
Chapter 3

Technology Adapted

3.1 Introduction

With involving of this software engineering project technology adaptation can be

categorized and can be discussed under folio\\ ing three main headings;

I. Software process models,

2. System analysis and design methodolog) .

3. Cnified Modeling Language. and

4. Development environment.

In this chapter it will also be described how some of these techniques are used to solve

the problems in this software project and why some of these techniques arc used to solve

the problems in this software project.

3.2 Software Process Models

In chapter 4 of Software Engineering seventh edition of Professor Ian Someville: -.... .
software process model is defined as .. a set or acti\ ities that leads to the production or a

software produce and three software process models arc identified as follov.s;

I . The waterfall model.

2. Evolutionary development model.

3. Component based software engineering modell41.

3.2.1 The Waterfall Model • '

In "The Waterfall" approach, the whole process of software development is divided into

separate process phases. The phases in Waterfall model are: Requirement Specifications

phase, Software Design, Implementation and Testing & Maintenance. All these phases

13

are cascaded to each other so that second phase is started as and when defined set of

goals are achieved for first phase and it is signed off. so the name "Waterfall Model".

All the methods and processes undertaken in Waterfall Model are more visible.

R!quirements ~

d~;ition Jl
S)'stem and

1 sofuvare design
; l "

Implementaion

and un~ testing l
[

lntegation ~nd tltl
system testmg [

- .
Figure 3.1 -Waterfall Model

The stages of"The Waterfall Model'' arc as follows 151:

• Requirement Analysis & Definition

C)Ju at:Dnald

maintenance

All possible requirements of the system to be developed arc captured in this phase.

Requirements are set offunctionalitics and constraints that the end-user (who will be

using the system) expects from the system. The requirements are· gathered from the end­

user by consultation. these requirements are analyzed for their validity and the possibility

of incorporating the requirements in the system to be development is also studied.

Finally. a Requirement Specification document is created which serves the purpose of

guideline for the next phase of the model.

14

• System & Software Design

Before a starting for actual coding, it is highly important to understand what we arc going

to create and what it should look like? The requirement specifications from first phase arc

studied in this phase and system design is prepared. System Design helps in specifying

hardv,,are and system requirements and also helps in defining overall system architecture.

I he system design specifications serve as input for the next phase of the model.

• Implementation & Unit Testing

On receiving system design documents. the work is divided in modules/units and actual

coding is started. The system is first developed in small programs called units. \\ hich arc

integrated in the next phase. Each unit is developed and tested for its functionality: this is

referred to as Unit Testing. Unit testing mainly verifies if the modules/units meet their

specifications.

• Integration & System Testing

As specified above, the system is first divided in units which are developed and tested for

their functionalities. These units are integrated into a complete system during Integration

phase and tested to check if all modules/units coordinate between each other and the _
system as a whole behaves as per the specifications. After successfully testing the

softv.arc. it is delivered to the customer.

• Operations & Maintenance

rhis phase of "The Waterfall Model" is virtually never ending phase (Very long).

Generally. problems with the system developed (which are not found during the

development life cycle) come up after its practical use starts. so the issues related to the
·-

system are solved after deployment of the system. Not all the problems come in picture

directly but they arise time to time and needs to be solved: hence this process is referred

as Maintenance.

15

• Advantages of waterfall model

Main advantage of using waterfall model is documentation is produced at each phase and

to fit with other engineering models.

• Disadvantages of the Waterfall Model

I) As it is very important to gather all possible requirements during the Requirement

Gathering and Analysis phase in order to properly design the system. not all requirements

are received at once. the requirements from customer goes on getting added to the list

e\en after the end of "Requirement Gathering and Analysis" phase. this affects the

system development process and its success in negative aspects.

2) rhe problems with one phase arc never solved completely during that phase and in fact

many problems regarding a particular phase arise after the phase is signed off. these

results in badly structured system as not all the problems (related to a phase) are solved

during the same phase.

3) The project is not partitioned in phases in flexible way.

_
4) As the requirements of the customer goes on getting added to the list. not all the

requirements are fulfilled, this results in dC\elopment of almost unusable system. lhese

requirements are then met in newer version of the system: this increases the cost of

system development.

3.2.2 Evolutionary Development Model

Evolutionary development is based on the idea or developing an initial implementation.
~

exposing this to user comments and refining it tlu·ough many versions until an adequate

system has been developed. Specification, development and validation activities are

interleaved rather than separate with rapid feed back across activities.

16

~

Concurcnt
activities

Speci ficaion

Figure 3.2- Evolutionary Development Model

---1111>~ 1 Initial

• version

There are two fundamental types of evolutionary development have been introduced.

• Exploratof)' Development

The objective of the process is to work with the users explore their requirements and

deliver a final system.
..,

• Throw-away Protot)•ping

Objective is to understand the system requirements. Should start \Vith poorly understood

requirements to clarify what is really needed.

• Advantages

For small or medium-size interactive systems.

For parts oflarge systems (e.g. the user interface).

For short-lifetime systems.

17

• Disadvantages

Lack of process visibility.

Systems are often poorly structured.

Special skills (e.g. in languages for rapid prototyping) may be required.

3.2.3 Component Based Soft\\ are Engineering Model

Based on systematic reuse where systems are integrated from existing components or

CO rs (Commercial-off-the-shelf) systems.

Process stages.

Component analysis.

Requirements modification.

System design with reuse.

Development and integration.

This approach is becoming increasingly used as component standards have emerged.
..,

~1ain advantages of the component based software engineering are reducing the software

to he de\ eloped and there by reducing the cost and the risk

18

LIBRARY
UNlYERSITV OF MORA TU\'1 A, SRI LAN

RATUWA

3.2.4 Comparison of Software Process Models

Following is a comparison of waterfalL evolutionary and component based software

process modules.

Table 3.1 - Comparison of Software Proccs~ Models

Features Waterfall model Evolutionary Component based

de\ elopment model software Engineering

Partitioning of the
1

Can be done Cannot be done Cannot be done

project

I Can be done System design with Can be done Cannot be done

re-use

Special skills required Not required Not required

Process Visibility High low Medium

Requirement Cannot be done Can be done Can be done
modification

I l
- ·'

3.3 System Analysis and Design Methodology

3.3.1 Object Oriented Analysis & Design

"Object-oriented analysis and design (OOAD) is a software engineering approach that

models a system as a group of interacting objects .. [6].

Each object represents some entity of intcrc~t in the system being modeled, and is

characterized by its class, its state (data elements), and its ·behavior. Various models can

be created to show the static structure, dynamic behavior, and run-time deployment of

these collaborating objects. There are a number of different notations for representing

these models. such as the Unified Modeling Language (UML).

19

93001

I

• Object Oriented Analysis (OOA)

Object-oriented analysis (OOA) looks at the problem domain. with the aim of producing

a conceptual model of the information that exists in the area being analyzed [6]. At this

stage. to understand the problem domain an analysis has been carried. The sources of

information were taken by intervie~ing the current users, through group discussions and

observations.

The linal out come of the Object Oriented Analysis is a description of\\ hat the system

functionality required to do in the form of a conceptual model. After OOA it was

presented by using Use case diagrams and use case descriptions.

• Object Oriented Design (000)

"Object-oriented design (000) transforms the conceptual model produced in o~ject­

oriented analysis to take account of the constraints imposed by the chosen architecture

and any non-functional - technological or environmental - constraints. such as

transaction throughput, response time. run-time platform. development environment, or

programming language'' [6).

The concepts in the analysis model arc mapped onto implementation classes and
-..... -

interfaces. The result is a model of the solution domain. a detailed description of how the

S)stcm is to be built.

3.3.2 Structured System Analysis and Design Methodology (SSADM)

Structured Systems Analysis and Design Method (SSADM) is a systems approach to the

analysis and design of information systems [6 J. The 3 most important techniques that arc

used in SSADM are:

• Logical Data Modeling

This is the process of identifying, modeling and documenting the data requirements of

the system being designed. The data arc separated into entities (things about which a

business needs to record information) and relationships (the associations bctv;cen the

entities).

20

• Data Flow Modeling

This is the process of identifying, modeling and documenting how data moves around an

information system. Data Flow Modeling examines processes (activities that transform

data from one form to another). data stores (the holding areas for data). external entities

(what sends data into a system or receives data from a system), and data flows (routes by

\\hich data can flow).

• Entity Behavior Modeling

I his is the process of identif) ing. modeling and documenting the events that affect each

entity and the sequence in which these events occur.

3.3.3 Comparison ofOOAD and SSADM .

Table 3.2 Comparison ofOOAD and SSADM

Main Features OOAD SSADM

Main motivation Object driven Data driven

1-

Dependability Objects are independent Data are interdependent
I

I -
l sability Objects can be rt:used Data can be reused

f l lnderstandabilit) l ligh Medium

I ~1aintainability I High I Medium

3.4 Unified Modeling Language (UML)

"Modeling is the designing of software applications before c6<fing. Unified Modeling

language helps you specify, visuali7e, and document models of software systems,

including their structure and design, in a way that meets all of these requirements·· Pl. Tt

is \er; important to distinguish between the UML model and the set of diagrams or a

S) stem. A diagram is a partial graphical representation of a system's model. The model

21

also contains a "semantic backplane" - documentation such as written use cases that

drive the model elements and diagrams. UML diagrams represent three different views of

a system model;

• Functional requirements view

Represents the functional requirements of the system from the user's point of \'iev •.

Lx. use case diagrams (See Appendix 2 for- usc case diagram)

• Static structural v iew

f.mphasizes the static structure of the S}Stem using objects. attributes. operations and

rclationshi ps.

Ex. class diagram (See Appendix 2 -class diagram)

• Dynamic behavior view

Emphasizes the dynamic behavior of the system by showing collaborations among

objects and changes to the internal states of objects.

Ex. sequence diagrams, activity diagrams diagram (See Appendix 2 - class diagram) _
3.5 Development Environment

3.5.1 LAMP

The acronym LAMP refers to a solution stack of software, usually free and open source

software. used to run dynamic Web sites or servers. The original expansion is as follows:

Linux. referring to the operating system.
.,

Apache, the Web server.

MySQL, the database management system (or database server).

PHP or others. i.e. Perl. P}1hon. the programn1ing languages.

22

J'he combination of these technologies is used primarily to define a web server

infrastructure, define a programming paradigm of developing software, and establish a

software distribution package [8].

3.5.2 WAMP

\\'AMPs are packages of independently-created programs installed on computers that usc

a \1icrosoft Windows operating system. The interaction of these programs enables

dynamic web pages to be sen ed over a computer network. such as the internet or a

pri\'ate network.

"\\;AMP" is an acronym fonned from the initials of the operating system (\Vindows) and

the package's principal components: Apache. \tlySQL and PHP (or Perl or P) thon).

Apache is a web server. which allows people with web browsers like Internet Explorer or

Firefox to connect to a computer and see information there as web pages. MySQL is a

database manager (that is, it keeps track of data in a highly organized way). Pl IP is a

scripting language which can manipulate information held in a database and generate web

pages afresh each time an element of content is requested from a browser. Other

programs may also be included in a package. such as phpMyAdmin which provides a

graphical interface for the MySQL database manager. or the alternative scripting
-.... -

languages P)ihon or Perl [9]. WhateH!r the software model. when they are implemented.

there are set of acti\ ities to be carried out from the beginning to the end of the

development process.

• Domain Analysis

The first step in attempting design a new software piece is to investigate the domain that

the problem belongs to. Assuming that the developers (including the analysts) are not

sufficiently knowledgeable in the su~ject area of the new software, the first task is to

investigate the so-called "domain" of the software.

• Software Elements Analysis

The most important task in creating a software product is extracting the requirements.

Customers typically have an abstract idea of what the) want as an end result. but not

23

what software should do. Incomplete, ambiguous, or even contradictory requirements arc

recognized by skilled and experienced software engineers at this point.

• Requirements Analysis

Once the general requirements are gathered from the client, an analysis of the scope of

the de\elopmcnt should be determined and clearly stated. This is often called a scope

document. This document can be considered a legal document so that if there are ever

disputes, an) ambiguity of what was promised to the client can be clarified.

• Specification

Specification is the task of precisely describing the softv.are to be written. In practice.

most successful specifications arc written to understand. A good way to determine

whether the specifications are sufficiently precise is to have a third party review the

documents making sure that the requirements arc logically sound.

• Software architecture

The architecture of a software system is used to have an abstract representation of that

s)stcm. Architecture is designed making sure the software system will meet the

requirements of the product as \\Cll as ensuring ~ future requirements can be

addressed.

• Implementation

This is the part of the process where software engineers actually program the code for the

project.

• Testing
.,

~ , ..

Jesting software is a very important and crucial part of the software development

process. This part of the process ensures that bugs are recognized as early as possible.

• Deployment

After the code is appropriately tested. it is approved for release and sold.

24

• Documentation

fhe documenting is needed so that the internal design of software for the purpose of

future maintenance and enhancement. This is required throughout development.

• Sofnvare Training

This is a very important phase of softv\arc de\ clopment to have training sessions for

those uses the system functionalities.

• Maintenance

Proper maintenance and enhancement is needed in software development projects as the

customers requirements arc changing. It is during this phase that client calls come in and

you see whether your testing was extensive enough to uncover the problems before

customers do.

Ihough there are many software processes. fundamental activities are common to all

software process. Given below are the fundamental activities.

1. Software specification.

2. Software design & implementation.
__

3. So11ware \'alidation.

4. Software evolution.

3.6 Summery

According to the applicable prevailing technology. possible software process models.

analysis methodologies, design methodologies and development environment have been ..
given in this chapter. Commonly practiced technology has been detailed comprehensively

within this like waterfall model, object oriented analysis and design methodology.

Comparisons of each software process models, analysis and design methodologies have

been giwn in table form in this chapter for easy reference for the next chapter.

25

