pair the “distance” is calculated first. Then the
sum of “distances” is divided by number of pairs to take an
average value. Similarity is the (1- ?distance). This “distance”
value is the average of semantic remoteness and average
relevance of the two tags. Figure 4 shows how to arrive at the
remoteness value.

Figure 4 - Distance values

If the tags are the literals of same entity remoteness is 0.3,
if in the same category remoteness is 0.5 and if they are in two
different categories remoteness is 0.8. Similarity equation is as
follows.

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

= 1 −
 (𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 + 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒)/2

𝑛𝑜. 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠

Since remoteness and average relevance values are always
less than one, similarity is also less than one.

The second component of the score is the tag count score.
This value increases when the number of tags matched to the
entities of a file increases. Below is the equation to calculate
this score.

𝑡𝑎𝑔 𝑐𝑜𝑢𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 =
 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒

𝑛𝑜. 𝑜𝑓 𝑡𝑎𝑔𝑠

Following equation is the score calculated for the third
component which takes the percentage of query tags matched
with the file in to account.

𝑚𝑎𝑡𝑐𝑕𝑒𝑑 𝑡𝑎𝑔𝑠 𝑟𝑎𝑡𝑖𝑜 =
𝑛𝑜. 𝑜𝑓 𝑚𝑎𝑡𝑐𝑕𝑒𝑑 𝑡𝑎𝑔𝑠

𝑛𝑜. 𝑜𝑓 𝑞𝑢𝑒𝑟𝑦 𝑡𝑎𝑔𝑠

Finally the score is calculated as follows.

𝑠𝑐𝑜𝑟𝑒 = log2(1 + (𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝑡𝑎𝑔 𝑐𝑜𝑢𝑛𝑡 𝑠𝑐𝑜𝑟𝑒
+ 𝑚𝑎𝑡𝑐𝑕𝑒𝑑 𝑡𝑎𝑔𝑠 𝑟𝑎𝑡𝑖𝑜)/3)

This score is assigned to each file and ranked in the
descending order of the score. Then according to the users
preference the search results are sent either to the
personalization module or to the user‟s application.

V. LSA BASED SEMANTIC SEARCH

We conducted a literature survey on the existing LSA
implementations we can use for our project. Much of these
implementations were proprietary. However the packages “S-
Space Package” [15] and “Semantic Vectors” [16] are open
source frameworks for developing and evaluating word space
algorithms. These packages implement LSA and provide a
comprehensive set of matrix utilities and data structures for
extending new or existing models.

The packages are written in Java and define standardized
Java interfaces for word space algorithms. Compared to
“Semantic Vectors” and other existing frameworks, the S-
Space Package supports a much wider variety of algorithms
and provides significantly more reusable developer utilities for
word spaces, such as tokenizing and filtering, sparse vectors
and matrices, specialized data structures, and seamless
integration with external programs for dimensionality
reduction.

A. How LSA is being used in iSeS

The above mentioned LSA implementation is easily
customizable to include word stemming and can be easily
integrated into our requirements since not only can S-Space be
used to get vector comparisons, but it can also be used to get
similar words to a particular word of the corpus that is being
used.

So by using this similar words interface we built an index
where each significant word in the corpora is given a
customizable number of similar words based on the LSA
vector value for those words i.e. the more the vector similarity,
the more the word similarity.

Then the iSeS framework would use the said words to
compile a list of semantically close words for a given query
and use those words to perform a normal keyword search on
the index created using the Lucene keyword indexer to give the
required search results. This keyword search is performed
using the Lucene keyword based searching.

VI. PERSONALISATION

In providing users with personalized search results, two
aspects were considered. Personalization model employed
being the first is of high importance as it is key in making the
personalization function highly generic. Personalization
mechanism is the second aspect, which includes the algorithms
used to personalize search results based on the personalization
model chosen.

A. Personalization model

As highlighted, one of the major consideration is deciding
on a personalization model was its genericness. Since iSeS is a
framework, the models ability to be used in numerous
scenarios was important. For example, personalization schemes
such as those based on users‟ explicitly stated profile would not
suit the purpose as they would restrict the use of iSeS to the
application that collects such data.

The personalization model employed in iSeS is somewhat
close to the model employed by recommendation systems. The
model has users, items in search results and preferences for
user-item pairs. In other words the model is a sparse matrix of
preferences of users towards items in search results as
graphically depicted in figure 5.

 1 2 3 4 k n

1 2

2 5

3 5

4 1

 2 1

 5 5

j 3

 4

 4 2

 3 3

m 3

Figure 5 - User-Item matrix

The preference value can be anything with the notion of
„liking‟, such as explicitly stated preference of users towards
items, number of times the user has visited the item etc. This
quality has made personalization mechanism more generic, so
that it can be applied in number of occasions.

B. Personalization Mechanism

iSeS uses collaborative filtering algorithms at the centre of
its personalization module. Implementations based on Item-
based collaborative filtering algorithm and slopeOne algorithm
has been provided with iSeS as two algorithms present
different advantages over each other. We reused Apache
Mahout collaborative filtering library which comes with
implementations of Item-based collaborative filtering
algorithm and slopeOne algorithm.

With these algorithms, the personalization module infers
preference values for each of the items in search results for the
user who submitted the search query. These inferred preference
values are stored with the search results and they are used to
derive a final composite score, on which the ultimate ordering
of search results is based on.

VII. RESULTS

The following results are the results obtained for the two
search algorithms mentioned above, BestGuess Search and
Semantic Search.

A. BestGuess Search

Under this technique, a set of queries which are related to a
particular domain, but which do not have a specific answer
were tested.

1) Example Domain: Business
The index for this domain was created using popular news

site CNN‟s business news section on 03rd September, 2011.

TABLE 1

BESTGUESS RESULTS

 Sample Query Top Results

people related to economics

extra tags: economics

person

1. Tim Cook

2. Bernie Madoff

3. Steve Wozniak

4. Nizar Hani

world organizations

extra tags: government,

organization

1. European Union

2. International

Monetary Fund
3. Natural Resource

Defence Council

people related to

entertainment

extra tags: person,

entertainment

1. Katt Williams

2. Josh Hutcherson

3. Melanie Brown

4. Jennifer Lawrence

All these results carry entities, people or organizations
which are very much relevant to the query. These results are
difficult to obtain using a normal keyword based searching
mechanism, since the queries used might not have the actual
mentioning of the entities related.

Item (document)

U
se

r

B. Semantic Search Algorithm

The same CNN‟s business news index was used to test the
search queries for the Semantic Search algorithm. Semantic
Search gives the address of the files as the search results. In
keyword search also the search results are the addresses to
files. Therefore in order to observe the accuracy of the
Semantic Search, the results for the same search query for the
same index from the Semantic Search and keyword search are
compared in the Table 2 and Table 3.

1) Search query – “modern business concepts”
Extra tags: economy, technology

TABLE 2

SEMANTIC SEARCH RESULTS FOR THE QUERY "MODERN

BUSINESS CONCEPTS"

Semantic Search results Keyword search results

First result:

Opinion: Apple rivals likely

to prevent monopoly -

CNN.com

When social media 'hinders'

revolution - CNN.com

This web page does not

contain the word “concept”

but this comes as the first

result since the content is

about a modern business

concepts.

Though this comes as the

top result, the news is not

about a modern business

concept.

Second result:

Steve Jobs: From college

dropout to tech visionary -

CNN.com

Tensions rising in Yemen;

pro-government gunmen

gather outside capital -

CNN.com

This is about Steve Job and
his business concepts.

Not related to business
concepts.

Third result:

When it comes to

presentation, Mark

Zuckerberg is no Steve Jobs

- CNN.com

Libya's other wealth:

Archaeological treasures -

CNN.com

This article contains about

Mark Zuckerberg and Steve

Jobs and their business
ideas.

This article does not relate

to business concepts.

None of the above web pages have the keyword “concept”.
But in Semantic Search the relevant results are ranked at the
top since the search is based on the semantics of the content.

2) Search query – “news related to entertainment”
Extra tags: entertainment, news

TABLE 3

SEMANTIC SEARCH RESULTS FOR THE QUERY "NEWS RELATED
TO ENTERTAINMENT"

Semantic Search results Keyword search results

First result:

'Hunger Games' cast: Cheat

sheet for stardom -

CNN.com

Iran's nuclear plant

connects to electric grid, the

country says - CNN.com

This article is related to the
movie “The Hunger Games”

therefore this is a relevant

result for the search query.

This article is about a
nuclear power plant and not

related to entertainment at

all.

Second result:

Katt Williams explains

apology for Mexico remarks

- CNN.com

Nice guys earn less, study

finds - CNN.com

Katt Williams is a comedian

therefore this article is

related to entertainment.

This has no content related

to entertainment.

These web pages also do not contain the keyword
“entertainment” in their articles. But the Semantic Search has
showed very good accuracy in predicting what the user needs
to search.

VIII. COMBINING RESUTLS

As described in earlier sections, iSeS framework gives a
relevancy value for each and every item search results (i.e.
webpage or document) based on their semantic closeness to the
query as well as a preference value to the each item based on
the expected preference by the user towards the item. iSeS then
calculates a composite score to be used for the final search
results ordering. This composite score is calculated as the
weighted average of relevance and preference scores described
earlier and the weights used for this purpose are configurable.
At the moment, 0.75 and 0.25 are used as weights for relevance
and preference scores respectively and since these weights are
configurable, one can adjust the relative importance of
semantic closeness to the query and the personalized nature of
the search results.

IX. CONCLUSION

iSeS provides a framework to integrate a personalized
semantic search engine to their website/data repository. We
believe that it can remarkably improve the results of the search
where the traditional keyword based searching fails in
obtaining useful results. Further integration of personalization
will be useful for the client who implements iSeS on their own
application which has multiple users using the search feature.
This remarkably cuts down the time and money to come up
with a completely new search mechanism for their respective
projects. It is the iSeS team‟s wish that this project bears a
catalytic impact on searching based on semantics and will be
even a tiny help to arrive at the concept of semantic content
management in the near future.

X. ACKNOWLEDGMENT

We would like to express our sincere gratitude to Dr.
Shehan Perera, the main supervisor of project iSeS, who was
always behind us giving us valuable feedback and comments
on the work. Mr. Sajith Vimukthi of Zone 24x7, the project co-

supervisor, was with the team right from the beginning, from
the time of inception of the idea itself. Even along with his very
busy schedule, he organized meetings with the team and voiced
his opinions in moving forward. Also the team would like to
thank the project co-coordinator Dr. Shantha Fernando for the
support and guidance rendered throughout the project time
period.

REFERENCES

[1] F. Alkhateeb, A. Alzubi, I. A. Doush, S. Aljawarneh, and
E. Al Maghayreh, “Extracting authoring information

based on keywords and semantic search,” in Proceedings

of the 1st International Conference on Intelligent

Semantic Web-Services and Applications, New York, NY,

USA, , p. 1:1–1:6, 2010.

[2] J. Peckham and F. Maryanski, “Semantic data models,”

ACM Computing Surveys (CSUR), vol. 20, p. 153–189,

Sep. 1988.

[3] T. K. Landauer, P. W. Foltz and D. Laham, “An

Introduction to Latent Semantic analysis,” Discourse

Processes, vol. 25, no. 2, p. 259-284, 1998.
[4] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.

Landauer, and R. Harshman, “Indexing by latent semantic

analysis,” Journal of the American Society for

Information Science, vol. 41, no. 6, pp. 391-407, Sep.

1990.

[5] S. Hammarling, “The singular value decomposition in

multivariate statistics,” ACM SIGNUM Newsletter, vol.

20, p. 2–25, Jul. 1985.

[6] Konstan, J., Miller, B., Maltz, D., Herlocker, J., Cordon,

L. and Riedl, J. “GroupLens: Applying Collaborative

Filtering to Usenet News” Communication of the

ACM, 40(3), pp. 77-87, Mar. 1997.
[7] Sarwar, B., Karypis, G., Konstan, J. and Riedl, J.

“ItemBased Collaborative Filtering Recommendation

Algorithms” in Proceedings of the 10th international

conference on World Wide Web, Hong Kong, Hong Kong,

2001, pp. 285-295.

[8] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Item-

based collaborative filtering recommendation

algorithms,” in Proceedings of the tenth international

conference on World Wide Web - WWW ’01, Hong
Kong, Hong Kong, 2001, pp. 285-295.

[9] D. Lemire and A. Maclachlan, “Slope One Predictors

for Online Rating-Based Collaborative Filtering,”

In Siam Data Mining(SDM05, p. 21--23, 2005.

[10] “Home | OpenCalais.”[Online]. Available:

http://www.opencalais.com/. [Accessed: 03-May-

2011].

[11] “Jena Semantic Web Framework.” [Online]. Available:

http://jena.sourceforge.net/. [Accessed: 26-Aug-2011].

[12] “RDF - Semantic Web Standards.”[Online]. Available:

http://www.w3.org/RDF/. [Accessed: 03-May-2011].

[13] H. Z. Jiwei, H. Zhu, J. Zhong, J. Li, and Y. Yu, “An
Approach for Semantic Search by

Matching RDF Graphs,” In Proceedings of the special

track on semantic web at the 15
th
 International Flairs

Conference(Sponsored by AAAI, 2002.

[14] “Semantic Search - Algorithmic Problems Around the

Web _8.” [Online]. Available:

http://www.docstoc.com/docs/75839792/Semantic-

Search---Algorithmic-Problems-Around-the-Web-_8.

[Accessed: 26-Aug-2011].

 [15] D. Jurgens and K. Stevens, “The S-Space package: an

open source package for word space models,”
Proceedings of the ACL 2010 System Demonstrations,

p. 30–35, 2010.

 [16] D. Widdows and K. Ferraro, “Semantic Vectors: a

Scalable Open Source Package and Online Technology

Management Application,” in Proceedings of the Sixth

International Language Resources and Evaluation

(LREC’08), Marrakech, Morocco, 2008.

