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framework for other mathematical models used in 
quantitative finance. Currently, most of the available High 
Performance Computing implementations for quantitative 
finance are based on web-services and require the users to 
possess a certain level of programming capabilities. This 
initiative distinguishes itself by relying on message parsing 
and C++ implementations of the models for sheer 
performance coupled with seamless integration with the 
MS Excel Plug-in for ease-of-use. This means that the 
cluster implementation and its intricacies will be hidden 
from the users.

Abstract— Many mathematical calculations in the field of 
computational finance consume a lot of time and resources 
for processing. Some of the Short rate models used in 
quantitative finance which have been taken into consideration 
in this paper have been optimized for performance within a 
cluster computing environment. The back-end cluster has 
been seamlessly integrated with an easy-to-use front-end 
which can be used by finance professionals who are not aware 
of the details of the computational and database cluster. 
Furthermore, many techniques that have been utilized to 
improve the efficiency of the models have also been described. 
This paper also describes the generalization of a High 
Performance Computing Cluster designed for One-factor 
Short rate models and how it can be used easily to be further 
extended for other mathematical models in quantitative 
finance. The ultimate objective is to come up with a 
generalized framework for quantitative finance.

II Background

A. Parallel processing in Finance
Parallel computing is a form of computation in which 

many calculations are carried out simultaneously, 
operating on the principle that large problems can often be 
divided into smaller ones, which are then solved 
concurrently. In the case of this research initiative, 
optimization has been achieved by parallelizing Monte 
Carlo simulations that are needed in most quantitative 
models in finance. An advantage here is that most serial 
Monte Carlo algorithms are readily adaptable to a parallel 
environment. Furthermore, calibration routines can be 
carefully analyzed to incorporate parallel processing. This 
has been discussed in detail under the mechanisms adopted 
to increase efficiency of the framework.

I Introduction

The field of high performance computing and 
computational finance is of special interest to computer 
scientists as well as economists. Current research is 
focused on maki ng use of parallel computing to build high 
Performance clusters to tackle the heavy workload of 
quantitative mathematical models. This research was 
started with the setting up of a cluster computing 
environment for the parallel execution of mathematical 
juodels used for short rate modeling, namely Vasicek 

°del [1] and Cox-Ingersoll-Ross Model [2]. Each 
a gorithm along with its calibration routine has been 
Parallelized. Several measures have been adopted to further 
n lance the level of optimization. Client-server 

iyC **ccture has also been implemented to enable any client 
Se0n! any location to invoke tasks within the cluster, whose 

rv!ceS are eXp0secj vja a server application. The client 
‘s urther customized by developing a plug-in for

anair°.S°ft Excel 2007 for the beneflt of quantitative
ysts who will be making use of the system. 

fra e Pr°ject was steered towards forming a generalized 
Rework where most of the commonly used components 

made reusable. This enables the user to extend the

B. Mathematical Models in Quantitative Finance

1) Geometric Brownian Motion Model

A stochastic process St is said to follow a GBM [3] if it 
satisfies the following stochastic differential equation 
(SDE):

dSf = i*Stdt + <rStdWs 0)

where Wt is a Wiener process or Brownian motion and 
p (percentage drift) and o (percentage volatility) are 
constants.
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Algorithm to arrive at exact solution to CIR model: [4] 

let d — ——
<TZ

tfd> 1
for i = 0 to (n - 1)

Weiner process is a continuous-time stochastic process 
commonly used in mathematics characterized by the 
following three facts:

W0 = 0
W, is almost surely continuous 
W, has independent increments with distribution 

Wt -Ws~ N(0.t-s)
(for 0 < s < t).

i.
u.
iii. <72(l-.““Ui+l”**))

° * 4T"

A <-•------ =-----------
r

generate Z~N{o, l)2) Vasicek Model

generate X~Xa-1Vasicek model [2] is a mathematical model describing 
the evolution of interest rates. The model specifies that the 
instantaneous interest rate follows the stochastic 
differential equation:

r{ti+l) c\(Z + 4X)2 + X
end
if d< 1

for i — 0 to (n— l) 
o-2(l -drt = a& — rt )d£ + adWt (2)

c <-
4 nWhere Wt is a Wiener process modeling the random 

market risk factor. The standard deviation parameter, a, 
determines the volatility of the interest rate, ‘b’ represents 
the long-term mean and ‘a’ the mean reversion speed. This 
model is called an Omstein-Uhlenbeck stochastic process.

A «
c

generate N~Poisson
generate X~xd+2X 
r(ti+J <r- cX

3) Cox-Ingersoll-Ross Model end

The CIR model [3] can also be used in the valuation of 
interest rate derivatives. The model specifies that the 
instantaneous interest rate follows the stochastic 
differential equation:

D. Calibration Routines

The calibration of the Geometric Brownian Motion is 
very straightforward and thus the logarithmic return 
method has been used to calculate both the standard 
deviation and the annual growth rate. In the case of 
Vasicek and CIR models, there are many available 
calibration methods and it remains an active research area. 
Some of the popular methods are the use of General 
Method of Moments, Efficient Method of Moments, Least 
Squares Regression and Maximum Likelihood Estimators. 
The maximum likelihood estimator method has been used 
in the implementation described in this paper.

drt - aQ> - rt + Oyfcd \Vt
where W, is a Wiener process modeling the random 

market risk factor. The standard deviation parameter ‘a’, 
long-term mean ‘b’ and mean-reversion speed ‘a* have the 
same meanings as in the Vasicek model.
C. Discretization of Models

(3)

The models used above need to be discretized before 
running Monte Carlo Simulations since they are 
continuous stochastic processes. There are many methods 
of discretization available. The exact solution of the 
stochastic process has been used in all three cases because 
they provide a high level of accuracy compared to the other 
available methods.

Exact solution of GBM model:
Sr = 50exp [(ji - ja2)t + oVtN,

Exact Solution of Vasicek model:
rft + 1)

+b(l-

III HPGCluster

A. Computational Cluster

The Computational cluster is used to parallelize the 
selected financial models. MPICH2 cluster [2] which is an 
implementation of Message Passing Interface (MPQ W

putational cluster. 
— setup in UNIX environment an 

comprised a master node and compute nodes. The master 
node is responsible for submitting jobs to the cluster. 
cluster can be expanded dynamically. The main draw 
of MPICH2 was that load balancing and fault tolerance

(4) specification is used to setup the com 
The cluster was

-tP

back
(5)+o
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were not supported and had to be handled explicitly. Lack 
of load balancing lead to serious performance degradation, 

all the jobs are submitted to the same set of nodes.

$ Database Cluster

MySQL Cluster has been deployed for the purpose of 
this research project. It is a real-time open

sactional database designed for fast, always-on access 
to data under high throughput conditions [4] and offers the 
following benefits.

Automatic and transparent data distribution across data 
nodes enables automatic replication of data in all nodes 
when the client application updates a single API node. This 
avoids the users having to manually update the market data 
used for calibration in all data nodes to facilitate the 
parallel calibration routines. MySQL Cluster prevents 
single point of failure as it ensures an application 
automatically fails over to another database node that 
contains a consistent data set, if one or more database 
nodes fail. Shared nothing architecture enables 
extendibility of data nodes and SQL API nodes according 
to the requirement of the application.

compute their results. Monte Carlo methods are often used 
when simulating financial derivatives and tend to be used 
when it is infeasible or impossible to compute an exact 
result with a deterministic algorithm. Higher the Monte 
Carlo simulations lower the standard error. In parallel 
computing context Monte Carlo methods are extremely 
parallelizable.

since

source
D. Servertran

A server was implemented in the cluster to 
communicate with and respond to requests of clients (in 
this case an MS Excel plug-in, but can be any client 
implemented in compliance with the protocol of the server) 
and resides in the master node of the cluster.

The server is capable of handling multiple concurrent 
requests from clients. The server listens through a port for 
ticket requests. When it gets a request, a unique identifier 
is sent back to the client as a reference to the job. As soon 
as the client acknowledges receipt of it, the request is 
handed over to a separate thread to continue. This works as 
a handshake mechanism between the clients and the server. 
The reference identifier enables the clients to terminate the 
respective job if required. The thread is taken from a pool 
of threads [5] which is conFig.d as the server is started and 
which gives more control over threads that accept requests. 
The server responsible for the load balancing since it is not 
covered by the computational cluster itself.

C. Parallel algorithms and Calibration

MPI was used to implement parallelization for short- 
rate models. MPI is a message passing API, together with 
protocol and semantic specifications for how its features 
must behave in any implementation. MPI's goals are high 
performance, scalability, and portability [3].

Parallel Calibration Routines

To simulate Vasicek Model and Cox-Ingersoll-Ross 
j^odel it is necessary to determine Mean (Drift), Standard 

eviation (Sigma) and Mean Reversion Speed (Lambda) 
values from historical data set. Parameter calibration 
consumes a large amount of time for instances where large 
v° umes of market data is available. This becomes a 
serious concern to a cluster which seeks to optimize the 
execution time.

The solution is to perform the calibration process in 
Parallel. However, the decision to calibrate in parallel or 
th * s^0uld be based on the size of the data set. If the size of 
v ? ataset remains less than a pre-calculated threshold 
m3 Parameter calibration will be done in a single 
u C lne* ^ no* calibration is done in the main node and 
r°adcast to the other nodes.

Parallel Monte-Carlo simulations

alRor‘?i?te ^ar^° methods are a class of computational 
ms that rely on repeated random sampling to

E.Client

The necessary objective of having a separate client is to 
provide an abstract interface for any non technical user, 
who might find it messy to control and exploit the 
application from back end. In this case MS Excel has been 
used owing to the fact that it is commonly used by 
quantitative analysts.

The client can basically be used to;
1) Invoke and execute tasks on the cluster
2) Mange data in database cluster (which is 

overlapped with execution cluster in this 
application model)

l)

2)
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numbers. Therefore, in order to ensure unique random 
numbers across all nodes in the cluster a mechanism has 
been implemented where the individual seeds are obtained 
by multiplying a global seed generated based on time 
multiplied by a prime number determined by the rank of 
each node. This method has been developed based on the 
suggestions made in [6]. Reproducibility of results has 
been achieved by storing the unique seed generated based 
on current time in the transaction log.

Unique seed = seed based on time x 
(Rank of node 4- 4) tn prime mmtk

IV Measures to improve efficiency
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□5=0 A. Load Balancing

s The computational cluster does not provide load 
balancing in the current stable version of MPICH2. 
Therefore as a remedy, load balancing has been 
implemented explicitly in this HPC cluster.

The simple load balancing mechanism that has been 
implemented is as follows. The focus is on making the 
methodology simple and efficient; in order to make sure 
that additional overhead of load balancing does not 
diminish the benefits of parallelization. It is to utilize the 
nodes in the cluster, in a round robin manner. Therefore 
the jobs are submitted to the next available nodes, ensuring 
that nodes are not loaded with multiple jobs while other 
nodes lie idle.

5<BEEW

Fig. 1. Screenshot of MS Excel panel
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B. Performance Tuning of the ClusterFig. 2. MS Excel 2007 Ribbon for configuration

Since the communication between the client and the 
cluster is done via TCP sockets, the client is not expected 
to be aware about any platform specific details of the 
cluster; hence would interoperate with any back end which 
may provide a consistent interface. Configuring the client 
(see Fig. 2) is possible through Excel itself, where the user 
can specify database connection strings, server address, 
service port of the server and credentials for data 
acquisition. Having conFig.d the above setting accurately, 
whatever the model or performance extensions done at the 
server would reflect in the client. For instance, when a new 
model is implemented and deployed the server, no client 
side configuration is needed; the extension would reflect in 
the client automatically.

This concept is more appropriate for a heterogeneous 
cluster, as is the case in the cluster used for this research 
initiative.

This algorithm is aimed at exploiting the fact that all the 
nodes of the cluster may not have the same computational 
resources. This algorithm ensures that the node with higher 
computational resources attract a higher proportion of the 
work load and vice versa.

Initially, the master node will divide the entire number 
of Monte Carlo simulations equally among the nodes an 
carry out the simulations. After execution, a ratio will e
calculated based on the time consumption of each no e-

file andThis will be stored in a performance tuning 
subsequent tasks will have the simulations divided among 
the nodes based on this ratio. This introduces a learning

F. Random Number Generation in Parallel effect and the ratio will improve as time goes on.

The issue of random number generation assumes greater 
significance in the case of parallel computation. This is 
because; there exists a faint possibility of each node in the 
computer cluster producing identical or correlated random

V Performance Results

The testing environment of the computational duSte 
comprised the following resources;
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Table I
Time

DETAILS OF COMPUTATIONAL CLUSTER
4 T

2nd Machine1SI Machine 3rJ Machine
33Intel Pentium 4 HT 

2.4 GHz
Intel Core 2 Duo
2.13GHz

Intel Pentium 4
2.8GHzprocessor

3512 MB1GB 512MBMemory -------10000 trat*
Fedora 8 IFedora 8 Fedora 8 250/S

------- 15000trail!2
The source code was compiled by gcc version 4.1.2 

with ‘-03’ switch that enables compiler optimization.
-------50000 trait

15
i ------- 100000triah

1
A. Vasicek Model

05

Vasicek model consumes less amount of time compared 
to the other short rate models. Following results were 
obtained for Vasicek model. Testing results were obtained 
for 60 months.

o
i 2 3 4

Fig. 3. Graph for Vasicek Model
Time

Table II 350

Performance results for Vasicek Model
300

Simulations 5000010000 25000 100000 ------ leoaotrirff2S0No of nodes
0.430441 1.044148 1.928339 3.6057621 ------ 35003 irte t

300
2.5637142 0.320161 0.655840 1.245749 --------tNOOtra'i

1.7294263 0.9976760.253804 0.523522 ISO
------ 10COMMN

0.769589 1.5312414 0.295980 0.424379
100

The results were graphed as in Fig. 3. 50

B.CIR Model 0
42 31

CIR model is more resource intensive process in the 
framework. The results are obtained as follows for 60 
months predictions;

Fig. 4. Graph for CIR model

C. Analysis

The results obtained in Table II and III are with all 
optimizations enabled (i.e. performance tuning, compiler 
optimization and load balancing). It can be clearly seen 
(see Fig. 3 and 4) that the time consumption for both short 
rate models decrease significantly while increasing the 
number of nodes of the cluster. Furthermore, the 
performance gain is much significant for higher simulation 
counts, due to the increased scope for parallelization. The 
communication overhead seems to be deteriorating the 
benefits gained by parallel execution as the node count 
increases.

The time saving reaches considerable levels in the case 
of CIR model, due to the fact that it is much more 
computationally intensive than the Vasicek Model. 
Furthermore, the memory consumption of each of the 
models also affects the time consumption. A significant 
finding of this analysis is that the performance tuning 
feature can make significant gains by accounting for the 
non-homogenous nature of the cluster when dividing the 
workload.

Table III
Performance results for CIR model

.Simulations; 
-No of nodes 10000010000 5000025000

1 310.292731.32415 155.03577.91261
2 187.056519.79184 93.6894747.17689
3 136.1746

106.4778
63.6492313.76775 35.81046

4 11.14291 49.9414529.92602

The results were graphed as in Fig. 4.
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First and foremost, the use of Client-server architecture 
has generalized the entire implementation in one aspect by 
allowing any client (whether MS Excel based as in this 
implementation or other) to access the services of the 
cluster in a platform and implementation independent 
manner. This has been achieved with the use of socket 
programming.

In order to generalize the system to be extended for 
such models, the following parts of the system have been 
identified as components;

a
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PP-

A. Monte Carlo Simulation engine
This includes the MPI code and will accept 

certain basic parameters which define the number of 
simulations to run the required model parameters

B. Random Number Generation with parallel seeding
This component is wrapped into the Monte Carlo 

Simulation engine

C. Calibration Component
A generalized parallelization methodology which 

can be extended to add new algorithms while leaving 
the parallel routines intact.

Optimization ofon
The components identified above have been generalized 

in their implementation in order use this system for a wider 
range of models. Therefore, a user can mix and match the 
above components along with the relevant algorithm in 
order to implement a new model. New calibration routines 
can also be added by extending the existing component. 
Another important issue is the applicability of this 
framework for two-factor or three-factor pricing models.

This can be realized by generalizing the code using C++ 
templating mechanism. Thereafter, we can extend the 
given models of this framework to create code for the 
multiple-factor versions of the same models.

VII Conclusion

Based on the results obtained, it is evident that the High 
Performance Computing Cluster can bring significant time 
savings to resource intensive processing. This capability is 
highly desirable in the financial services industry where 
HPC clusters are required to analyze or formulate various 
derivative instruments. The high level of performance 
enables quantitative analysts to obtain more accurate 
results with less standard error in less time. Furthermore, 
the seamless integration with the client application 
provides ease-of-use for finance professionals.
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