
Efficient High Performance Computing

Framework for Short Rate Models

T.P. Dampahala, H.D.D.D. Premadasa, P.W.W. Ranasinghe, J.N.P. Weerasinghe, K.A.D.N.K. Wimalawarne
Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka

framework for other mathematical models used in
quantitative finance. Currently, most of the available High
Performance Computing implementations for quantitative
finance are based on web-services and require the users to
possess a certain level of programming capabilities. This
initiative distinguishes itself by relying on message parsing
and C++ implementations of the models for sheer
performance coupled with seamless integration with the
MS Excel Plug-in for ease-of-use. This means that the
cluster implementation and its intricacies will be hidden
from the users.

Abstract— Many mathematical calculations in the field of
computational finance consume a lot of time and resources
for processing. Some of the Short rate models used in
quantitative finance which have been taken into consideration
in this paper have been optimized for performance within a
cluster computing environment. The back-end cluster has
been seamlessly integrated with an easy-to-use front-end
which can be used by finance professionals who are not aware
of the details of the computational and database cluster.
Furthermore, many techniques that have been utilized to
improve the efficiency of the models have also been described.
This paper also describes the generalization of a High
Performance Computing Cluster designed for One-factor
Short rate models and how it can be used easily to be further
extended for other mathematical models in quantitative
finance. The ultimate objective is to come up with a
generalized framework for quantitative finance.

II Background

A. Parallel processing in Finance
Parallel computing is a form of computation in which

many calculations are carried out simultaneously,
operating on the principle that large problems can often be
divided into smaller ones, which are then solved
concurrently. In the case of this research initiative,
optimization has been achieved by parallelizing Monte
Carlo simulations that are needed in most quantitative
models in finance. An advantage here is that most serial
Monte Carlo algorithms are readily adaptable to a parallel
environment. Furthermore, calibration routines can be
carefully analyzed to incorporate parallel processing. This
has been discussed in detail under the mechanisms adopted
to increase efficiency of the framework.

I Introduction

The field of high performance computing and
computational finance is of special interest to computer
scientists as well as economists. Current research is
focused on maki ng use of parallel computing to build high
Performance clusters to tackle the heavy workload of
quantitative mathematical models. This research was
started with the setting up of a cluster computing
environment for the parallel execution of mathematical
juodels used for short rate modeling, namely Vasicek

°del [1] and Cox-Ingersoll-Ross Model [2]. Each
a gorithm along with its calibration routine has been
Parallelized. Several measures have been adopted to further
n lance the level of optimization. Client-server

iyC **ccture has also been implemented to enable any client
Se0n! any location to invoke tasks within the cluster, whose

rv!ceS are eXp0secj vja a server application. The client
‘s urther customized by developing a plug-in for

anair°.S°ft Excel 2007 for the beneflt of quantitative
ysts who will be making use of the system.

fra e Pr°ject was steered towards forming a generalized
Rework where most of the commonly used components

made reusable. This enables the user to extend the

B. Mathematical Models in Quantitative Finance

1) Geometric Brownian Motion Model

A stochastic process St is said to follow a GBM [3] if it
satisfies the following stochastic differential equation
(SDE):

dSf = i*Stdt + <rStdWs 0)

where Wt is a Wiener process or Brownian motion and
p (percentage drift) and o (percentage volatility) are
constants.

91

Algorithm to arrive at exact solution to CIR model: [4]

let d — ——
<TZ

tfd> 1
for i = 0 to (n - 1)

Weiner process is a continuous-time stochastic process
commonly used in mathematics characterized by the
following three facts:

W0 = 0
W, is almost surely continuous
W, has independent increments with distribution

Wt -Ws~ N(0.t-s)
(for 0 < s < t).

i.
u.
iii. <72(l-.““Ui+l”**))

° * 4T"

A <-•------ =-----------
r

generate Z~N{o, l)2) Vasicek Model

generate X~Xa-1Vasicek model [2] is a mathematical model describing
the evolution of interest rates. The model specifies that the
instantaneous interest rate follows the stochastic
differential equation:

r{ti+l) c\(Z + 4X)2 + X
end
if d< 1

for i — 0 to (n— l)
o-2(l -drt = a& — rt)d£ + adWt (2)

c <-
4 nWhere Wt is a Wiener process modeling the random

market risk factor. The standard deviation parameter, a,
determines the volatility of the interest rate, ‘b’ represents
the long-term mean and ‘a’ the mean reversion speed. This
model is called an Omstein-Uhlenbeck stochastic process.

A «
c

generate N~Poisson
generate X~xd+2X
r(ti+J <r- cX

3) Cox-Ingersoll-Ross Model end

The CIR model [3] can also be used in the valuation of
interest rate derivatives. The model specifies that the
instantaneous interest rate follows the stochastic
differential equation:

D. Calibration Routines

The calibration of the Geometric Brownian Motion is
very straightforward and thus the logarithmic return
method has been used to calculate both the standard
deviation and the annual growth rate. In the case of
Vasicek and CIR models, there are many available
calibration methods and it remains an active research area.
Some of the popular methods are the use of General
Method of Moments, Efficient Method of Moments, Least
Squares Regression and Maximum Likelihood Estimators.
The maximum likelihood estimator method has been used
in the implementation described in this paper.

drt - aQ> - rt + Oyfcd \Vt
where W, is a Wiener process modeling the random

market risk factor. The standard deviation parameter ‘a’,
long-term mean ‘b’ and mean-reversion speed ‘a* have the
same meanings as in the Vasicek model.
C. Discretization of Models

(3)

The models used above need to be discretized before
running Monte Carlo Simulations since they are
continuous stochastic processes. There are many methods
of discretization available. The exact solution of the
stochastic process has been used in all three cases because
they provide a high level of accuracy compared to the other
available methods.

Exact solution of GBM model:
Sr = 50exp [(ji - ja2)t + oVtN,

Exact Solution of Vasicek model:
rft + 1)

+b(l-

III HPGCluster

A. Computational Cluster

The Computational cluster is used to parallelize the
selected financial models. MPICH2 cluster [2] which is an
implementation of Message Passing Interface (MPQ W

putational cluster.
— setup in UNIX environment an

comprised a master node and compute nodes. The master
node is responsible for submitting jobs to the cluster.
cluster can be expanded dynamically. The main draw
of MPICH2 was that load balancing and fault tolerance

(4) specification is used to setup the com
The cluster was

-tP

back
(5)+o

92

m

were not supported and had to be handled explicitly. Lack
of load balancing lead to serious performance degradation,

all the jobs are submitted to the same set of nodes.

$ Database Cluster

MySQL Cluster has been deployed for the purpose of
this research project. It is a real-time open

sactional database designed for fast, always-on access
to data under high throughput conditions [4] and offers the
following benefits.

Automatic and transparent data distribution across data
nodes enables automatic replication of data in all nodes
when the client application updates a single API node. This
avoids the users having to manually update the market data
used for calibration in all data nodes to facilitate the
parallel calibration routines. MySQL Cluster prevents
single point of failure as it ensures an application
automatically fails over to another database node that
contains a consistent data set, if one or more database
nodes fail. Shared nothing architecture enables
extendibility of data nodes and SQL API nodes according
to the requirement of the application.

compute their results. Monte Carlo methods are often used
when simulating financial derivatives and tend to be used
when it is infeasible or impossible to compute an exact
result with a deterministic algorithm. Higher the Monte
Carlo simulations lower the standard error. In parallel
computing context Monte Carlo methods are extremely
parallelizable.

since

source
D. Servertran

A server was implemented in the cluster to
communicate with and respond to requests of clients (in
this case an MS Excel plug-in, but can be any client
implemented in compliance with the protocol of the server)
and resides in the master node of the cluster.

The server is capable of handling multiple concurrent
requests from clients. The server listens through a port for
ticket requests. When it gets a request, a unique identifier
is sent back to the client as a reference to the job. As soon
as the client acknowledges receipt of it, the request is
handed over to a separate thread to continue. This works as
a handshake mechanism between the clients and the server.
The reference identifier enables the clients to terminate the
respective job if required. The thread is taken from a pool
of threads [5] which is conFig.d as the server is started and
which gives more control over threads that accept requests.
The server responsible for the load balancing since it is not
covered by the computational cluster itself.

C. Parallel algorithms and Calibration

MPI was used to implement parallelization for short-
rate models. MPI is a message passing API, together with
protocol and semantic specifications for how its features
must behave in any implementation. MPI's goals are high
performance, scalability, and portability [3].

Parallel Calibration Routines

To simulate Vasicek Model and Cox-Ingersoll-Ross
j^odel it is necessary to determine Mean (Drift), Standard

eviation (Sigma) and Mean Reversion Speed (Lambda)
values from historical data set. Parameter calibration
consumes a large amount of time for instances where large
v° umes of market data is available. This becomes a
serious concern to a cluster which seeks to optimize the
execution time.

The solution is to perform the calibration process in
Parallel. However, the decision to calibrate in parallel or
th * s^0uld be based on the size of the data set. If the size of
v ? ataset remains less than a pre-calculated threshold
m3 Parameter calibration will be done in a single
u C lne* ^ no* calibration is done in the main node and
r°adcast to the other nodes.

Parallel Monte-Carlo simulations

alRor‘?i?te ^ar^° methods are a class of computational
ms that rely on repeated random sampling to

E.Client

The necessary objective of having a separate client is to
provide an abstract interface for any non technical user,
who might find it messy to control and exploit the
application from back end. In this case MS Excel has been
used owing to the fact that it is commonly used by
quantitative analysts.

The client can basically be used to;
1) Invoke and execute tasks on the cluster
2) Mange data in database cluster (which is

overlapped with execution cluster in this
application model)

l)

2)

93

numbers. Therefore, in order to ensure unique random
numbers across all nodes in the cluster a mechanism has
been implemented where the individual seeds are obtained
by multiplying a global seed generated based on time
multiplied by a prime number determined by the rank of
each node. This method has been developed based on the
suggestions made in [6]. Reproducibility of results has
been achieved by storing the unique seed generated based
on current time in the transaction log.

Unique seed = seed based on time x
(Rank of node 4- 4) tn prime mmtk

IV Measures to improve efficiency

■yp ~.>: ::irrv a * ;r. •.»/ ^ tv ; ‘a V., t3-as w*
K.*

SS ‘ hrrj* tftesfil_1_.—?
I...‘ luavjrt

’•

f:
As-- 0 UahentfMuDiu

(7)Cosf. Svuu mu
•2; Prtc—

ii £
□5=0 A. Load Balancing

s The computational cluster does not provide load
balancing in the current stable version of MPICH2.
Therefore as a remedy, load balancing has been
implemented explicitly in this HPC cluster.

The simple load balancing mechanism that has been
implemented is as follows. The focus is on making the
methodology simple and efficient; in order to make sure
that additional overhead of load balancing does not
diminish the benefits of parallelization. It is to utilize the
nodes in the cluster, in a round robin manner. Therefore
the jobs are submitted to the next available nodes, ensuring
that nodes are not loaded with multiple jobs while other
nodes lie idle.

5<BEEW

Fig. 1. Screenshot of MS Excel panel

book! Miuctoft l«ctl

I HPUfimnc*fdotlayO'it P6ln.ijU< 0<it. P«vir« View Oevefcpti

HjfiWKfcg....X - - .A..., G
Fotbcb* [d^,r.2 |

*
B. Performance Tuning of the ClusterFig. 2. MS Excel 2007 Ribbon for configuration

Since the communication between the client and the
cluster is done via TCP sockets, the client is not expected
to be aware about any platform specific details of the
cluster; hence would interoperate with any back end which
may provide a consistent interface. Configuring the client
(see Fig. 2) is possible through Excel itself, where the user
can specify database connection strings, server address,
service port of the server and credentials for data
acquisition. Having conFig.d the above setting accurately,
whatever the model or performance extensions done at the
server would reflect in the client. For instance, when a new
model is implemented and deployed the server, no client
side configuration is needed; the extension would reflect in
the client automatically.

This concept is more appropriate for a heterogeneous
cluster, as is the case in the cluster used for this research
initiative.

This algorithm is aimed at exploiting the fact that all the
nodes of the cluster may not have the same computational
resources. This algorithm ensures that the node with higher
computational resources attract a higher proportion of the
work load and vice versa.

Initially, the master node will divide the entire number
of Monte Carlo simulations equally among the nodes an
carry out the simulations. After execution, a ratio will e
calculated based on the time consumption of each no e-

file andThis will be stored in a performance tuning
subsequent tasks will have the simulations divided among
the nodes based on this ratio. This introduces a learning

F. Random Number Generation in Parallel effect and the ratio will improve as time goes on.

The issue of random number generation assumes greater
significance in the case of parallel computation. This is
because; there exists a faint possibility of each node in the
computer cluster producing identical or correlated random

V Performance Results

The testing environment of the computational duSte
comprised the following resources;

94

Table I
Time

DETAILS OF COMPUTATIONAL CLUSTER
4 T

2nd Machine1SI Machine 3rJ Machine
33Intel Pentium 4 HT

2.4 GHz
Intel Core 2 Duo
2.13GHz

Intel Pentium 4
2.8GHzprocessor

3512 MB1GB 512MBMemory -------10000 trat*
Fedora 8 IFedora 8 Fedora 8 250/S

------- 15000trail!2
The source code was compiled by gcc version 4.1.2

with ‘-03’ switch that enables compiler optimization.
-------50000 trait

15
i ------- 100000triah

1
A. Vasicek Model

05

Vasicek model consumes less amount of time compared
to the other short rate models. Following results were
obtained for Vasicek model. Testing results were obtained
for 60 months.

o
i 2 3 4

Fig. 3. Graph for Vasicek Model
Time

Table II 350

Performance results for Vasicek Model
300

Simulations 5000010000 25000 100000 ------ leoaotrirff2S0No of nodes
0.430441 1.044148 1.928339 3.6057621 ------ 35003 irte t

300
2.5637142 0.320161 0.655840 1.245749 --------tNOOtra'i

1.7294263 0.9976760.253804 0.523522 ISO
------ 10COMMN

0.769589 1.5312414 0.295980 0.424379
100

The results were graphed as in Fig. 3. 50

B.CIR Model 0
42 31

CIR model is more resource intensive process in the
framework. The results are obtained as follows for 60
months predictions;

Fig. 4. Graph for CIR model

C. Analysis

The results obtained in Table II and III are with all
optimizations enabled (i.e. performance tuning, compiler
optimization and load balancing). It can be clearly seen
(see Fig. 3 and 4) that the time consumption for both short
rate models decrease significantly while increasing the
number of nodes of the cluster. Furthermore, the
performance gain is much significant for higher simulation
counts, due to the increased scope for parallelization. The
communication overhead seems to be deteriorating the
benefits gained by parallel execution as the node count
increases.

The time saving reaches considerable levels in the case
of CIR model, due to the fact that it is much more
computationally intensive than the Vasicek Model.
Furthermore, the memory consumption of each of the
models also affects the time consumption. A significant
finding of this analysis is that the performance tuning
feature can make significant gains by accounting for the
non-homogenous nature of the cluster when dividing the
workload.

Table III
Performance results for CIR model

.Simulations;
-No of nodes 10000010000 5000025000

1 310.292731.32415 155.03577.91261
2 187.056519.79184 93.6894747.17689
3 136.1746

106.4778
63.6492313.76775 35.81046

4 11.14291 49.9414529.92602

The results were graphed as in Fig. 4.

95

ACKNOWLEDGEMENT
VI Generalization of system

The authors wish to acknowledge the active support and
advice given by Dr. Naveen Gunawardena and Dr. Ranjiv
Munasinghe

First and foremost, the use of Client-server architecture
has generalized the entire implementation in one aspect by
allowing any client (whether MS Excel based as in this
implementation or other) to access the services of the
cluster in a platform and implementation independent
manner. This has been achieved with the use of socket
programming.

In order to generalize the system to be extended for
such models, the following parts of the system have been
identified as components;

a

References

[1] P. Glasserman, “Monte Carlo Methods in Financial
Engineering”, Springer-Verlag, New York, 2003,
124-125.

[2] “MPICH2: High Performance and Widely Portable
MPI”. [Online].
Available:
http://www.mcs.anl.gov/research/projects/mpich2/.
[Accessed: Jul 3rd 2008].

[3] Message Passing Interface Forum; MPI-2: Extensions
to the Message-Passing Interface; pp 122-157 [E-book]
Available: http://www.mpi-forum.org/docs/docs.html
Dddd

[4] MySQL AB, Sun Microsystems, Inc, MySQL 5.1
Reference Manual, Chapter 17. MySQL Cluster NDB
6x; pp 1344-1592 [EBook] Available:
http://dev.mysql.com /doc/

[5] Irfan Pyarali, Marina Spivak, and Ron Cytron, Douglas
C. Schmidt, “Evaluating and Optimizing Thread Pool
Strategies for Real-Time CORBA”, Proceedings of the
ACM SIGPLAN Workshop
Middleware and Distributed Systems (OM 2001),
Snowbird, Utah, June 18, 2001

[6] R. Mirani, “Options: Approach for Parallel
Implementation of Boyle's Monte Carlo Method”, April
2002.

PP-

A. Monte Carlo Simulation engine
This includes the MPI code and will accept

certain basic parameters which define the number of
simulations to run the required model parameters

B. Random Number Generation with parallel seeding
This component is wrapped into the Monte Carlo

Simulation engine

C. Calibration Component
A generalized parallelization methodology which

can be extended to add new algorithms while leaving
the parallel routines intact.

Optimization ofon
The components identified above have been generalized

in their implementation in order use this system for a wider
range of models. Therefore, a user can mix and match the
above components along with the relevant algorithm in
order to implement a new model. New calibration routines
can also be added by extending the existing component.
Another important issue is the applicability of this
framework for two-factor or three-factor pricing models.

This can be realized by generalizing the code using C++
templating mechanism. Thereafter, we can extend the
given models of this framework to create code for the
multiple-factor versions of the same models.

VII Conclusion

Based on the results obtained, it is evident that the High
Performance Computing Cluster can bring significant time
savings to resource intensive processing. This capability is
highly desirable in the financial services industry where
HPC clusters are required to analyze or formulate various
derivative instruments. The high level of performance
enables quantitative analysts to obtain more accurate
results with less standard error in less time. Furthermore,
the seamless integration with the client application
provides ease-of-use for finance professionals.

96

h;-

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mpi-forum.org/docs/docs.html
http://dev.mysql.com

