AN ITERATIVE CAPACITY DIMENSIONING SCHEME FOR AN LTE ADVANCED NETWORK UNDER RESOURCE CONSTRAINTS

Kankanam Gamaethige Nuwan Chandimal

(158478F)

Degree of Master of Science

Department of Electronic and Telecommunication Engineering

University of Moratuwa

Sri Lanka

September 2019

AN ITERATIVE CAPACITY DIMENSIONING SCHEME FOR AN LTE ADVANCED NETWORK UNDER RESOURCE CONSTRAINTS

Kankanam	Gamaethig	e Nuwan	Chandimal
----------	-----------	---------	-----------

(158478F)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Telecommunications

Department of Electronic and Telecommunication Engineering

University of Moratuwa

Sri Lanka

September 2019

Declaration

"I declare that this is my own work and this dissertation does not incorporate without

acknowledgement, any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief, it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other medium.

I retain the right to use this content in whole or part in future works (such as articles

or books).

Signature:	Date:

Name: K.G.Nuwan Chandimal

The above candidate has carried out research for the master's dissertation under my

supervision.

Signature of the supervisor: Date:

Name of the supervisor: Dr. Chandika Wavegedara

Signature of the supervisor: Date:

Name of the supervisor: Dr. Tharaka Samarasinghe

i

Abstract

Since the need for high-speed broadband services is growing exponentially, legacy voice oriented networks are now becoming obsolete. Due to the unceasing demand for data, investors of mobile service providing companies are also keener on investing new technologies other than GSM, which ultimately improves spectrum efficiency and speeds up the access. Long Term Evolution (LTE) is the fastest and latest broadband technology with widespread global development of commercial networks. Until now, scientists are working to improve the communication capabilities while evolving from basic voice services to high definition video streaming and real time video game playing. However, every operator has a limited investment capacity and are highly concerned about the maximum utilization of resources with a higher ROI. As a result, it is imperative to have a properly dimensioned and well-optimized network.

However, LTE network dimensioning is not as easy as legacy pure voice-only networks (circuit switched), which can be easily modeled by Erlang formulae. LTE networks are evolving from circuit switching to packet switching; therefore, both voice and data will be transferred as packets. There can be combinations of different data service requirements such as streaming, browsing, interactive video, gaming etc. with voice. In fact, different types of traffic, which require different QoS are inherent. With the new releases of LTE standards, researchers all over the world are interested in finding most optimum ways of dimensioning LTE networks. Several perspectives have looked at calculating the required number of 4G sites in the initial networkplanning phase. Even though there are quality-based models, coverage based models, capacity based models and hybrid models already, due to the complexity of both UL and DL throughput calculations, each model has its own advantages and disadvantages. None of the approaches are discussing about an iterative capacity dimensioning solution to fine tune the required site count. Therefore, in this research thesis author proposes an iterative method under constraints to find the minimum site count while achieving given UL/DL speed requirements for LTE network rollouts. This method will be based on iterations, and varying parameters will be heavily significant in the context of DL and UL throughput.

Acknowledgement

First and foremost my heartiest gratitude goes to my supervisor, Dr.Chandika Wavegedara, for providing me the opportunity to undertake this project and guiding me in many ways to successfully complete the project. I really appreciate his understanding in my hard times and his valuable insights and constructive comments throughout the research.

Secondly, I would like to thank Dr. Tharaka Samarasinghe for his invaluable support for my thesis completion.

Last but not least, I would like to extend my gratitude to my wife and family members for sacrificing the time shared with me and their reinforcement during the study period.

Table of Contents

Declar	ration	I
Abstra	act	II
Ackno	owledgement	III
List of	f Figures	V
List of	f Tables	VI
	f Abbreviations	
	NTRODUCTION	
1.1	BACKGROUND	
1.2	STATEMENT OF THE PROBLEM	
1.	.2.1 What is dimensioning?	
1.	.2.2 Why dimensioning is important?	
1.	.2.3 Existing approaches and their limitations and issues	
1.3	OBJECTIVES AND SCOPE	5
1.	.3.1 Objectives	5
	.3.2 Scope	
1.4	METHODOLOGY	
1.5	ORGANIZATION OF THE THESIS	6
2 L	ITERATURE REVIEW	8
2.1	LTE RADIO ACCESS NETWORK (EUTRAN)	8
2.2	CURRENT APPROACHES USED FOR DIMENSIONING	13
3 C	CAPACITY DIMENSIONING	27
3.1	Introduction	27
3.2	MATHEMATICAL MODEL FOR PROBLEM FORMULATION	27
3.3	DIMENSIONING PROCEDURES	30
4 R	ESULTS AND DISCUSSION	53
5 C	CONCLUSION AND FURTHER RESEARCH WORK	61
. D		(2

List of Figures

Figure 1.1: Percentage of connections (excluding licensed cellular IoT)	2
Figure 1.2 : Mobile revenue (\$ billion)	3
Figure 2.1: Mobile Network Architecture with LTE nodes	8
Figure 2.2: LTE Frame Structure	. 11
Figure 2.3: General Planning Stages [1]	13
Figure 2.4: ARPU Vs. Network Quality	. 15
Figure 2.5: Flow of Capacity Dimensioning	. 15
Figure 2.6: Parameters for Service Model	. 16
Figure 2.7: Parameters for Traffic Model	. 17
Figure 2.8: DL Cell Throughput Distribution	. 18
Figure 2.9:Dimensioning procedure	. 19
Figure 2.10: Proposed Capacity Planning Model	. 19
Figure 2.11:Throughput Vs SNR for 0 & 3 re-tx	. 20
Figure 2.12:Different cell loading and constant inter site distance 1.732km [8]	. 21
Figure 2.13:Different inter site distances and constant cell loading 50%[8]	. 21
Figure 2.14: Interference to noise ratio as a function of the coverage distance with	l
CQI as a parameter for DL in the 800 MHz band and Hata model	. 22
Figure 2.15: Interference to noise ratio as a function of the coverage distance with	L
CQI as a parameter for DL in the 800 MHz band and FRIIS model	. 23
Figure 2.16: DL Throughput in 800MHz Vs. Co-Channel Reuse Factor	. 23
Figure 2.17: Cell Radius for various CQI	. 25
Figure 3.1: Mathematical Model	. 28
Figure 3.2: Dimensioning procedure with iterations	. 32
Figure 3.3: User Distribution in a cell area	41
Figure 3.4: CQI distribution of a cell	
Figure 3.5: Cell density change with Cell radius	46
Figure 3.6: UL simulations result	48
Figure 4.1: Simulation output of capacity dimensioning for dense area	. 54
Figure 4.2: Minimum point calculation for uplink	56
Figure 4.3: Minimum point calculation for downlink dimensioning	56
Figure 4.4: Simulation output of capacity dimensioning for rural area	. 57
Figure 4.5: Optimum point calculation for rural area	. 57
Figure 4.6: Sample calculations from the Literature	. 59

List of Tables

Table 1.1: Summary of current approaches	4
Table 2.1: Minimum CNIR, modulation and spectral efficiency versus CQI	22
Table 2.2: User Groups and Application Distribution	24
Table 2.3: Application Distribution with QCI	25
Table 3.1: Uplink link budget Related Parameters	34
Table 3.2: UL user profiles	39
Table 3.3: User profiles	40
Table 3.4: CQI distribution for equal sections	42
Table 3.5: Relation between CQI and MCS	43
Table 3.6: Modulation and TBS index table for PDSCH	
Table 3.7: Modulation, TBS index and redundancy version table for PUSCH	44
Table 3.8: Downlink related parameters	49
Table 3.9: DL user profiles	52
Table 4.1: Input parameters for sample calculation	54
Table 4.2: Results	54
Table 4.3: Calculation results for rural area	57
Table 4.4:LTE link budget for best effort services	58
Table 4.5: Comparison between the user method and similar method	59

List of Abbreviations

Abbreviation Description

2G 2nd Generations

3G 3rd Generations

3GPP 3rd Generation Partnership Project

4G 4th Generations

5G 5th Generations

BCCH Broadcast Control Channel

BW Bandwidth

CAPEX Capital expenses

CCPCH Common Control Physical Channel

CCSA China Communications Standards Association

CDF Cumulative Distribution Function

CDMA Code Division Multiple Access

CN Core Network
CP Cyclic Prefix

CQI Channel Quality Indicator

DL Downlink

DSCH Downlink Shared Channel

eNB enhanced NodeB

EPC Evolved Packet Core

E-UTRAN Enhanced – UMTS Terrestrial Radio Access Network

FDD Frequency Division Duplex

FDMA Frequency Division Multiple Access

GBR Guaranteed Bit Rate

GGSN Gateway GPRS Support Node
GPRS General Packet Radio System

GSM Global System for Mobile

HSDPA High Speed Downlink Packet Access
HS-DSCH High Speed Downlink Shared Channel

HSPA High Speed Packet Access

HS-PDSCH High Speed Physical Downlink Shared Channel

HS-SCCH High Speed Shared Control Channel

HSUPA High Speed Uplink Packet Access

IETF Internet Engineering Task Force

IP Internet Protocol

L1 Layer 1
L2 Layer 2

LBA Link Budget Analysis
LTE Long Term Evolution

MAC Medium Access Control

MAPL Maximum Allowed Path Loss

MBMS Multimedia Broadcast Multicast Service

Mbps Megabits per second
MBR Maximum Bit Rate

MCS Modulation Coding Scheme

MME Mobility Management Entity

MSC Mobile Switching Centre

NFFT Number of Samples of FFT

OBF Overbooking Factor

OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access

OPEX Operating Expenses

PBCH Physical Broadcast Channel

PCRF Policy and Charging Rules Function
PDCCH Physical Downlink Control Channel
PDCP Packet Data Convergence Protocol
PDF Probability Distribution Function

PDSCCH Physical Downlink Shared Control Channel

PDSCH Physical Downlink Shared Channel

PGW Packet Gateway
PHY Physical Layer
PS Packet Switched

PSS Primary Synchronization Symbol
PUCCH Physical Uplink Control Channel
PUSCH Physical Uplink Shared Channel

QAM Quadrature Amplitude Modulation

QoS Quality of Service

QPSK Quadrature Phase Shift keying

RAN Radio Access Network

RB Resource Block

RLB Radio Link Budget
RLC Radio Link Control

RNC Radio Network Controller

ROI Retrun of Investment

RRC Radio Resource Control

SAE System Architecture Evolution
SAE System Architecture Evolution

SB Short Block

SC-FDMA Single Carrier-Frequency Division Multiple Access

SCTP Stream Control Transmission Protocol

SFN System Frame Number

SGSN Serving GPRS Support Node

SGW Serving Gateway

SINR Signal to Interference and Noise Ratio

SISO Single Input Single Output

SNR Signal to Noise Ratio

SSS Secondary Synchronization Symbol

TDD Time Division Duplex

TTI Transmission Time Interval

UE User Equipment

UL Uplink

UMTS Universal Mobile Telecommunication System

UPE User Plane Entity

U-plane User Plane

UTRAN UMTS Terrestrial Radio Access Network

WCDMA Wideband Code Division Multiple Access