
The Future Web Services: A Fusion of Web

Services, Grid Computing and Volunteer
Computing

H. Jayathilaka, A. Dassanayake, E. Angunawala and D. Boteju
Department of Computer Science & Engineering, University of Moratuwa, Sri Lanka.

highlighting the performance requirements of enterprise
grade Web Services deployments. There we also look at the
techniques that can be used for improving the performance
of Web Services, their advantages and disadv antages.

Chapter 3 of this paper explains a general method for
implementing Web Services on a Grid/Volunteer Computing
based system. This chapter closely looks at the important
features of such an architecture while taking a prototype
system known as MOINC as an example.

Chapter 4 describes some of the potential applications that
can make use of a platform which combines Web Serv ices
with Grid/Volunteer Computing.

Chapter 5 will wind up this paper by summing up the vital
content discussed throughout, as well as taking a look at
what lies ahead on the path for Web Services and
Grid/Volunteer Computing.

Abstract - Taking a revolutionary step forward from the
already prominent techniques for improving the
availability and scalability of Web Services deployments;
this paper explores the possibilities achievable through
Grid Computing and Volunteer Computing, as
mechanisms of improving the performance of Web
Services based systems. This paper discusses the
theoretical aspects of Grid Computing, Volunteer
Computing and how those concepts can be used in
conjunction with the more practical Web Services
standards to develop highly available, high scalable Web
Services. The challenges, potential problems and pitfalls
of such an approach are also brought out, while
highlighting possible solutions and workarounds where
possible.

Ii.Web Services And System PerformanceI. INTRODUCTION

Y\7eb Services are increasingly becoming a dominant W method for implementing distributed systems ari

Service Oriented Architecture (SOA) [1]- A°n£ ''' .
needs foT security and reliability, the nee or
efficient

Over the years, clustering of servers has been ,
widely used technique for improving the availability and
scalability of Web Services deployments. But wheri the: oa
°n the servers continue to increase, clustering cou
tQbe inefficient, expensive and difficult to maintain.

Techniques such as Grid Computing an 0 ...
Computing can be used for deploying complex s>s e
arge resource requirements on inexpensive com

hardware. Already a number of applications make u
ese paradigms to maximize the performanc

These techniques effectively com in

A Web Service can be defined as a software system which
enables interoperable machine-to-machine interaction over a
network [2]. It has a well defined interface expressed in a
machine processable format. In a more practical sense, Web
Services are most of the time just Web based APIs that can
be accessed over a network and executed on a remote
computing system.
As Web Services continue to become a dominant paradigm

in the world of distributed computing, more and more
system developers and application users are starting to get
concerned of the performance levels achievable with Web
Services deployments. Web Services facilitate developing
modular systems while improving the reusability and the
maintainability of system components. Web Services also
support interoperability across heterogeneous systems via
the adoption of a set of globally accepted standards [1],
specifications and principles like XML [3], SOAP [4] and
WSDL [5]. When considering other distributed computing
paradigms such as CORBA [6] and RMI [7], Web Services
platform definitely qualifies as the most interoperability
friendly system development framework. These
characteristics have helped the Web Services platform to
rapidly evolve into a powerful and widely accepted

accessibility of Web Services is becoming

availability. . - , hundreds
Processing power and computational resources globe.

systems distributed .11 «
Yu i 1,118 research effort, we attempt mnutino.eb Services paradigm with Grid/Volunteer o
>ter 2 of this paper introduces the concepts ot u

°mputing, Volunteer

Tk exPensive v S* this

Computing and Web Services while

83

ctSTn 'as a gen-1

enables system developers to combine the processing povv*
of multiple computing systems, thus effectively increasing
the overall performance of the hosted applications, i,
improves the availability of the overall system since a
failure in one node does not generally cause the entire
system to go down. Thus the service clients will generally
experience better performance, shorter response times
little or no service outages.

mechanism for implementing systems based on the SO .
However, the Web Services paradigm and its counterpa

technologies are inherently slow in operation due to t e
network latencies and communication delays which cannot
be avoided. Also Web Services middleware has to deal wit
several other overheads, like processing SOAP messages to
extract data and constructing SOAP messages to send data,
which causes the system performance to degrade further.
Under extreme loads, the overall performance of the system
can hit critical levels causing the systems users to
experience very long response times and receive inaccurate
results. In the worst case, the application server software
that host the Web Services can fail or be forced to move into
an inconsistent state causing a temporary down time of
hosted services. Usually when such applications fail, there is
no guarantee that the data they have been processing up to
that point would be left in a consistent state. It is also worth
mentioning that these weaknesses of Web Services can be
even exploited to attack a system and force a system failure
or a services outage.

and

C. Problems in Deploying Sewer Clusters
With all the good, clustering suffers from a number of

drawbacks. In this section we mention three of them which
we think are the most dominant.

First and foremost it does not fully solve the original
problem. All it does is delaying the problem from surfacing.
When the organizations grow and businesses expand the
amount of service requests arriving at the server clusters
will rise dramatically. At one point it will exceed the traffic
level manageable by the cluster and clients will start
experiencing poor application performance and service
outages because any cluster has only a finite amount of
computing resources.

Another problem in clustering is that it does not suit
certain types of applications. In application domains such as
image processing, scientific data analysis, bioinformatics
and signal processing, where the applications are usually
highly computationally intensive, simple clustering may not
offer the expected results. In such situations almost all the
nodes will be busy all the time processing data. If the
service requests arrive at a fairly higher rate, tasks will be
queued up on the finite number of nodes available, making
the application performance degrade drastically. This could
quickly lead up to the failures in multiple nodes and
eventually the failure in the entire cluster.

Perhaps the most perceivable drawback of server clusters,
is that they are very expensive to implement. Multiple
production grade servers and the infrastructure to set them
up in a cluster can cost a large amount in financial terms.
Also such complex tasks require the experience of trained
professionals who could be difficult to find or costly to hire.

A. Deploying Enterprise Grade Web Services
Due to the above mentioned reasons, deploying Web

Services in a business environment can prove to be risky. In
the ever competitive corporate sector, even the smallest
service outage can cause enormous financial losses, damage
to client relationships and diminish the organization’s
reputation.

Therefore when deploying enterprise grade Web Services
in a business environment, the system developers and
administrators must ensure that the service deployment
fulfils the following two fundamental requirements.

1) High availability
2) Scalability

High availability is the ability of a system to continue
operations without failing. A high available system does not
allow services outages and continues to offer services while
tolerating any faults that occur during its operation.

Similarly, enterprise grade Web Services deployments have
to be scalable. Scalability refers to the ability of a system to
serve a large and increasing number of service requests
without significant performance degradation.

B. Web Services Clustering
Clustering is the most commonly used practical technique

to achieve high availability and scalability in Web Services
deployments. As the word implies, with clustering, multiple
computing systems or servers are used to deploy the
application, thus forming a cluster of servers. Hardware
level or software level load balancers are used to manage
distribution of service requests among the nodes of the
cluster.
Clustering is a simple yet elegant technique which is being
used all around the world to host highly available and higly
scalable Websites, Web applications and Web Services. Due
to its immense popularity, almost all the major Web Servi

D. Grid Computing
Apart from predominant methods like clustering there are

? e.r aPProaches that can be used to achieve the desired
eveis of high performance. Grid Computing is such a

f anism which can be used to improve application
Comnm^’ SCalability and availability. The term ‘Grid
cfiW Was coi"ed in the mid 1990*s to denote
and Fnoi C0.mPut*n8 infrastructure for advanced scientific
of servers ^ can be considered ^ a branC
clusterino n “st®nn8 or the next generation of server

same
a

ices

84

ecation of geographically distributed ‘autonomous’
wees dynamically at runtime depending on their

‘^lability, capability, performance, cost and user's Quality
^Service requirements [9]. Ian Foster of Argonne National
° boratory and University of Chicago introduced three
U rties that characterize grids in a paper titled, ‘What is
h° Grid? A Three Point Checklist’ [10], published in 2002.

the to Foster the three properties of a grid are as

-A grid coordinates resources that are not subject
to centralized control
-A grid uses standard, open, general-purpose
protocols and interfaces
-A grid system delivers non-trivial qualities of
service

The first Volunteer Computing system in the world was
the Great Internet Mersenne Prime Search (GIMPS), which
was launched in 1996. It was followed by distributed.net in
1997. The term ‘Volunteer Computing’ was coined by Luis
Sarmenta, the developer of Bayanihan [II]. According to
the Harvard Business Review, the term is appealing for
global efforts on social responsibility, which is helpful in
marketing terms [12]. SETI@Home [13] and
Folding@Home [14] are Volunteer Computing systems
launched in 1999 which received considerable media
attention.

Unlike Grid Computing, in a Volunteer Computing system,
the volunteers are effectively anonymous [15]. In certain
cases, the users may be requested to register and supply
personal information, but they are neither linked nor legally
bound to a real-world entity or corporate body. Because of
the anonymity of the volunteers, they are not accountable to
tasks or projects carried out on the computing system. If a
volunteer misbehaves in some way, the project cannot
prosecute or discipline the volunteer. On the other hand, the
individual volunteers should trust the projects in several
ways [15].

1) The project should not execute any applications
that can potentially damage the system or invade
the privacy of the volunteer.

2) The project should use standard secured protocols
and should follow secured practices so that
attackers cannot use the Volunteer Computing
system as a vehicle for malicious activities.

3) The project should be truthful about the work being
done.

Volunteers in a Volunteer Computing system are
typically members of the general public who own Internet
connected personal computers. Looking at how Volunteer
Computing systems are used in the modem day world, it
appears that they are mostly used in academic and scientific
projects.

Recording
follows.

The first property stated above is perhaps the most
significant feature of Grid Computing . That is the property
which distinguishes Grid Computing from traditional server
clusters. In a traditional server cluster, there would generally
be a master server which knows about other servers in the
cluster, how to communicate with them and what to expect
from them. The master server uses this knowledge to
distribute the workload among the members of the cluster.
But in Grid Computing, each member is an autonomous
system which manages its own resources. Any software or
hardware which needs to make use of the grid should be
able to dynamically find and determine the membership of
the grid via some protocol and should discover a way to
communicate with them and to get the required tasks done.

A grid may be a combination of few tens or even hundreds
of computers. These computers (nodes) can be located in
geographically distinct locations and can be maintained by
different organizations. This is another distinctive feature of
Grid Computing. In a traditional clustering environment, the
c uster membership is comparatively small and generally all
1 e nodes in a server cluster are maintained by a single
organization or corporate body. When grids are concerned,

e overah computing power offered by the system can be
enormous, because the number of computing devices in a

1 large. As a result, computing grids generally
cluJte 6 ketter performance compared to most server

F. Advantages of Grid Computing and Volunteer Computing
We believe that Grid Computing

Computing have several benefits which traditional
clustering of servers cannot offer. Firstly, Grid Computing
and Volunteer Computing can be implemented
inexpensively compared to traditional clustering since they
do not require a multitude of expensive production grade

Even a set of ordinary personal computers would be
sufficient to set up the grid. These personal computers too
do not have to be systems dedicated to the grid. They could
be computers that people regularly use. Like SETI@Home
and the World Community Grid do, the computers can be

p to join the grid, only when it is in the idle state (cycle
scavenging).

In addition, Grid Computing and especially Volunteer
Computing do not mandate specialized networking
capabilities and communication infrastructure. A grid
computing based system can be implemented on any
network infrastructure. Volunteer Computing systems

and Volunteer

computers.

Vol° Unteer Computing
^pro11'6^ ^omPu^n2 is another possible mechanism for
system^ Per^ormance and availability of complex

i c°mput' ^unteer Computing is a type of distributed
I cotTw-1^’ *n computer users voluntarily donate their
] to ^ Drm^ resources to one or more tasks, generally referred
! Co,**- As far as the technical aspects of a Volunteer

With Grid^S^S^em are concerned> it shares many features
of crucial C°mpi!tin8 syste^s. However there are a number
toalcg Vhi tec^n*cal and non-technical differences- which
^Putint)11116^ ^omPutmg a unique style of distributed

O'

servers.

set u

85

!

are capable of proving high levels 0f
performance, scalability and availability but they might not
offer the required levels of reliability and security for Web
Services Therefore when using Grid Computing to scale up
Web Services deployments, special measures should be
taken to maintain a high level of reliability and security.

Web Services engines also require mechanisms to easily
monitor and manage the service deployments. In addition,
they require easy methods to deploy, manage and remove
services and other module artifacts. Therefore, any efforts
made to combine Grid/Volunteer Computing models with
Web Services should take these requirements into
consideration as well.
The rest of this chapter discusses the general approach we

formulated for using Grid/Volunteer Computing models to
deploy Web Services. We also developed a prototype system
in Java called MOINC [20], based on the described
architecture. Implementation details regarding this prototype
system are stated where appropriate.

Computing
operate exceptionally well on regular data networ s.
Therefore, with Grid Computing and Volunteer Computing,
complex tasks can be carried out without having to install
specialized computing devices and networks.
Grid Computing and Volunteer Computing have the ability

to offer far more computing power than traditional
clusters. Unlike server clusters, grids or Volunteer
Computing systems could contain very large numbers of
computing systems comprising several hundreds or even
thousands of nodes. Hence they offer a huge amount of
aggregated computing power and computing resources.
Moreover, unlike in server clusters, the computing power of
the overall system can be easily increased by connecting a
few more inexpensive persona! computers to the network.
This makes Grid Computing and Volunteer Computing ideal
for applications with strict scalability requirements.

Looking at the existing client side Volunteer Computing
applications, we have realized that it is fairly easy to
connect a personal computer to a Volunteer Computing
system and contribute to the system in terms of computing
resources. Using and maintaining such software do not
require any level of technical expertise. This is in contrary
to traditional server clusters, where the each node in the
cluster requires special attention of a trained professional
system administrator or Engineer. In Volunteer Computing
systems only the server side applications require such
professional attention and care. This could ultimately help to
improve the maintenance overhead and cost in business
environments.

server

A. Inter-Node Communication and Membership
Management

Establishing inter-node communication and membership
management are among the most fundamental requirements
of a platform which combines Grid/Volunteer Computing
with Web Services. In Grid/Volunteer Computing systems
the individual nodes may have the freedom to decide when
to connect to the grid and when to leave the grid. Therefore
unlike in a traditional server cluster, the membership of the
grid is mostly dynamic which makes it mandatory to have
some kind of a robust inter-node communication protocol
through which the software and devices which manage the
overall operation of the grid can detect when nodes join the
grid and when a node leaves the grid.

When Grid/Volunteer Computing is used in conjunction
with Web Services, when a node joins the grid it will start
acting like a server which hosts a set of Web Services.
Service request to these small scale servers should be
forwarded over

G. Grid Computing and Volunteer Computing for Web
Services

Capitalizing on the functional and economical advantages
of Grid Computing and Volunteer Computing mentioned in
section 2.6, we explored the possibilities achievable through
using a Grid Computing or a
to improve the availability and scalability of enterprise Web
Services deployments. We closely studied the existing
clustering models for Web Services and we formulated a
general mechanism which extends them into Grid/Volunteer
Computing models.

In the next chapter we closely look at this mechanism while
discussing the pros and cons of the method where
appropriate.

In. Grid Computing And Volunteer Computing
Models For Web Services

When using a Grid Computing or a Volunteer Computing
model with Web Services there are several challenges that
we need to overcome. Web Services deployments usually
have a number of associated requirements such as reliability
security and quality of service which cannot be easily
provided with Grid Computing or Volunteer Computing
Technologies like Grid Computing and Volunteer

Volunteer Computing model

a standard protocol like HTTP since
technically they are not very different from an ordinary Web
server. However in order to forward messages over an
application layer protocol such as HTTP the sender must
know the IP address and the HTTP port number of the node.
In a traditional server cluster these configuration parameters
are mostly static and hence those values can be programmed
or configured into a central master server. However, in a
Grid/Volunteer Computing environment there is no such
entity which has that knowledge about the nodes. Also
unlike in server clusters in Grid/Volunteer Computing the IP
addresses and port numbers of nodes are subjected to
change. If the nodes reside in a DHCP enabled network their
IP addresses might change time to time. Therefore some
inter-node communication protocol is required to share
information related to individual nodes such as their host
addresses, HTTP port numbers and other configuration
parameters. Inter-node communication allows nodes to
convey this information to the required parties dynamically*

86

h a communication protocol would also enable a node to
f d the membership of the grid dynamically and manage
the membership as necessary.

The inter-node communication protocol should also
f cilit^te passing and sharing of control information,
Inals and if possible usage statistics for accounting and

management purposes. If the communication protocol
nables passing commands, then that could enable

controlling important functions of nodes such as service
deployment and module initialization. The inter-node
communication framework should also enable discovering
faulty, unreachable (due to connectivity issues) or
inconsistent nodes connected to the grid. This will enable
the system to deal with such nodes with extra caution which
improves the overall reliability.

Since Grid Computing and Volunteer Computing systems
share certain properties with traditional clustering based
systems, ordinary group communication frameworks can be
used as the means of establishing inter-node
communication. Most practical group communication
frameworks allow a node in the system to dynamically find
and determine the membership of the cluster and share

I information among the nodes connected to the cluster. We
did some experimenting with the Apache Tribes [16] group
communication framework which makes up the foundation
of the existing clustering implementation of Apache Axis2
[17]. It is a multicast based group communication
framework and we could successfully use it to establish
inter-node communication of a grid whose membership
changes dynamically. Multicasting protocols are ideal for
this kind of applications because all the nodes in the grid
can be easily notified of important events and the entire grid
can be kept in perfect synchronism.

Furthermore, in a clustered Web Services engine we often
need to monitor, manage and account for the activities of
individual nodes. These requirements are mainly due to the
reliability, security and Quality of Service requirements
associated with the Web Services deployment. To fulfil
1 ese requirements the inter-node communication protocol
should

conjunction with the Apache Tribes group communication
framework. Thisara messages are fairly small and consist of
a set of key-value pairs. All the messages are secured using
TLS. We used a 512 bit long key with the RSA algorithm
for encryption of messages.status

B. Shared Repository
When using Grid/Volunteer Computing with Web Services,

one of the biggest problems that must be addressed is how
to share services, modules, configurations and other
common artefacts among the nodes of the system. Having to
deploy the services and modules in each and every node
manually would be quite cumbersome, especially when the
grid is made up of hundreds of nodes. Maintaining such a
system would also cost lot of time and effort, due to the
dynamism of the grid membership.

The simplest solution to this problem is to have a shared
repository of services and modules which all nodes can
access and download from. For a large scale grid which
spans across multiple networks and domains, a repository
hosted on a centralized Web server or an application server
would be suitable. This will enable each node to download
all the necessary services, modules and configuration files
from a common URL
Web Services registries are also suitable for this purpose.

Web Services registries are specialized meta-data
repositories for enterprise grade SO A deployments. During
our experiments we managed to successfully start a grid
consisting of multiple nodes using a shared repository
hosted on WS02 Registry [18], which is open source and
distributed under the Apache public license. Each of the
nodes in the grid had an Apache Axis2 instance running. By
using a custom inter-node communication system we
developed, w'e also managed to control the services and
modules being deployed in each node.

However, there are several disadvantages of using a shared
repository to host services and modules as well. If the total
size of the services and modules is very large, a significant
amount of network bandwidth and time would be wasted by
each node just to download the artefacts and initialize itself.
Therefore, it is advisable to employ some level of caching
within each node. This will prevent nodes from having to
download the same set of artifacts repeatedly as they leave
and join the grid. Another solution to this problem is to
control the number of services and modules getting
deployed on each node.

C. Default Node
As mentioned in the previous sections, the membership of

a Grid/Volunteer Computing system is mostly dynamic. If
the individual nodes decide when to connect to the grid and
when to leave the grid, then there could be situations where
there is not a single node connected to the grid to service the
Web Service requests. In a large network the possibility of
this situation occurring could be negligibly small. But still
we believe it is a good idea to have some kind of a fall back

support a certain level of unicast communication
^ong the nodes. When two nodes communicate in unicast
.hion, the data
•nformati

sent over the wire could comprise state
on, control information or commands. The inter­

communication might have to be made secure and
com .^ePend*ng on the situation. Ordinary group
rpn, !nun*cati0n frameworks cannot guarantee these
reciuirements.
deveT S°^ut*on f°r th® above mentioned issue would be to

node
reliable

a simple custom communication framework to be
ftam " COnJunction with a group communication
by ^is protocol can be made reliable and secured
The / a general security mechanism such as TLS.
8ecuririen^ encryPtion algorithms and keys used for
ofthe ® messages should be decided on the sensitivity level
For ou1 data Sent over the wire*

c°mm r.prototyp® system MOINC, we developed a simple
mcation framework called Thisara which we used in

87

sent to the client application. Also if the load balancer can
support splitting and aggregating of messages even more
complex but useful Grid Computing applications can be
deployed on the end system.
For our experiments we developed a prototype load

balancer based on Apache Synapse lightweight Enterprise
Service Bus (ESB) [19]. It is open source, known to be
efficient and interoperates well with Apache Axis2. Apache
Synapse and Axis2 provide a set of convenient interfaces to
implement clustering and load balancing behaviour as well.

We came up with a concept called clustering domains and
programmed our prototype load balancer

implementation around that concept. A clustering domain is
a collection of Web Services. Each clustering domain can
have zero or more nodes connected to it. When a node joins
a particular clustering domain all the services allocated to
that domain gets deployed in the node. When a service
request arrives at the ESB it invokes a routine which
examines the ’TO' header of the SOAP message and
determines the service to which the request is destined to.
Then a clustering domain is found which contains the
required service. Finally the message is forwarded to one of
the nodes currently joined to that particular clustering
domain.

mechanism to handle this special and rare situation.
The most obvious solution to this problem is to have one

dedicated computing system always connected to the grid.
We refer to this special system as the default node. It will
always be a part of the grid, serving requests as they come
along. Should a situation occur where there are no nodes
connected to the grid, all the incoming requests will be
forwarded to the default node. It is a good idea to employ a
fairly powerful machine as the default node of the grid since
in the worst case it will have to cater an enormous amount
of service requests.

It is to be noted that the default node does not require any
special programming or configuration. It is just another
node connected to the grid. The only difference is, unlike
the other nodes which are dynamic the default node is fairly
static. It is permanently connected to the grid.

In the prototype Grid Computing system we developed, we
used a WS02 WSAS instance as the default node of the
system. WS02 WSAS (Web Services Application Server) is
an enterprise grade Web Services engine based on Apache
Axis2. Therefore the same artefacts and configurations used
in other nodes could be used with the default node as well.
Also we could use the same shared repository to initialize
the default node.

we

The concept of clustering domains mandates maintaining
some state information in the load balancer. But it also helps
to improve the performance of the system in several ways.
Because a clustering domain contains only a subset of all
the deployed services, each node that connects to
particular clustering domain, has to deploy only a subset of
all the services. Without the abstraction of clustering
domains, each node will have to deploy all the services
available in the central repository. When the total size of all
the service artefacts is fairly large, that would be highly
undesirable. With the concept of clustering domains, nodes
can connect to the grid and initialize themselves fairly
quickly, without imposing much of an overhead on the
network. Apart from that, clustering domains effectively
group the nodes and services into simple and more
manageable collections. This could be highly useful when
developing an administrative user interface or a
management console for the overall system.

In our prototype system when a node connects to the gn »
the node provides some configuration information through
the inter-node communication framework, which is then
used to select a suitable clustering domain for the no e-
Similarly when a node leaves the grid, it is unregisterc
from all the domains to which it is assigned.
We used a weighted round robin algorithm as
balance algorithm in out prototype system. The
maintains weight information pertaining to each ot
nodes and uses that information to properly distribute ^
service requests among the dynamic members of the grl^
The weight figures were mostly hard coded in
experimental system, but in a production system there
be some API through which these values can be chang
dynamically at runtime.

D. Load Balancer
As in the case of the server clusters, a hardware level or

software level load balancer is required in the
Grid/Volunleer Computing approach to distribute the
incoming service requests among the nodes connected to the
grid. However, it is most recommended to use a software
level load balancer because load balancers implemented at
hardware level are designed to deal with a static
membership for the most part and it would find it hard to
support a dynamic membership.
The load balancer will be the single entry point to the

entire system for all the client side applications. During the
operation it will receive all the service requests from client
applications. The load balancer should keep track of the
current membership of the grid and distribute the service
requests among them based on a certain load balance
algorithm. The load balancer should be lightweight and it
should perform only the minimum possible amount of
processing on the incoming requests. If the load balancer
has to perform lot of processing on each incoming service
request, when the rate at which requests arrive hits critical
levels the load balancer will become a performance
bottleneck. In the worst case it may fail causing the entire
system to be unavailable. Therefore, the load balancer
should only play the role of a lightweight mediator which
simply mediates the incoming requests to a set of endpoints.

If the service deployment requires extended reliability the
load balancer should attempt to provide it by sending
multiple copies of the same message to different but similar
service endpoints (nodes) in the grid. Out of all the
responses it receives, the load balancer can select one to be

a

the load

88

£ System Management
An enterprise grade Web Services deployment must be

easy to monitor and manage. Therefore some level of UI
Engineering should be involved in the overall system
design- The system should provide a central command and
control panel through which the entire system can be
monitored and managed. At least the following basic
requirements should be supported by the control panel.

- Deploy and manage services
.. Deploy and manage modules
— Manage users and privileges

In addition, a Grid/Volunteer Computing based system will
have the following user interface requirements.

- Monitor and manage the grid/cluster
- Monitor and control individual nodes

Iv. Possible Applications

When possible applications are concerned, this kind of a
platform is suitable for any Web Services deployment where
modularity and performance are the key requirements.
Emplying the best of both Web Services and Grid/Volunteer
Computing, the resulting platform can generally support
high available, high scalable applications which are modular
and easy to maintain.

Currently Web Services are mostly restricted to business
applications and other commodity applications. But when
Web Services are combined with Grid'Yolunteer Computing
the overall performance level can be increased significantly
to meet the requirements of other domains like academic
and scientific applications where the adoption is limited.
Applications such as SETI@Home could be easily
implemented and deployed on such a system with a
minimum programming and maintenance overhead. In such
a setting, each service request will bring in a small amount
of input data that needs to be processed. Because the amount
of data in a single request is small, a single node can quickly
and efficiently process the request and provide the results.
However since the total amount of aggregated input data in
scientific applications is usually quite vast, the number of
sendee requests that originate will be proportionately large.
But a Grid/Volunteer Computing system comprising of
hundreds of nodes can handle all the requests without failing
or degrading the overall performance.

Similarly, applications where a single task can be broken
into several subtasks and executed in parallel can be highly
benefited from a platform which combines Web Services
with Grid/Volunteer Computing. In such a situation, each
sendee request can be split into a multitude of service
requests and forwarded to multiple nodes in the grid, to be
processed simultaneously. As an example let's consider an
image processing application. Each sendee request brings in
a sequence of numbers, the pixel matrix of an image. The
load balancer of the system can break the matrix into
multiple sub matrices and forward to several nodes. Each
node can process a sub matrix by running some image
processing algorithm on it. Then the load balancer can
collect the resulting matrices from the nodes, aggregate a
response message and send back to the client.

A Web based control panel is most suitable for a system
which combines Grid/Volunteer Computing with Web
Services, since it allows more flexibility, mobility and
convenience to the system administrators. The inter-node
communication protocol can be used to pull status
information from the individual nodes and send control
information to the nodes.

In our prototype system MOINC, we used the Thisara
communication framework to retrieve information from
Apache Synapse regarding nodes connected to the grid. This
information was then used to display the current status of
the grid on a Web interface. All the user interfaces of
MOINC were developed on the WS02 Web Services
Framework for Javascript and were made available over
HTTP and HTTPS.

^ High Level Architect
Figl illustrates the high level architecture of a system which
combines grid/volunteer computing with Web Services. It
c early indicates the main components of the platform such
as the shared repository, default node, clustering domains
with nodes and the load balancer. In addition it depicts how
va.nous components are connected and interact with each
other.

we

□ Shared repository
Clustering
domain

Clustering
domain ^ t N A combination of Grid/Volunteer Computing and Web

Sendees is suitable for hosting certain Web Service mashups
as well. Mashups generally have to perform certain
computational intensive tasks such as site scraping, reading
RSS feeds and reading binary data streams, which
sometimes makes them unacceptably slow and inefficient.
With Grid/Volunteer Computing to enhance the performance
of service deployments mashups can run more efficiently on
inexpensive computing devices.

We believe that it is a good and efficient way for combining
seemingly useless computing resources distributed all
around the world, which can also optimize the hardware

0 Default
nodeLa

Load balancer
All service
requests and
responses

Fig 1. MOINC high level architecture 89

Web Consortium working group note, HTML, Feb. 2004.
[3] Tim Bray, Jean Paoli, et al. Extensible Markun
Language (XML) 1.0 (Fifth Edition).
Available:http://www.w3.org/TR/xml/,
Recommendation, HTML, November 2008.
[4] Mitra, N. Simple Object Access Protocol (SOAP) 1.2;
Primer. Available:http://www.w3.org/TR/soapl2-partO
W3C, HTML, 2003.
[5] Christensen, E., Curbera, F., et al. Web Services

Language.
Available:http://www.w3.org/TR/wsdl, W3C, HTML, 2001.
[6] Object Management Group. CORBA 3.1,
Available:http://www.omg.org/spec/CORBA/3.1, OMG,
HTML, 2008.
[7] Sun Microsystems. JDK 1.4.2 Remote Method
Invocation.
Available:http://java.sun.com/j2se/1.4.2/docs/guide/rmi/,
Sun Microsystems, HTML, 2003.
[8] Foster, I. and Kesselman, C. (eds.). The Grid: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann,
1999.
[9] The Gridbus Project. Grid Computing Info Centre (Grid
Infoware). Available:http://www.gridcomputing.com,
HTML, 2008.
[10] Foster, I. What is the Grid? A Three Point Checklist.
GRIDToday, July 2002.
[11] Sarmenta, L.F.G. Bayanihan: Web-Based Volunteer
Computing Using Java. Lecture Notes in Computer Science
1368, Springer-Verlag, 1998. pp. 444-461. Proc. of the 2nd
International Conference on World-Wide Computing and its
Applications (WWCA'98), Tsukuba, Japan, March 3-4,
1998

utilization of computing systems and help use the much
wasted electricity in a productive manner.

W3CV. Conclusions And Future work

Our research investigates the possibility of using Grid
Computing and Volunteer Computing as a mechanism to
improve the performance, availability and scalability of Web
Services. The discussion introduces a general method which
combines Web Services with Grid/Volunteer Computing
while highlighting the main features of such a platform. We
also briefly explained a practical prototype system called
MOINC, which attempts to put those concepts into action.
We also looked at some of the advantages, disadvantages
and challenges associated with a system which uses
Grid/Volunteer Computing in conjunction with Web
Services.
As a result of the progression with our prototype and
insight gained further about the problem domain, we have
identified the following key areas for further research.

-More efficient load balance algorithms for
Grid/Volunteer Computing environments.
-More efficient and reliable inter-node communication
protocols.
—Hybridization of multicast group communication
frameworks with unicast inter-node communication.
-Gathering, storing and processing statistics from
nodes in the grid and using that information for
membership management and load balance purposes.
—More efficient ways of sharing state information
among the nodes.
-Hot deployment of services and modules and
reduction of service pending period.

In addition to the research areas mentioned above, some
effort should be invested to explore the possibility of further
improving the reliability and security of the overall
architecture. In addition, the possibility of using other Web
Services standards such as WS-Security, WS-Reliable
Messaging and WS-Policy in such an environment should
be investigated.

Description

[12] Porter, Michael and Mark, Kramer. The Link Between
SocialCompetitive Advantage and Corporate

Responsibility. Harvard Business Review, December 2006.
[13] SETI@Home - Project
Avai!able:http://setiathome.berkeley.edu/, University of
California, 2009.
[14] Folding@FIome - Main, http://folding.stanford.edu/,
Stanford University, 2009.
[15] University of California. Volunteer Computing
BOINC.
Available:http://boinc.berkeley.edu/trac/wiki/VolunteerCoiu
puting, 2007.
[16] Apache Software Foundation. Apache Tribes -
Tomcat

Home,

Acknowledgment

We would like to thank Mr. Afkham Azeez, Committer and
PMC member for the Apache Axis2 project and Mr. Ruwan
Linton, Committer and PMC member for the Apache
Synapse project for all their support, guidance and advices
during this massive research and development effort.

Module-CommunicationCluster
Available:http://tomcat.apache.org/tomcat-6.0-
doc/tribes/introduction.html, HTML, 2008
[17] Apache Software Foundation. Apache
Available:http://ws.apache.org/axis2, HTML, 2008.
[18] WS02 Inc. WS02
Available:http://wso2.org/projects/registry, HTML, 20 •
[19] Apache Software Foundation. Apache Synapse-
Lightweight ESB. Available:http://synapse.apac e-
HTML, 2008.
[20] MOINC. Mora Open Infrastructure for -
Computing. Available:http://www.moinc.org, HTML,

Axis2.

Registry-References

[1] Donald Furguson, Tony Storey, Brad Lovering and John
Shewchuk. Secure, Reliable, Transacted Web Services. IBM
white paper, HTML, October 2003.
[2] David Booth et al. Web Services Architecture
A vailable:http://www. w3.org/TR/ws-arch, World Wide

Netw°rk

90

http://www.w3.org/TR/xml/
http://www.w3.org/TR/soapl2-partO
http://www.w3.org/TR/wsdl
http://www.omg.org/spec/CORBA/3.1
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/
http://www.gridcomputing.com
http://setiathome.berkeley.edu/
http://folding.stanford.edu/
http://boinc.berkeley.edu/trac/wiki/VolunteerCoiu
http://tomcat.apache.org/tomcat-6.0-doc/tribes/introduction.html
http://tomcat.apache.org/tomcat-6.0-doc/tribes/introduction.html
http://ws.apache.org/axis2
http://wso2.org/projects/registry
http://synapse.apac
http://www.moinc.org
http://www

