

DYNAMIC SMOKE TESTING

DYNAMIC REGRESSION TEST CASE SELECTION

AND PRIORITIZATION

Yasitha Nuwan Mallawaarachchi

(168245A)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2020

DYNAMIC SMOKE TESTING

DYNAMIC REGRESSION TEST CASE SELECTION

AND PRIORITIZATION

Yasitha Nuwan Mallawaarachchi

(168245A)

Thesis submitted in partial fulfilment of the requirements for the degree Master of

Science in Computer Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2020

i

DECLARATION

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to

reproduce and distribute my thesis, in whole or in part in print, electronic or other

media. I retain the right to use this content in whole or part in future works.

...................................

Yasitha Nuwan Mallawaarachchi Date

The above candidate has carried out research for the Masters/MPhil/PhD thesis/

dissertation under my supervision.

......................................

Dr. Charith Chitraranjan Date

22/05/2020

ii

ABSTRACT

With the advancement and increasing popularity of agile software development practices in

large scale software development projects, frequent product releases are encouraged so that

clients can actively participate in the software development life cycle (SDLC) by providing

early feedback on developed features. This approach leads to iterative shorter cycles of

development and continuous integration. So, the importance of regression testing and

regression test suite is well emphasised in such methodologies. Regressions have become the

most widely used approach in maintaining the quality of continuously changing software

systems.

Even though the agile SDLC requires faster regression feedback given the shorter length of

the release cycles, size and the complexity of the regression test suites increases over time;

hence execution time keeps on growing. Therefore, it is not practical to run the regression test

suite on every code change. In turn, it has become a significant dilemma in current regression

testing. Therefore, it is essential to implement a regression testing strategy which is highly

selective but accurate, to ensure the committed code changes does not inflict any ill behaviour

on the current working software before it is merged and released for client feedback. To

achieve this objective, it is critical to find out the distinct effects on behaviour that have

impacted the software at the earliest during the continuous integration (CI) cycle. This research

is focused on selecting and prioritizing the most suitable test cases from the regression test

suite to detect any behaviour that is no longer intact due to the code change. Also, the capability

of employing machine learning principles to learn and identify the most impactful

characteristics of test cases is considered as another key objective of this study.

Keywords: Regression Test, Selection, Prioritization, Machine Learning, Clustering

iii

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Dr Charith

Chitraranjan for the continuous support of my MSc study and research, for his

patience, motivation, enthusiasm, and immense knowledge. His guidance helped me

in all the time of research and writing of this thesis. I could not have imagined having

a better advisor and mentor for my MSc study.

I am grateful for the support and advice given by Dr Indika Perera, by encouraging

continuing this research till the end. Further, I would like to thank all my colleagues

for their help in finding relevant research material, sharing knowledge and experience

and for their encouragement.

I am as ever, especially indebted to my parents for their love and support throughout

my life. Finally, I wish to express my gratitude to all my colleagues at MillenniumIT

Pvt. Ltd, for the support given me to manage my MSc research work.

iv

TABLE OF CONTENTS

DECLARATION I

ABSTRACT II

ACKNOWLEDGEMENTS III

TABLE OF CONTENTS IV

LIST OF FIGURES VI

LIST OF TABLES VII

LIST OF ABBREVIATIONS VII

1 INTRODUCTION 1

1.1 Agile development practice 1

1.2 Continuous integration and gitflow 2

1.2.1 Continuous integration 2

1.2.2 Git flow 2

1.3 Software maintenance and regression testing 3

1.3.1 Software maintenance 3

1.3.2 Regression testing 5

1.4 Problem addressed by the research 7

1.5 Objectives and expected outcomes of the research 9

1.6 Scope of the research 11

2 LITERATURE REVIEW 13

2.1 Regression test case selection 13

2.1.1 Graph-based regression test case selection 13

2.1.1.1 Graph models 13

2.1.1.2 Regression test case section models for procedural programs 15

2.1.1.3 Regression test case selection model for object-oriented program 17

2.1.2 Code coverage based regression test case selection 20

2.1.3 Specification-based regression test case selection 20

2.2 Regression test case prioritization 22

2.2.1 Test case prioritisation techniques 24

2.2.2 Benefits and challenges of test prioritisation 26

v

2.3 Usage of machine learning principle for test case selection and prioritization 28

2.3.1 Unsupervised learning based test case minimization 28

2.3.2 Supervised learning based test case minimization 29

2.3.3 Reinforcement learning based test case minimization 29

2.4 Evaluation criteria 30

2.4.1 Evaluation parameters 31

3 METHODOLOGY AND CONCLUSION 34

3.1 Methodology 34

3.1.1 Introduction 34

3.1.2 Machine learning 34

3.1.3 TF-IDF scoring 37

3.1.4 Data clustering 38

3.1.4.1 K-Mean clustering 39

3.1.4.2 Optimal number of clusters 41

3.1.5 System under evaluation 43

3.1.6 Regression test suite 45

3.1.7 Proposed methodology 47

3.1.7.1 Gather test case statistics 48

3.1.7.2 Extract test case features based on the procedure call graph 53

3.1.7.3 Group similar test cases 56

3.1.7.4 Test case selection and prioritization 59

3.2 Evaluation results 63

3.2.1 Evaluation methodology 63

3.2.2 Test case reduction rate and efficiency 65

3.2.3 Precision 66

3.2.4 Recall 68

3.2.5 F – Measure 70

3.2.6 Mutants killed 71

3.2.7 Performance of the test selection levels 72

3.2.8 Summary 72

3.3 Conclusion 74

3.3.1 Outcomes of the research 74

vi

3.3.2 Challenges and limitations 75

3.3.2.1 Challenges 75

3.3.2.2 Research limitations 76

3.3.3 Research assumptions 77

3.3.4 Future work 78

REFERENCE LIST 80

LIST OF FIGURES

Figure 1.1: Agile software development life cycle 1

Figure 1.2: Git flow branching model 3

Figure 1.3: Software maintenance process 5

Figure 1.4: Regression test case selection and prioritization 10

Figure 2.1: Statement level flow graph 13

Figure 2.2: Firewall technique for D class 18

Figure 2.3: Specification based regression test case selection 22

Figure 2.4: Regression test case prioritisation 24

Figure 3.1: Traditional programming vs Machine learning 34

Figure 3.2: Supervised learning process 35

Figure 3.3: Reinforcement learning process 36

Figure 3.4: Post trade system overview 44

Figure 3.5: Proposed test case selection and prioritization process 47

Figure 3.6: TF-IDF score of each test case - 2D graph 55

Figure 3.7: TF-IDF score of each test case - 3D graph 56

Figure 3.8: Elbow method output for different K 57

Figure 3.9: K-mean clustering on top of test cases - 2D graph 58

Figure 3.10: K-mean clustering on top of test cases - 3D graph 58

Figure 3.11: Test cases selected for each test group 59

Figure 3.12: Test case selection precision 67

Figure 3.13: Test case selection recall rate 70

Figure 3.14: Evaluation results summary for different test selections 73

file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181096
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181097
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181098
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181099
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181100
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181101
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181102
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181104
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181105
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181106
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181107
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181108
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181109
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181110
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181111
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181112
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181113
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181115
file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28181116

vii

LIST OF TABLES

Table 2.1: Test case classification 31

Table 3.1: Post trade system regression test results 46

Table 3.2: Test case execution details extraction process and usage 49

Table 3.3: Test case coverage statistic persisted data 52

Table 3.4: Test case execution statistics persisted data 53

Table 3.5: Test case reduction for different selection methods 65

Table 3.6: Precision comparison based on the individual test cases 67

Table 3.7: Precision comparison based on the test case groups 68

Table 3.8: Recall comparison based on the individual test cases 69

Table 3.9: Recall comparison based on the test case groups 69

Table 3.10: F-measures for different test selection methods 71

Table 3.11: Mutants killed from each test selection methods 71

Table 3.12: Defect detection capability of proposed test selection levels 72

Table 3.13: Evaluation results summary for different test selections 72

LIST OF ABBREVIATIONS

Abbreviation Description

BBD Block Branch Diagram

CI Continuous Integration

CR Change Request

DB Database

E2E End to End

IR Information Retrieval

ML Machine Learning

OOP Object Oriented Programming

ORD Object Relational Diagram

OSD Object State Diagram

PCA Principle Component Analysis

file:///C:/Users/yasitham/Desktop/MSc-Thesis-168245A-v4.docx%23_Toc28186802

viii

QA Quality Assurance

SDLC Software Development Life Cycle

TF-IDF Term Frequency – Inverse Document Frequency

WSS Within-cluster Sum of Square

1

1 INTRODUCTION

1.1 Agile development practice

In the recent past, the software development methodologies have evolved from the

traditional waterfall strategy to more adaptive agile-based strategies such as scrum.

The primary intention is to absorb the requirement changes precisely without

disturbing the on-going development process. Also, it helps to utilise both human and

infrastructure resources of a company in the most optimum manner, promoting

teamwork in an agile environment.

Another essential aspect of agile development is its rapid frequency in the delivery of

working software. Traditionally it took months or years to deliver working software

for client-side testing. However, with the incorporation of agile strategies into the

software development life cycle, more frequent releases are being facilitated, which

has been a significant reason for the improvements in customer satisfaction and

engagements. Because of that continuous integration (CI) of the development changes

and automated regression testing has become two crucial stages of the agile practice

and these two stages maintain the quality of the output product [1].

Figure 1.1: Agile software development life cycle

2

1.2 Continuous integration and gitflow

1.2.1 Continuous integration

Continuous integration (CI) is a cost-effective and efficient software development

practice which is used to integrate the changes done by developers throughout the day

in a shared repository, as early and often as possible. This includes software

configuration management, version control, automated compilation, installation and

regression testing of changed software [2]. Continuous integration has become

increasingly popular among software industry due to its benefits such as

- Cheap, fast and easy integration

- Identify development bugs as early as possible

- Increasing visibility which enables greater communication

- Reduce integration issues and allow frequent releases

- Ability to invest more time on actual code development, hence increase the

efficiency of the development process

Because of these reasons, CI helps to increase the project team efficiency and the

quality of the product. There are several popular tools such as Buddy, TeamCity,

Bamboo and Jenkins have been developed and used for the CI activities in software

projects.

1.2.2 Gitflow

Git flow is a branching model used during the version control in software development.

It is ideally suited for the projects that have frequently scheduled release cycles, and

this model can be used from the existing version control system. In this approach, there

are two git branches used to persist the history of the project, namely master branch

and develop branch [3]. Master branch stores the history of client releases while the

develop branch serves for the new development and integration.

When a code change is required to be done to fix a bug or develop a CR, a new bugfix

branch or feature breach will be created on top of develop branch. So, all the code and

system changes are committed to the newly created bugfix branch or feature branch,

3

and after the developer testing is completed, this branch will be merged into the

develop branch.

Typically, in mission-critical software development, the feature/bugfix branches will

be merged into the develop branch after thorough unit level testing and multiple

developer reviews. Once it is merged, the changes will be captured to the regular CI

cycle which will build, deploy and perform the regression testing on the updated

component. So, the git-flow approach supports parallel development, Collaboration

and for emergency fixes.

1.3 Software maintenance and regression testing

1.3.1 Software maintenance

Maintenance of the software plays a vital role in the SDLC process, and it cost

approximately 60% of the total software life cycle. Software maintenance is required

when modifying a product after it has been delivered to the client. To fix bugs, improve

the design, implementing enhancements, interfacing with other subsystems, and due

Figure 1.2: Git flow branching model

4

to the improvements in the hardware platform, software maintenance is essential and

unavoidable. Software maintenance can be divided into four main categories [5]

1. Corrective maintenance

Corrective maintenance of a software system is required to rectify error/bugs

in the system or enhance the performance of the system while it is in operation

2. Adaptive maintenance

Adaptive maintenance is essential when the client requested changes to run the

product on new hardware or software platform as well as when they need to

interface the product with other software systems

3. Perfective maintenance

Activities have to be done to support the new features requested by customer

or change requests (CR) to an existing functionality upon client demand are

categorised under Perfective maintenance

4. Preventive maintenance

This type of maintenance is to prevent future problems of the software system.

The goal is to attend the issues which could cause a severe impact in the future

even though it is less significant at the moment.

Whatever the change done in the maintenance period, it has to be thoroughly tested

before release to the production. So, the testing has become the most critical and time-

consuming task of software maintenance activities. It evaluates the capability and

quality of the program and reveals as much as errors to achieve desired results of the

system. There are three types of testing can be identified in software SDLC process.

- Unit testing

- Component testing

- End to end regression testing

5

Figure 1.3: Software maintenance process

Unit testing and component testing are considered as developer testing, and it will

verify the unit level (functional level) and component level functionality of the

software. Usually, these two types of testing are done by the developers soon after the

changes were committed to the bugfix/feature branch (before merging them to develop

branch) and it will take fewer resources and time to complete, hence add less overhead

to the development process.

1.3.2 Regression testing

On the other hand, regression testing is the most popular and most significant testing

method out of the three options. It is costly as well as repetitive activity to perform

after software update before to release it to the production as the final and vital quality

check. Regression testing builds the confidence that modifications do not harm to the

existing functionality and stakeholders often rely heavily on the capabilities of

regression suite. It is comprising with a large number of end-to-end business test cases

for the defined test scenarios which cover the complete functionality of the software

system. For complex mission-critical software systems, this could be over thousands

of test cases. All these test cases are formatted and included into an automated test

suite and expected to be run within continuous integration process. Due to its end to

end testing nature and functional dependencies, regression testing is usually

considered as slow during the execution, and it is costly from resource consumption

as well. Therefore, this research is also focused on utilising and managing regression

test suite more optimum and efficient manner to achieve its goals.

The defect detection capability of the regression test suite is its leading indicator of

quality. Further the characteristics such as

6

- Completeness – whether the test suite is complete in terms of functional

coverage as well as the code coverage

- Redundancy – whether multiple test cases detect the same defects in the test

suite

- Maintenance status – indicator to assess whether the regression test suite

evolves together with the source code which means system code and test codes

will be given the same priority and consider equality important during the

development

are also an important measure of its overall quality and efficiency. Test cases are the

base unit in the regression test suite and can be categories as follows considering their

behaviour [6]

- Obsolete test case – test cases which are no longer applicable for the updated

code are called obsolete test cases, and those must be removed/ not executed

from the regression test suite

- Re-testable test case – test cases related to the affected code due to

modifications done to the original program are called re-testable test cases and

those must be rerun during regression testing

- Redundant test case – when compared to a particular regression test, redundant

test cases are the ones which execute code segments that are not changed.

These test cases also can be omitted from the regression testing.

Good test cases should be,

- Automated - be able to execute without any human interaction

- Repeatable - be able to run multiple times with the same result, preferably by

a continuous integration server

- Relevant for tomorrow

- Easy to run without the need for complicated prerequisites

- Isolated - be able to run independently of other tests

7

When a bug fix or feature implementation is carried out the specific parts of the code

will be changed and test cases which ignite those parts of the code considered

necessary. From these set of test cases, there can be cases such as [1]

- Fault revealing test cases – they are the test cases which produce incorrect

output and causes program to fail

- Modification revealing test cases – if the output of the test case is different

from the original output, yet accurate are fallen into this category. So, these test

cases output values have to be modified before regression testing

- Modification traversing test cases – if the execution trace is different from the

original trace, yet the output is similar. No modifications required for these test

cases.

In this research study, regression test case is considered as a script which evaluate the

end to end business functionalities. It is consisting of multiple various business

transactions and their expected results within a single test case, related to a business

scenario under test. These test cases are independent and have all the prerequisites

required for the business scenario within the test case itself. Test case should expect to

evaluate and verify all the outputs and all the status changes in the system.

1.4 Problem addressed by the research

Agile software development methodologies promote faster product releases and

feedback cycles while maintaining software quality. Also, it is encouraged to follow

the git-flow approach, where developers commit their changes into the bugfix or

feature branches rather than directly releasing the changes. For large scale software

projects and open source projects, several parallel developments are expected, and

hundreds of change commits will be submitted. Due to the lightweight, easy and fast

execution nature, developer testing can be carried out for each and every code update.

However, unfortunately, it is not feasible to execute regression test suite upon each

code update since it takes a long time to complete (typically in the range of hours and

in some cases even in days). For complex systems, even adequately developed and

8

optimised regression suites can grow extremely large, making it infeasible to

incorporate into each CI cycle.

Because of such limitations in regression testing, most of modern companies tend to

execute their regression test suites offline, typically over the weekend, while investing

more on costly hardware and operational activities for the execution. Therefore, the

regression test cycle captures a large number of code updates which had been

committed over the course of that period by multiple engineers, which then leads to

below complexities, if any regression tests had failed.

- Developers will not be able to quickly identify and isolate the erroneous code

change, which caused the tests to fail since multiple changes are captured into

the regression test run.

- Since frequent regression testing is not practical, errors in the system could be

undetected for a long time (a few days if the regression happens over the

weekend only).

- Failures to detect bugs at the earliest delays the product releases and creates

impedance for the agile practice.

- Also, there can be further changes carried out on top of erroneous untested code

segments, all of which will have to be reversed and redone resulting in

considerable rework, costing both time and money.

- Integrating erroneous code changes into the develop code path will cause to

consume unexpected developer and QA effort to analyse and retest the issue

So if we can identify these problems by carrying out a regression test run, before

merging each bugfix/feature branch to the develop branch, it will significantly improve

the efficiency of the SDLC process, while eliminating the development overhead that

could incur later on due to required rework. Unfortunately, as already pointed out it is

impractical to run a complete regression before merging each bug fix/feature branch.

Therefore, it is crucial to derive a method which can identify the minimum regression

test suite that could detect any possible problems by looking at the particular code

changes so that it can be executed efficiently, in parallel to developer testing.

9

1.5 Objectives and expected outcomes of the research

In an era, where software development practices are moving towards shorter iterations

of delivery, leading to more frequent regression testing, it is unnecessarily expensive

to perform a full regression test, especially when only a small segment of code has

been changed. So there arises the requirement of identifying a selective set of tests to

be incorporated into the continuous integration cycles targeting the specific changes

done.

The primary objective of this research is to select and prioritise the minimum set of

tests for from the full regression with respect to a given code change, in a way that any

possible problems of the modified system can be identified as early as possible. The

subset of existing test cases has to select based on criteria such as a change in the code,

impacted business functionality and considering the duplicate test cases in terms of the

function-level call graph. Once the most promising test cases are selected, those test

cases need to prioritise so that the failure revealing test cases are executed before the

others to detect errors. Also, this approach should be able to identify the distinct code

level bugs early as possible rather than executing the multiple failing test cases due to

the same issue in the code. So, it will help the developer to detect various code-level

errors at the initial stage of the CI cycle and take necessary corrective actions quickly.

Following are the advantages of regression test minimisation by code change based

test selection and prioritization approach.

- Reduced test suite helps faster CI compared to full regression

- Early and easy error detection in modified code

- Increase the confidence of the developer and client

- Save QA’s time and effort of testing buggy solutions and retesting

- Improve the efficiency of the agile SDLC which helps to achieve rapid product

releases

This will make sure that the developer’s output received for the QA testing is in high

quality; hence, straightforward issues will not pass down to the QA testing level. The

10

figure 1.4 shows the general test case reduction by regression test case selection and

prioritisation methodology.

To perform the test case minimization, it is necessary to recognise the features and

characteristics of test cases and their behaviours. Further, it is essential to identify the

relationship between the code and the test cases. It is already proven by the past

researches done on this subject matter that the code change based test case selection

delivers better outcome compared to other test case selection methods. So on that basis,

this research further improves this approach focusing the following outcomes

1. It is required to maintain the code coverage details of each test case to perform

the change-based test case selection. But the granularity of this test case to code

coverage relationship is a research question since the higher granularity

relationship (e.g.: logic level or statement level of the code to test case coverage

mapping) causes high complexity of the system and high relationship

maintenance cost while lower granularity relationship (eg: package level or

Figure 1.4: Regression test case selection and prioritization

11

class level of the code to test case coverage mapping) will not provide usable

input to the test case selection process. Hence it is important to identify the

optimum level of the granularity of the test case to code coverage mapping,

which is one of the key outcomes of the research.

2. Updating and maintaining the test case coverage details upon code changes is

another research area which is going to be lightly touched during this study.

3. Removing duplicate test cases is an important aspect of regression test case

minimisation. So, identifying those duplicates has to be done by analysing the

changed code segment and characteristics of the test cases. During this study,

the most significant features of the test case will be recognised and will provide

a methodology to remove the duplicate, redundant test cases using the above-

recognised features.

4. Another outcome of this research is to discover the most critical test case

characteristics which can be used to predict possible failures during execution.

Apart from these characteristics, it is equally valuable to find out the optimum

order these features can be used for prioritisation which is also addressed

during the study.

5. The possibility of finding the distinct bugs in the code using te least possible

number of regression test cases will be analysed during this research as another

aspect of test case selection and prioritisation.

6. Finally, the possibilities and approaches of integrating the proposed regression

test case selection and prioritisation method into the current CI cycle will also

be discussed as a part of this research study.

All these analyses are expected to achieve smooth CI cycle for each code change and

provide better quality output for QA testing by identifying bugs introduced to the

system due to a change as early as possible. Basically, this will improve the overall

efficiency of the SDLC and facilitate timely delivery of product releases.

1.6 Scope of the research

The main intention of this research is to select the most suitable test cases from

regression test suite for a given code change, so the developers can execute them before

12

merging their changes into the integration and before releasing it for QA testing. The

proposed approach should be able to apply without a prior knowledge on the test suite

or without any initial expert training. Also, this research should deliver a fully

automated regression testing selection and prioritization strategy and it should not be

a burden to the current SDLC process.

This research study will only consider the code changes related to the business level

functionalities which are mostly done on the solution layer of a product. Basically, it

will include the validations, enrichments and processing of transactions and generating

its outputs. So, the code changes done on platform level, library level or any other

technical level implementations were not considered in the scope of this research.

Further this approach is recommended for the projects in maintenance phase due to its

limited code changes and requirement of extensive regression testing.

During this research, the capability of employing machine learning (ML) principles to

select and prioritize most suitable test cases were discussed. When selecting

appropriate ML algorithms, this study was limited for the unsupervised learning

approach since it didn’t require any prior knowledge on the test suite and it’s features

for the test case classification.

13

2 LITERATURE REVIEW

2.1 Regression test case selection

Previous studies of regression test case selection can be divided into three main

categories based on their model of selecting and reducing test cases,

- Graph-based regression test case selection

- Code coverage-based regression test case selection

- Specification-based regression test case selection

2.1.1 Graph-based regression test case selection

2.1.1.1 Graph models

In literature, there are several different graph models can be identified which can be

used to enhance the graph-based regression test case selection. Following are the most

common models used in practice [8],

- Flow graph

The flow graph is the simplest form of the graph model. It is a directed graph

where the nodes represent the statement or the logic in the software code, while

the edges connecting two nodes represent the relationship between the two

statements of the code. Start and end nodes are default to any of the program.

Hence there should be at least two nodes per graph.

- Control flow graph

Control flow graph (CFG) used to represent the flow of control of the program

which is very useful to understand the behaviour of the program for different

test cases and identify the most significant test cases of the modified code. CFG

Figure 2.1: Statement level flow graph

14

contains process blocks, junctions, decisions and case statements. Constructing

and analysing the CFG is very complicated for more extensive programs, hence

use various tools for analysis.

- Data dependency graph

Data dependency graph (DDG) represents the dependency flow for each data

(variable) in the program. Two adjacent nodes in the DDG graph exist if node

1 dependant on node 2, where the definition of variable v is at node 1 and its

usage is at node 2. So DDG contain a single node for each statement which

updates the data (variable) in the code.

- Control dependency graph

Same as data dependency, control dependency graph (CDG) represents control

dependencies of the program where each control statement corresponds to a

unique node in the graph. Two adjacent nodes n1 and n2 in the graph happened

to control dependent if at least single path from n1 to exit of the program

including node n2 as well as one path from n1 to exit of the program that

exclude n2.

- Program dependency graph

Program dependency graph (PDG) makes both data and control dependencies

for each operation in the program. Data dependences represent only the data

flow relationship of the program, while control dependences represent

meaningful control flow relationship. However, many analyses are efficient on

PDG since it provides computationally related parts of the program in a single

scan of the graph.

- System dependency graph

The system dependency graph is the enhanced version of PDG, which can

represent procedure calls of the system. It contains all the procedure level

dependencies between them. Hence it eliminates the limitation of PDG, which

can be modelled only for a single procedure.

15

When analysing the graph bases regression test case selection techniques, it can be

divided into two categories based on the architecture of the program/system under test

(SUT).

- Procedure level system

- Objected oriented system

2.1.1.2 Regression test case section models for procedural programs

Procedural programming is a programming paradigm based on the series of

computational steps of procedures, routines or functions in sequence. So, the following

regression test selection techniques are suitable for the procedural programs [8]

- Dataflow analysis based technique

In software testing, definition-use pairs consist of definitions and uses of a

variable, according to the sequence of their appearance in the source code. Uses

of variables include computational such as multiplication (c-uses) or predicate

such as route (p-uses) of a path. So, the c-uses directly effect on computations

and indirectly effect on the control flow. Correspondingly P-uses have the

opposite behaviour. The dataflow analysis based technique considers these

definition use pairs which get affected due to the changes in the system under

test (SUT) and the test cases validate these definition use pair are selected.

This technique can analyse the changes introduced in multiple procedures and

use CFG to represent the SUT. The steps of the test case selections of the

approach as follows

o Processed dataflow information incrementally and analyse the single

change in the updated code.

o Regression test cases validate these changes and select for execution

o Update the information related to dataflow and test coverage is an

update for these selected tests.

- Module-level firewall-based technique

16

In this technique, data dependencies and control dependencies are considered

for the test case selection as follows

o Modules which are affected and modified by the change are selected

into a firewall

o The flow of control is analysed using call graph, and in the firewall,

direct ancestors and descendants modules of the call graph are selected.

o Test cases which validate the selected modules in the firewall are

selected for execution.

- Differencing based technique

Different between the code before and after the change is considered during

this technique. Two popular methods are discussed in the literature

o Based on Modified code entity – Initially, all the test cases are run on

the original code and identify the validated code entities (e.g. function).

So once the modification is done check the updated code entities and

select the test cases which validate updated entities.

o Based on textual difference – This approach uses the textual difference

of the code before and after the modification. Before analysis, both

codes are converted into its canonical form to ensure both codes follow

similar guidelines, so that blank lines, comments are excluded from

comparison. First, test case coverage of the original programs is

identified and then the syntax of both before and after modify code is

analysed to capture the change. After that test cases which validate the

changed code are selected for execution.

- Control flow analysis based technique

This technique used the control flow graph to select the most relevant test cases

for the modified code. Changes of the code are identified while traversing the

control flow graph for the original code and modified code.

o Execution traces are generated for all the test cases

17

o Traverse on the control flow graphs for both original and modified

programs in a depth-first manner accordance with the execution trace

generated.

o Compare each test case execution trace for both programs

If the nodes of the graph are not the same, the edges linking these nodes

consider as dangerous edges, and all these test cases which exercise

dangerous edges are selected during this test selection technique.

2.1.1.3 Regression test case selection model for object-oriented program

Object-oriented programming paradigm (OOP) organise the data and behaviours of

the system inside the objects. It is the most popular approach in extensive, complex

system development. Below describe the regression test case selection techniques

suitable for the OOP systems.

- Firewall based technique [1]

As discussed during the firewall-based approach for procedural programming,

this technique identifies all the classes which are affected by the code change.

Those affected classes will be included in a firewall, and the test cases at least

validate one class in the firewall are selected for execution. Two primary

firewall-based selection techniques are discussed in the literature.

o Kung’s class firewall technique – This approach uses object state

diagram (OSD), Object relation diagram (ORD) and block branch

diagram (BBD) to find out dependencies between program elements.

ORD represents the inheritance, association and aggregation

relationships as well as the dependencies between classes. Class

method, interface and control structure can be represented via BBD.

OSD represent the dynamic behaviour of the class.

So, the mapping information between test cases and classes are

captured and when the class is modified classes which are directly and

indirectly affected to the modification are included in a firewall using

18

the above-mentioned graphs. So, the test cases validate the classes in

the firewall will be selected as the output of this technique.

o Method level firewall technique – This is same as a class level firewall;

only difference is to consider the methods instead of classes. So all the

methods affected by the code modification are selected into the

firewall, and test cases validate these methods are considered for

execution.

- Design model-based technique [8]

This technique is suitable for the systems that are developed using the paradigm

model-driven software development (MDD). Its popularity has been increased,

and the system model can be used to drive the code, hence the most significant

test cases. For the object-oriented programs, the design model can be

represented via UML.

Advantages of MDD

o The mapping between the design model and test cases can be easily

maintained than the mapping between code and test cases

Figure 2.2: Firewall technique for D class

19

o This is a more efficient and cheap approach, especially for the complex

systems with a large codebase.

o Modifications in the software can be easily identified via design model

rather than the code.

o Solutions are language independent.

Using the design model-based approach; following 3 test case selection

techniques are discussed based on analysing different diagrams.

o Based on class and sequence diagram

This technique uses sequence diagrams and class for the test case

selection. It analyses the sequence diagram of the system and generates

the concurrent control flow graph (CCFG), which contains additional

concurrency details of the program compared to the control flow graph

(CFG). Concurrency behaviour is possible using parallel instructions

and asynchronies messages. The using the class diagram of the

programs, it generates the extended concurrent control flow graph

(ECCFG) adding information of both diagrams. So once the

modifications are made on the code, both ECCFGs (an original and

modified version of the system) are analysed and select the test cases

to validate the changes introduced into the system.

o Based on class and state diagrams

When modifications are introduced, the class diagram of the program

as well as the state diagram will be changed, and those two graphs can

be used to detect the changes to the elements in the program. So the

test cases validate those elements can be selected as the out of this

technique.

o Based on UML architecture and design model

This technique is based on the traceability between program code,

design model and test case. Changes to the software can be easily

identified from the design model. Hence the test cases exercise those

20

affected areas. Also, this technique uses sequence, class and use case

diagrams to distinguish test cases into three categories: reusable, re-

testable and obsolete.

2.1.2 Code coverage based regression test case selection

Code coverage based regression test case selection is the most popular as well as most

preferred test case selection methodology in literature. Also, as per the past studies,

this approach has delivered promising and robust outcomes with greater accuracy

irrespective of the complexity and size of the system under test. Since this method

directly accesses the changes done to the program and select related test cases by

analysing the code change, it can provide an effective set of test cases for prioritisation.

The simplicity of this method and the relevance of the features or the process of

selection are other factors for its popularity.

The main idea of this approach is to generate mapping between the software code and

the test cases [18]. These mapping details are generally stored in the DB level, and it

is called coverage database. Basically, it contains the test case and the code section

covered from that particular test case. So that if a particular code segment was changed

due to a change request or a fix done for a defect, using the coverage database subset

of test cases can be identified. Those test cases are the ones which evaluate the changed

code segment by executing different functional path s related to various business

functionalities.

2.1.3 Specification-based regression test case selection

Software specification is a description of the software system which contains both

functional and non-functional requirements. Specification documents are frequently

updated to capture the changes of the software due to bug fixes as well as change

requests by the client. So, the specification-based test selection technique has been

introduced to overcome the drawbacks and limitations of the design-based models

discussed under the graph-based technique section. For some occasions, the design

model, as well as the source code, is not available for the testers to analyse to recognise

21

the change and select relevant test cases. For such situations, the specification-based

technique for regression test selection is more suitable since the software specification

is generally available for the testers throughout the SDLC.

In this technique, an activity diagram will be created to model the affected requirement

and system behaviour due to the modifications of the system. Before selecting test

cases, they are categorized into two depending on their coverage [1]

- Target test cases – target test cases validate the code elements which are

modified during the change implementation.

- Safety test cases – test cases which are selected to achieve the redefined

coverage target is called as safety test cases.

Specification-based test case selection follow the below steps to identify the target test

cases for execution.

- Create traceability matrix to map the requirements in the specification to the

test cases of the regression test. It maps the requirements with its validating test

cases.

- When the program is modified, its specification can change. So, by traversing

the activity diagram, all the modes and edges affected to the modification can

be identified.

- In the final step, all the test cases which validate the identified edges are

selected using the traceability matrix as the target test cases.

Identification of the safety test cases of this approach is as follows [8],

- Calculate the cost of each test case

- Calculate the severity probability of the test cases by multiplying total defects

and average severity of defects of each test case.

- Calculate the risk exposure of the test case by multiplying the cost and the

severity probability of each test case.

- Select the test cases with higher risk value as a safety test.

22

2.2 Regression test case prioritization

Once the most suitable test cases are selected and minimised, regression test case

prioritisation (RTP) step can be carried out to decide the priority of test case execution.

Test case prioritisation is the process of sequencing the test cases which required to

execute in a particular order, so that test cases with a higher priority are executed

earlier in the sequence. This is an extension of software testing to increase the test

suite rate of fault detection, i.e. how fast a test suite detects errors in the changed

program to increase reliability. For a time-constrained condition such as shorter

product delivery cycles, test case prioritisation is beneficial to perform during

regression testing. Also, it helps to minimise the time and cost consume during

software testing phase and make sure that the delivered software product is of excellent

quality.

Early fault detection of test case prioritisation allows faster feedback of the system

under test so that software engineers can identify the issue and correct it as earlier as

possible which leads to smooth software releases process. Following factors has to be

Figure 2.3: Specification based regression test case selection

23

considered while executing test case prioritisation. These will validate all

discrepancies and ensure that the proper testing is executed in appropriate order during

the process of testing.

- Function/Procedure usage frequency or the probability of test failure in

software should be considered for test prioritisation.

- Visibility or detectability of an issue to the end client is another aspect of

test case prioritisation

- Test case failure risks should be measured to calculate the priority.

- Test cases can be selected as per the priority of all the stakeholder’s

requirements.

- Should consider the different importance of quality characteristics for the

customer or client.

- History of failures and areas of complex coding/logics should be

considered.

- Prioritisation can also be one from the perspective of system architecture

or design.

There are several literature statistics on the comparison between random test selections

vs prioritised test selection. All the research output confirms that more faults can be

identified if test cases are prioritised rather than random selection. For these testing,

researches have taken a set of attributes of test cases for prioritisation such as

- Size of test case

- Time taken by the test case

- The effort taken by the test case

- Cost taken by the test case

- Efficiency

- Number of defects found by the test case

- Ability to use in other projects

24

Figure 2.4: Comparison between random and prioritized test cases on different

attributes [21]

2.2.1 Test case prioritisation techniques

Test case prioritisation is a complex process which requires the domain knowledge,

system architecture awareness and experience of testing of the system. Selecting

suitable test case prioritisation technique is an equally important decision that has to

be taken from experienced testers considering all the factors mentioned above.

Following are the popular techniques used to prioritise test cases in software testing

phase.

- Average percentage fault detected -

Average percentage fault is the rate where the fault is detected in the code

under test. In this prioritisation technique, two different criteria are used to

decide a factor based on which priorities are assigned to the test cases.

0

5

10

15

20

25

30

35

Acceptable
Test

Case Size

Time
Required

Effort
Required

Cost Taken Efficient Number of
Defect
Founds

Repeatable

D
ef

ec
t

d
et

ec
te

d

Non Prioritized
Test Case

Prioritized Test
Case

25

- Prioritisation using faulty severity –

Prioritisation of this technique is based on the priority of the requirement

to be tested. Test cases satisfy the changed business requirements are

assigned high priority while rests of the test cases are considered as low

priority. Further, in this approach, the considered requirements are based

on the number of times a fault can occur in the code i.e. fault severity.

Weight of the requirements are decided considering the following factors

[21],

o Development complexity

o Measure of business value

o Volatility of project change

o Fault proneness of requirement

- Prioritisation in case of regression testing

In software testing literature, there are nine techniques to prioritise the

regression test cases, and each of the technique uses various features of test

case in the regression test suite to decide the weight of the test case [22]

o Random prioritisation

This is where the test cases are randomly ordered in the test suite, and

this is to have additional control of the study of test case prioritisation.

o Optimal prioritisation

Results of the known faults are used to identify the effects of other

prioritisation methods that will be used.

o Total statement coverage prioritisation

This technique instrument the program with test cases to build the

coverage details of each test case and prioritised based on the number

of statements covered.

http://www.professionalqa.com/severity-vs-priority

26

o Additional statement coverage prioritisation

Additional statement coverage prioritisation covers the limitations of

total statement coverage prioritisation technique by iteratively select

highest statement covered test cases and adjusting the coverage

information of the rest of the test cases to find out the test cases

stratified the statements which are not yet covered.

o Total branch coverage prioritisation

Total branch coverage prioritisation is the same as the statement

coverage techniques but uses the program branches to measure the test

coverage.

o Additional branch coverage prioritisation

Additional branch coverage prioritisation is similar to the additional

statement coverage techniques but uses the program branches to

measure the test coverage and not statement.

o Total fault-exposing potential prioritisation

Prioritise based on fault exposing capability of test cases with higher

weight compared to other test cases

o Additional fault-exposing potential Prioritization

This technique is a combination of total coverage and branch coverage

prioritisation which is an extension of total fault exposing potential.

2.2.2 Benefits and challenges of test prioritisation

Regression test case prioritisation is carried out on top of the reduced test suite to

identify most critical program bugs/issues at the early stage of regression testing. So

that the developers will be able to resolve these issues promptly, which leads to

27

efficient software development life cycle and timely product releases. Also, early

detecting of product issues will save both QA and developer’s time since no

unplanned efforts will waste in the product testing/error detection. Following are the

key benefits of test case prioritization,

- Improves the regression test suit performance and efficiency SDLC

process

- Able to detect maximum available faults in a shorter period in the early

stage of the SDLC process

- Allows testers to detect defects in the system/process as early as possible.

- Able to integrate the prioritization technique into the continuous

integration tool leads to quality product output.

Even though the test case prioritisation has significant benefits on regression testing,

there are challenges that makes it time consuming and problematic.

- Identifying the most impacting and relevant features from test cases is one

of the challenging activities in test prioritisation. These features have to be

unique and should improve the defect detecting capability of the test suite.

Features such as code coverage, test case failure history and test case

execution time are some of the standard features used in test prioritisation.

- Detecting the application change and asses the impacted areas of the

program is another challenge in test prioritisation. Depending on the

prioritisation strategy selected test cases for execution may follow the

complex program paths. Hence finding and analysing the erroneous code

segment may be a complicated task for the developer.

- Selecting scalable prioritisation technique for a complex software system

is another challenge in test case prioritisation.

28

2.3 Usage of machine learning principles for test case selection and

prioritization

In the previous literatures, there are few studies related to the usage of machine

learning principles for select and prioritize or minimize the regression test suite.

During these studies they have used machine learning approaches such as supervised

learning, unsupervised learning and reinforcement learning to group and prioritize the

test cases. This section described the details of these studies related to each ML

approach.

2.3.1 Unsupervised learning based test case minimization

In this approach, researches [14] have used k mean clustering and hierarchical

clustering algorithms to cluster the test cases into the 2 groups, effective test cases and

non-effective test cases based on their coverage details. Following are the steps carried

out to select the test cases for execution.

- Statement level code coverage details of each test case were gathered by

instrumenting the source code while executing each test case. So, each

code line was marked as 1 or 0 representing whether the line is covered

from the test case or not.

- Convert the statement/line coverage details into a binary vector and

calculate this vector for all the test cases.

- Cluster the test cases into 2 groups which is considered as effective and

non-effective test case group. This clustering has been done using the

vector value calculated based on the coverage details. For clustering, the

researches have used k mean clustering and hierarchical clustering

algorithms. This is done by calculating the Euclidian distance between 2

vectors which gives the similarity of the test cases.

- Select the test group with most previous failures considering the code

change, as the effective test group for execution.

As per the results of this studies, it can be concluded that the k mean clustering

provides higher performance compared to hierarchical clustering, where 73.18%

accuracy, 19.32% precision and 100% recall rate. Also, this test was done for the 3

29

different levels of test case to source code granularity, which are statement, block and

method level. Here the statement level coverage provides higher performance and

method level coverage provides lower performance.

2.3.2 Supervised learning based test case minimization

Supervised learning requires labelled data as a pre-requisite to train the classification

model which is the major drawback in this approach. For the training data, importance

and non-importance of a test case can be considered based on the functionality

evaluated and previous defects. In the related literature [12], following test case details

were considered to extract from test cases for feed into the ML model.

- Test case description (natural language)

- Test case age

- Number of linked requirements

- Number of linked defects (history)

- Severity of linked defects

- Test case execution cost (time)

- Project-specific features (e.g., market)

Also, this study was done using multiple supervised learning algorithms such as

- Ranked Support Vector Machines (Ranked SVM) [12]

- K Nearest Neighbour [12]

- Logistic Regression [13]

- Neural Network [15]

2.3.3 Reinforcement learning based test case minimization

Reinforcement learning approach used the feedback of the classification model output

as an input. In the related studies [17], result of a test case is used as the reward function

which provides the feedback. So, the failures of a test case can be considered as the

positive rewards and success execution of a test case can be considered as the negative

30

reward to the learning model. Further, this approach needs to keep track of the past

test execution results and methodology to invalidate the older test data which could be

irrelevant over time.

2.4 Evaluation criteria

Evaluation and benchmarking of the regression test case selection and prioritisation

approaches must be done comparing a standard general methodology. In software

testing literature, most popular benchmarking approaches can be categorised into

below three approaches.

- Retest all test case selection

- Random/Ad-Hoc test case selection

- Manual test selection – Smoke test

Retest all test case selection

Retest all test case selection can be considered as the most straightforward and oldest

regression test case selection technique. This approach simply selects all the existing

test cases in the regression test suite. It is most appropriate when the size of the source

code and the test suite is manageable. However, the problem starts when the test suite

size is getting bigger with the improvements of the source code which leads to increase

the running time of the regression test suite. The main advantage of this method is

since all the test cases are selected for execution; all the faults/bugs can be detected

compared to the reduced test suite.

Random/Ad-Hoc test case selection

Random/Ad-hoc selection approach chooses a subset of test cases randomly from the

regression test suite and the random algorithm as well as the number of test cases can

be varied by the judgement of the human. Hence this technique provides faster test

case selection, but due to its random nature, the defect detection capability

(performance) could not be guaranteed.

Smoke test selection

31

This is a manual test case selection method where QA engineer select the fixed subset

of test cases from the regression test suite which covers the main functionalities of the

software system. This approach is more suitable for large scale software systems where

the full regression is not feasible to execute in daily CI cycle. Since this is a fixed set

of test cases, no guarantee on the defect detection capability and reduced test suite

performance.

2.4.1 Evaluation parameters

To measure the evaluation parameters of the test case selection and prioritisation

methodologies, it is required to define and calculate the baseline for each test case. The

baseline can be obtained by executing the full regression (complete test suite) and

identifying the actual test failures as well as successful execution. For the purpose of

statistic gathering and classification following key terms are computed comparing the

actual test results of the full regression and results of the proposed regression test case

selection and prioritisation method.

- True Positive (TP)

- True Negative (TN)

- False Positive (FP)

- False Negative (FN)

The term positive and negative refers to the prediction from the proposed test selection

approach also known as the expectation, and the term true and false refers to the actual

results from the baseline approach also known as the observation [19].

Table 2.1: Test case classification

 Truly effective Truly non-effective

Predicted effective TP FP

Predicted non-effective TN FN

32

Considering the above mentioned classification metrics, the below evaluation

parameters can be defined to evaluate the performance of the proposed test case

selection approaches [7].

Accuracy

Accuracy is the measurement of the closeness of the proposed approach compared to

the actual (true) values. It can be represented as the percentage of the sum of all true

positives and false negatives out of all the true positives, true negatives, false positives

and false negatives.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Precision

The precision of a system can be defined as the degree of the repeated measurements

under unchanged condition shows the same results. Precision is also interpreted as the

fraction of selected test cases that are relevant to a particular change. It is calculated

as the rate of true positives versus the number of test cases selected from the reduces

test suite and range between the 0 and 1. A precision of 1 means all the selected test

cases are relevant.

𝑝𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑡𝑒𝑠𝑡𝑠) ∩ (𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑡𝑒𝑠𝑡𝑠)

(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑡𝑒𝑠𝑡𝑠)

Recall

Recall measurement which is also called as sensitivity shows how many of the relevant

tests were selected from the proposed methodology. It is calculated as the rate of true

33

positives versus the sum of true positives and true negatives and it ranges between 0

and 1 where 1 mean all the relevant test are included in the set of selected test cases

[19].

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁

𝑟𝑒𝑐𝑎𝑙𝑙 =
(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑡𝑒𝑠𝑡𝑠) ∩ (𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑡𝑒𝑠𝑡𝑠)

(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑡𝑒𝑠𝑡𝑠)

F-measure

F – Measure is defined to calculate the trade-off between precision and recall value of

an information retrieval system [7].

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Test case reduction rate and efficiency

Number of test cases selected from the proposed test case selection and prioritisation

method compared to the test cases selected in the base methods such as full regression,

random ad-hoc selection can be considered as the test case reduction rate of the

proposed approach. Also, the same figure can be measured by calculating the ratio of

the average execution time of a test case into the number of selected test cases and the

time taken to the base methods i.e. for the full regression.

Mutants killed

A mutant is a changed to the source code which introduces a defect to the system. A

test case which reveals the corresponding defect is said to kill the mutant [16]. If the

number of mutants killed from the reduced test suite compared to the retest all

approach could be considered as another evaluation parameter rank the test case

selections.

34

3 METHODOLOGY AND CONCLUSION

3.1 Methodology

3.1.1 Introduction

The proposed regression test selection and prioritisation methodology is designed to

detect defects in the system as soon as possible without executing redundant test cases

which evaluate the same functional paths in the source code. To achieve this objective,

the machine learning approach has been taken to group the business-wise similar test

cases based on their identified features. Once the most relevant test cases are selected,

it will be prioritised based on the same features so that the test cases which have more

potential to detect issues will be executed early in the reduced test suite. So with this

approach most relevant test cases will be dynamically selected for the code change and

will be executed in a lesser amount of time; hence it is practically possible to detect

defects in the changed code before the changes are merged into the release code path

and QA testing.

3.1.2 Machine learning

The machine learning (ML) approach is becoming more popular in software solutions

which can be used to automate and improve the computer-based learning process using

their experience without being programmed or any human intervention. The idea is to

feed quality training data into the machine learning algorithm which build the ML

model based on the sample data. There are different types of ML algorithms available

in the literature and has to select considering the nature of data and task required to

achieve.

Figure 3.1: Traditional programming vs Machine learning

35

The fundamental difference in machine learning and traditional programming is, in

traditional programming, the data and program logic is feed into the machine as input

and expect the output as a result. In contrast, machine learning required data and

expected output results as input to the machine and provide program logic as the output

in the time of learning which is also called as training. This conceptualised model can

be tested using data which was not fed to the model during the training phase and

evaluating its performance using metrics such as precision, recall and F1 score. Once

the ML system was trained, it can be used to evaluate the input and gets the output as

results.

There are different ways of classifying machine learning problems to identify the most

suitable machine learning algorithm. It is primarily based on the nature of the input

data for learning and the feedback availability for the learning process.

- Supervised learning

In supervised learning, the system is presented with the input data and their

expected output generated from the known source. So the goal of the ML

system is to learn a general rule to map between inputs and outputs/ this

training will continue until the model reach specified level of accuracy on

the training data set. So, this approach is possible if the labelled input data

are available for training. E.g., Image classification, market prediction

Figure 3.2: Supervised learning process [23]

36

- Unsupervised learning

In this approach, no labelled data is given to the system. Instead, the ML

system has to identify the features of the data and find its own structure for

classification/clustering. Unsupervised learning is used to discover the

hidden patterns of data and cluster the given data population so it can be

labelled accordingly. Most common unsupervised learning mechanisms

are clustering, high dimension visualisation and generative models.

- Semi-supervised learning

This type of learning sits between both supervised learning and

unsupervised learning, where a large amount of input data exists, and only

some of them are labelled. So the techniques used in both supervised

learning and unsupervised learning has to be used in this type of ML

modelling.

- Reinforcement learning

This type of modelling is based on the feedback mechanism where the

system is interacting with the dynamic environment to achieve a specific

goal and receives positive or negative feedback as rewards or punishments.

According to the feedback, the ML system adjusts the processing logic to

achieve the best possible mapping between input and output.

 Figure 3.3: Reinforcement learning process

37

3.1.3 TF-IDF scoring

Tf-idf is an information retrieval and text mining methodology based on the statistical

weight on the words in the document. It stands for term frequency-inverse document

frequency and evaluates the importance of a word to a document in a collection or

corpus. According to the tf-idf calculation, the importance of a word will increase

proportionally to the number of times a word appears in the document, but it will offset

by the frequency of the word in the corpus [24]. This is considered as the most

frequently used document scoring and ranking scheme in search engines and text

extraction modules. There are different varieties of tf-idf weighting scheme in

information retrieval literature. The most straightforward ranking function is computed

by summing the term frequency and inverse documents frequency component for each

query term.

Typically, the tf-idf weight consists of two terms: normalised term frequency and

inverse document frequency.

- TF: Term frequency

This component calculates the number of times a word appears in a

document, and it measures how frequently a term occurs in a document.

Since the different documents are in different lengths, the term may exist

multiple times in long documents than shorter documents. Therefore, to

normalise the term frequency value it is divided by the total number of

terms in the document (document length), so it can be used to compare the

importance of the word across the document.

TF(t) = (Number of times term t appears in a document) / (Total number

of terms in the document) [24]

𝑡𝑓(𝑡, 𝑑) =
𝑛𝑡

∑ 𝑛𝑘𝑘

- IDF: Inverse document frequency

38

Inverse document frequency is computed as the logarithm of the number

of all documents in the corpus divided by the number of documents [24]

where the interested word appears, and it will measure the importance of

the word. So, the most commonly used words in the entire corpus such as

"is", "of", "that" weighted as not significant compared to other words

which are not commonly available and rare words can participate for the

document classification.

IDF(t) = log_e(Total number of documents / Number of documents with

term t in it) [24].

𝑖𝑑𝑓(𝑡, 𝐷) = log
|𝐷|

|{𝑑𝑖 ∈ 𝐷 | 𝑡 ∈ 𝑑𝑖}|

Once above mentioned two components are calculated, TF-IDF weight can get from

the product of TF and IDF scores. Therefore, the TF-IDF score provides higher weights

for rare terms.

𝑡𝑓 − 𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑). 𝑖𝑑𝑓(𝑡, 𝐷)

3.1.4 Data clustering

Clustering is a task of dividing a set of data into several groups where the data points

in the same group share the same behaviours/features while data points between the

groups are dissimilar each other. It is an unsupervised machine learning method which

uses unlabelled data set as input. Generally, clustering is used to

- Find meaningful structures of the population

- Grouping inherent

- Explanatory underlying processes

- Generative features

39

Clustering methods [20]:

- Density-based method

This type of clustering is based on the density of the data population. Data

in higher dense region are expected to have similar behaviour compared to

data in the lower dense region. Density-based clustering is known to have

good accuracy and the ability to merge two clusters.

- Hierarchical based method

Clusters created in this method are based on tree type hierarchical

structure. There are two main categories

o Agglomerative – bottom-up approach

o Divisive – top-down approach

- Partitioning method

Partitioning method groups data points into k clusters and each group

create one cluster. Grouping is done based on the similarity functions such

as distance between data points etc. most common example for partitioning

method is K mean clustering.

- Grid-based method

In grid-based method, data points are mapped into a finite number of cells

which form a grid like structure. So the clustering operations are based on

the defined grids, hence it is fast and independent of the underline data set.

3.1.4.1 K-Mean clustering

K-mean is one of the famous and simple unsupervised clustering algorithms used in

data analysing/mining solutions. This algorithm follows a simple and straightforward

approach to classify a given set of data into a predefined number (assume K) of

clusters. The main idea is to define the K centres of the data set, and each data point

40

will be assigned to a particular centre for clustering. Following are the steps carried

out in the k-mean clustering algorithm

1. First, the number of groups/clusters (k) has to be selected as a precondition

for the algorithm. To figure out the optimum number of groups, it is

required to check the data as a whole and identify the distinct grouping.

2. Then randomly initialise all k centre point.

3. Compute the distance from each data point to each group centre and

classify the data points to the respective centre point group whose centre

is closer to it.

4. Based on the classified points, the group centre is recomputed by taking

the mean of all the vectors of the group

5. Repeat the steps 3 and 4 for a predefined number of iterations or until the

group centre is fixed between iterations.

Advantages:

• K-Mean clustering is fast and robust

• Due to the simplicity it’s easier to understand and implement.

• Relatively efficient with O(tknd), where

o n – Number of objects

o k – Number of clusters

o d – Number of dimensions of each object

o t – Number of iterations. Generally, k, t, d << n.

• Gives best results when the dataset is dissimilar or well separated.

Disadvantages:

• Number of cluster centres required to be identified and fed into the algorithm

prior to the execution.

• This algorithm will not be able to identify highly overlapping data as separate

clusters due to its exclusive assignment.

• Local optima of the squared error function are used for the learning algorithm.

41

• Random selection of the cluster centre may not lead to the productive result

and less consistency.

• This approach is applicable for the data where the mean can be defined. It is

not suitable for categorical data.

• This technique is not able to handle outliers and noisy data.

3.1.4.2 Optimal number of clusters

Most of the clustering algorithms are required to specify the number of clusters k to

partition the data. So, it is required to identify the optimal number for clustering to

apply the clustering methods, which is another fundamental problem. Number of

clusters for a particular data population depends on the methods used to measure the

similarity of the data points as well as the parameters used for partitioning.

There are different methods to determine the optimal number k for clustering.

However, none of them is provided absolute value yet provide a good estimation.

These methods can be categorized as

- Direct method

The direct method uses the within-cluster sum of square or the average

silhouette to optimise the criterion of clustering. Known examples are the

elbow method and the silhouette method.

- Statistical testing method

This method comprises of associating evidence against the null hypothesis.

Gap statistics method is a famous example.

3.1.4.2.1 Elbow method

Elbow method calculates the within-cluster sum of square (WSS) of each data point as

a measure of compactness of the cluster. Smaller the total WSS, higher the cluster

compactness. In this method, the total WSS is calculated for different k (cluster) values

and should select a cluster number therefore adding another cluster does not

42

improve/impact on the total WSS value. Usually, this is determined by plotting the

total WSS value against the number of clusters. Following are the steps used for the

calculation [20]

1. Compute the relevant clustering algorithm (e.g., k-means) for the given data

set for different k values.

2. Compute the total within-cluster sum of square (WSS) for each k value.

3. Plot the calculated WSS value against the k value.

4. The optimal number of clusters (k) for the given data set can be identified

from the sudden bend (knee) position of the curve.

3.1.4.2.2 Average silhouette method

This method calculates the average silhouette of observations for various k values. The

k value, which provides the maximum average silhouette, is considered as the optimal

number of clusters for clustering. This measure the quality of clustering based on the

data point arrangement between clusters. Following are the steps to compute the

average silhouette method [20]

1. Perform the clustering algorithm (i.e. k-mean clustering) for range of k values

(k from 1 to k)

2. For every k value, compute the average silhouette of observations

3. Plot the graph of average silhouette value vs. cluster count k

4. The k value of the maximum average silhouette is reflected as the optimal

number of clusters

3.1.4.2.3 Gap statistic method

The gap statistic method evaluates the total within intra cluster variation for k values

with the same value of the data distribution with no obvious clustering (null reference).

The k values which maximise the gap statistic can be identified as the optimal clusters

for the data set. And it will guarantee that the clustering is isolated from the random

uniform distribution of points.

43

1. Cluster the data and compute the total within intra cluster variation (Wk) for

the range of k values 1 to k.

2. Perform the above step for generated data sets (B) with random uniform

distribution and calculate the corresponding total within intra-cluster

variation Wkb.

3. Calculate the gap statistic using computed Wk and Wkb values as follows.

Also compute the standard deviation of the statistics.

𝐺𝑎𝑝(𝑘) =
1

𝐵
 ∑ log (𝑊𝑘𝑏)

𝐵

𝑏=1

− log (𝑊𝑘)

4. Select the number of clusters as the smallest value of k where the gap statistic

is within one standard deviation of the gap at k+1 [20]:

𝐺𝑎𝑝(𝑘) ≥ 𝐺𝑎𝑝(𝑘 + 1) − 𝑠𝑘 + 1

3.1.5 System under evaluation

To implement and evaluate the proposed regression test case selection and

prioritization method, a post-trade system developed by LSEG technology has been

selected with the available regression test suite. This system is designed as a mission-

critical distributed system which has both software and hardware fault tolerance

scheme. The communication between components in the system happens via in-house

develop message passing platform. The system consists of 20 business processes,

including five critical processes (Engines) and 15 transaction gateways. The system

has five primary logical partitions based on business functionality.

- Clearing partition

- Settlement partition

- Payment partition

- Depository partition

- Corporate action partition

44

Each partition has its own engine to perform the business functionalities and input and

output transaction gateways are connected to each engine process to receive the

incoming messages from external systems and send processed output messages to

downstream systems. Post-trade systems are complex mission-critical software system

which expected to have high availability and fault tolerance. To cater these

requirements, each process has replicas which can be configured to operate as hot

standby or cold standby mode. Also, these systems process millions of real-time and

batch transactions using complex business logics and should have high real-time

performance.

The main functionality of this system is to perform the activities which need to be

carried out on the trades generated by exchange systems (post-trading activities). For

example, most common tasks are, distributing securities from seller to buyer and

transferring money from buyer to seller. Following system and practical features are

considered when selecting the system to implement and assess the propose regression

test selection and prioritisation method.

Figure 3.4: Post trade system overview

45

- Should have an in-depth understanding of the system, its architecture,

business functionalities and operations so that the results of the research

can be analysed and understand easily

- The system should have a comprehensive well-maintained automated

regression test suite with high functional and code coverage

- The system should have the capability to dump the code coverage

information for a particular regression

- If the system/project is already included in a continuous integration plan,

it will be added advantage for the research testing

- Project should follow git-flow approach for versioning which include both

source code and test suite.

The framework layer of the system is implemented using C++, and most of the

business functionalities are implemented using in-house developed preparatory

scripting language. These business scripts are consisting of procedures, and there are

510 such procedures exist in Corporate action subsystem. The complete script contains

45000+ lines which is compiled and run on the in house developed rule engine. Since

the business logics are based on this procedure language and end to end regression test

suite covers mainly the business implementation of the system, it is decided to apply

the proposed test case selection and prioritisation methodology on it. On the other

hand, platform level implementation is hardly changed and has less impact to the

regression suite compared to the business level implementation.

3.1.6 Regression test suite

The selected system has well maintained and automated regression test suite, which

can be run multiple times using the continuous integration platform. LSEG uses bit

bucket as its version tool following the git-flow approach for all the developments,

including test framework. Also, they integrate their products changes into the release

code path using the automated continuous integration tool called bamboo, which is a

product of Atlassian. The system has five different subsystems as mentioned earlier

and each subsystem as its own automated regression test suite. All these tests are end

to end (E2E) functional tests implemented using ClearTH, test case development

46

platform by Exactpro Systems. This platform has the capability to implement different

test cases by providing the input data as a CSV file format and execute them and record

the results into a file.

Subsystem
Total Test

Cases

Passed Test

Cases

Failed

Test

Cases

Success

Rate

%

Duration

(HH: MM)

Corporate

Action
912 911 1 99.89 4:17

Settlement 433 426 7 98.38 9:26

Clearing 234 226 8 96.58 2:06

Depository 57 50 7 87.72 1:12

Payment 65 63 2 96.92 2:13

Total 1701 1676 25 98.53 19:16

For this research exercise, the regression test suite of the CA (corporate action)

subsystem is considered due to the below reasons

- CA regression test suite has the highest success rate of over 99% for the

last ten full regression cycles

- It has lesser number of fluky test cases

- Consists of 912 individual test cases which are considered as E2E tests

- CA test cases are independent of each other so that test cases can be

executed in any given order and all the preconditions for each test case will

be generated within the test case itself

- CA regression test suite has over 95% of source code coverage

- CA functionality have widely spread business scope, and it has complex

computational logics which leads to be the perfect candidate for the test

selection and prioritisation model

- Version control of the test suite updates are done following the git-flow

approach and have each test update can be mapped to the particular source

code change easily.

Table 3.1: Post trade system regression test results

47

3.1.7 Proposed methodology

The key stages of the proposed regression test case selection and prioritisation

methodology can be listed down as below.

- Gather statistics for identified features for each test case

o Code functions invoked during the test

o Function/procedure call sequence

o Code coverage of each function/procedure

o Overall code coverage

o Statement coverage map for each function/procedure

o Execution time

- Preparation of each function/procedure call graph for clustering

- Cluster similar test cases using function/procedure call graph

- Select and prioritise test cases upon code change based on

o Affected code function/procedure

o Similarity of the test cases

o Code coverage of the affected function/procedure

o Code coverage of the overall test E2E case

o Test case execution time

Figure 3.5: Proposed test case selection and prioritization process

48

3.1.7.1 Gather test case statistics

Test case statistics information plays a vital role in implementing the proposed

regression test case selection and prioritisation method as it is the key driver of this

methodology. Test case statistics have to be collected for all the test cases in the full

regression for the selected corporate action subsystem. Before collecting the statistics,

the CA full regression test suite has been run on the verified bug-free source code five

times to identify the fluky/unstable test cases. As per the test, 38 such test cases have

been recognised and removed from the regression test suite.

The granularity of the coverage statistic information is an important research question

that arises during this implementation. Basically, there were three options to select

considering the selected system architecture design and technology stack used

- Package/class level

This is the most abstract level of coverage statistics information for the test

cases. Hence the complexity and the load of the statistic information will

be minimal for this type. So, the capturing and processing of this type of

statistic data will be less complicated, and test case selection will be fast.

Further, the low granular test information will not invalidate the mapping

between code and test cases for every code change. So, the collection of

statistical information is not required to be done very frequently, which is

another advantage in this method.

However, the major drawback of this approach is that the gathered test case

statistic information will not be sufficient to decide on the most impacting

test cases upon code change due to its abstract nature. Therefore, more

granular level test case to source code mapping and statistic information is

required to feed into the test case selection algorithm to get more accurate

selection output.

- Statement/logic level

In this approach, the statistic information is collected on the statement or

the logic level of the code. So, the mapping between the code and the test

49

case contains more granular details than the previous method and hence

the gathering, persisting, maintaining and processing this statistical

information is a costly activity. Also, due to its high granular nature, this

information could get invalidated even by a simple code change which the

statistical data to be rebuilt more frequently. Nevertheless, the test

selection and prioritisation performed on this approach will be more

accurate due to its fine grain input data.

- Function/procedure level

Test case statistics gathered up to the function, or procedure level sits

between the above two methods and delivers average test selection

accuracy and performance while providing maintainable and detailed

statistic information. For the system chosen system last 100 commits had

only 8 call graph changes

Considering the above mentioned advantages and disadvantages of different granular

level test case coverage statistic extraction, function/procedure level feature extraction

is chosen for the proposed methodology.

Once the stable test cases are selected from the regression suite, the next important

step is to identify the features/statistic information of the test cases and process to

extract those features. Considering the proposed test case selection and prioritisation

mechanism, following test case-related information is extracted while performing full

regression for the corporate action subsystem.

Table 3.2: Test case execution details extraction process and usage

 Feature Extraction process Usage of the feature

System functions

or Procedures

To identify the procedures called

form a test case, change has been

done to the script execution

engine so that the procedure

This information is used

to construct the mapping

between the source code

(procedure) and the test

50

invoked for a test

case

name is dumped into the log file

during test case execution. So

this log file is collected for each

test case and process using a

python script to extract the

triggered functions.

case. So if procedure is

changed, impacted test

cases can be identified

easily.

System function or

procedure invoked

sequence during

test case execution

Same as above, the procedure

call sequence per each test case

is dumped into a file and

extracted using a python script.

Procedure call sequence

is intended to use to

identify the similar test

cases in terms of the

procedure call sequence.

This is to avoid business

functionality-wise

duplicate test cases been

selected multiple times.

Coverage map

(Heat map) of each

procedure for a

test case

Script execution engine has the

capability to identify the excited

code statements during test

execution and mark those

statements in the full code file.

Code coverage heat map

which has the statement

level mapping between

test case and source code

will be used to check the

possibility of identify the

impacted test cases with

finer granularity.

Code coverage of

each function or

procedure for a

test case

A python script has been

implemented to capture the

invoked statements and persisted

above to calculate the lines

covered in each procedure for a

particular test case.

Code coverage

information within the

procedure can be used to

prioritise test cases. Test

cases with high code

coverage will be

51

During this test case feature gathering process, the above details were extracted for

each test case in the corporate action full regression and persisted into two DB tables.

These data will be processed and used in the subsequent steps in the proposed test case

selecting and prioritising methodology. Details of the two DB tables are described in

table 3.3 and table 3.4.

TESTCASE_COVERAGE_STAT – This table persists the details of the procedures and

there call sequence for each test case execution

prioritised over the other

test cases when the

particular procedure was

updated.

Overall code

coverage of a test

case

Same as above, the persisted

information is used to deduce the

total code coverage of a test case

Overall code coverage of

the test case will be used

to prioritise the selected

test cases. Test cases

with high overall code

coverage will be

prioritised over the other

test cases when the

particular procedure was

updated.

The execution time

of each test case

The test execution tool

(ClearTH) provides the test case

execution time in milliseconds

and execution tool was updated

to write the execution time into

the same log file discussed

above.

This information is useful

to prioritised test cases

considering the time

limitations of the

execution plan.

52

Table 3.3: Test case coverage statistic persisted data

TESTCASE_EXECUTION_STAT – This table persists the test case execution details for

each test case

Column Name Description

TESTCASE_NAME Name of the test cases. In this exercise, each test

case has a separate input data file. This filename

was considered as the test case name

PROCEDURE_NAME Code procedures of the corporate action subsystem

triggered from each test case

PROCEDURE_SEQ Code procedure sequence called from each test

case. This will be maintained as the incremental

number sequence per test case.

PROCEDURE_LINE_COUNT Code line count of each procedure was recorded

based on the source code

COVERED_LINE_COUNT Triggered line count of each procedure during test

case execution

COVERAGE_PERCENTAGE (Covered line count/procedure line count) *100%

as the coverage percentage per procedure per test

case

IS_REQUIRED This is an enable/disable flag to control each

record to participate into the proposed data

processing.

53

Table 3.4: Test case execution statistics persisted data

Column Name Description

TESTCASE_NAME Test case name (input data file name)

EXECUTION_TIME Test case execution time

TOTAL_COVERED_LINE_COUNT Total covered line count of the source code

during test case execution

TOTAL_LINE_COUNT Total code line count of the corporate action

subsystem

COVERAGE_PERCENTAGE (total covered line count / total line count) *

100% as calculated as the code coverage

percentage of the test case

TEST_GROUP_ID Group id of the test case is calculated based

on its procedure call sequence similarity

which is explained in the subsequent steps

3.1.7.2 Extract test case features based on the procedure call graph

One of the most important concepts of the proposed regression test selection method

is that the duplicate test cases based on the similar function call graph, i.e. test cases

which evaluate the same business flow, are eliminated so that the selected test cases

are functionally independent and will cover different business functionalities. This will

expand the distinct issue detecting capability of the reduced regression which is

intended to run on every code change.

To achieve the above requirement, function call graph or the procedure call sequence

of each test case has been formatted as a sentence where function names are listed as

words and separated using spaces. Before formatting, the technical and utility

functions were removed, so that the sentence will only contains the business functions.

54

So, the test cases which evaluate similar business flow can be identified by the

analysing the similarity of the above formatted sentences. To extract the features of

each sentence and converted it into a numerical format, following text information

retrieval (IR) methods were considered.

- Bag of wards

This method only checks the term frequency of each sentence.

- Word2vec

Word2vec represent a word in a sentence as a vector. This approach

required complex processing and it consider the placement of word in the

document to some extent.

- TF-IDF

This method calculates the importance of a word in a sentence where it

will increase proportionally to the number of times word appear in the

document but offset by the frequency of word been in the group of

documents.

TF-IDF text analysing method has been selected to extract the information from the

function/procedure call sequence of each test case so that the test cases test the similar

business functionalities will have similar TF-IDF score. When selecting text

classification and scoring method, the following factors has been considered,

- Tf-idf is a popular information retrieval and text mining methodology

based on statistical weight on the words in the document

- Since the tf-idf evaluate and score based on the importance of the word to

a sentence, the key procedures were prioritised over other procedures and

will have a higher impact on the tf-idf score.

- Implementation and computation of this methodology is simple

Before applying the tf-idf on the extracted procedure call sequence of the test case

following data formatting and filtering steps were carried out in order to obtain better

output. This was done using a script created from sklearn python library

55

- Procedures which are not participating in the business functionality, yet

called from the test case, i.e. platform/framework level procedures were

removed from the analysis manually by disabling the IS_REQUIRED flag

in the TESTCASE_COVERAGE_STAT table

- The rest of the procedures were formatted as a sentence where the

procedure order (word order of the sentence) reflect the call sequence of

the test case during execution

- The created procedure sentences were cleaned to remove any stop words,

punctuation marks and digits

- Finally, these cleaned sentences were fed into the tf-idf vectorizer for

scoring.

- Tf-idf scores for each test case were plotted for the visualization of the

input data/features

As the output of this step, sparse matrix of test case vs function/procedure name was

calculated where the tf-idf score of each function are the values in this matrix. So, test

case can be represented as a vector of tf-idf scores and each position in this vector

represent a function in the call graph. Figure 3.6 and 3.7 shows the output of these

vectors after formatting them on 2D and 3D space using dimension reduction

technique in principle component analysis (PCA).

Figure 3.6: TF-IDF score of each test case - 2D graph

56

3.1.7.3 Group similar test cases

Objective of this step is to cluster the similar procedure call graphs so that the test

cases related to those procedure call graphs can be assigned to the same cluster. TF-

IDF output of the previous step, i.e. the vector representation of function call graph

based on the tf-idf score, is considered as the input for clustering the regression test

cases. So, the functions invoked in each test case is the key factor of test case

clustering. By identifying similar test cases in terms of business functionality, most

distinct test case selection is possible in the subsequent steps.

For this proposed test case selection and prioritisation methodology, K mean clustering

algorithm is selected as the test case grouping approach using their tf-idf score of each

test case as the input. To apply the K mean algorithm, the number of clusters (K) has

to be predefined. To identify the optimal K value for the given input data, the Elbow

method was used, and a separate python script was implemented for this calculation.

Figure 3.7: TF-IDF score of each test case - 3D graph

57

During this method, the within-cluster sum of squared distance was calculated for a

range of K values starting from 1 to 40. This output was plotted into a graph where x-

axis represents the cluster number, and the y-axis represents the within-cluster sum of

squared distance value for each K.

As per the figure 3.8, the bend (knee) of the graph can be recognized when the k value

reaches 12. So the optimal cluster number (groups) for the given input test cases is

chosen as 12, which is approximately equal to the number of distinct business

functionalities of the corporate action subsystem.

The next step is to apply the k mean clustering on the tf-idf output of the test case

procedure call graphs. Script has been updated to use the sklearn k mean python

package to cluster the tf-idf output of each test case and persist it in the

TEST_GROUP_ID column in the TESTCASE_EXECUTION_STAT table.

Figure 3.8: Elbow method output for different K

58

Figure 3.9: K-mean clustering on top of test cases - 2D graph

Figure 3.10: K-mean clustering on top of test cases - 3D graph

59

Total of 911 test cases is considered for clustering into 12 clusters (test groups).

Following k mean cluster parameters were used during the implementation.

- K: Cluster count = 12

- n_init: Number of times the k-means algorithm will be run with different

centroid seeds = 10000

- max_iter: Maximum number of iterations of the k-means algorithm for a

single run = 100000

Figure 3.11: Test cases selected for each test group

3.1.7.4 Test case selection and prioritization

This step defines the criteria for the regression test case selection and prioritisation

based on the information gathered and calculated from previous steps. Initially, testing

is carried outperforming the test case selection and prioritisation once and evaluate the

results. While testing it is identified that the single level of test case selection does not

provide a promising outcome. Hence it is decided to introduce a second level of test

case selection and prioritisation for a more accurate output. Also, the second level of

1 2 3 4 5 6 7 8 9 10 11 12

Series1 38 124 124 113 15 110 20 79 95 66 43 84

0

20

40

60

80

100

120

140

#
 T

es
t

C
as

es

Test Case Groups

60

test selection is only performed for the test groups where the selected test cases did not

fail from the first level of selection.

Following are the steps carried out during the first level of processing

- Identify and extract the changed code procedures

In this step, procedures/functions which were updated during the bug-fix

or feature development will be captured using the git commit change log.

Once the developer creates the pull request of the change from bug-

fix/feature branch to develop branch, the commits inside the pull request

are considered for this activity.

For the testing of the proposed method, a python script has been

implemented to checkout to each commit and extracts the changed

procedures by processing the change log while traversing upwards through

the git tree of the existing code repository of the corporate action

subsystem. Along with the source code git commit, the regression test repo

git commit is also switched to get the corresponding test cases for the same

code version.

- Select the test cases which evaluate the changed procedures

Once the updated procedures were identified, the script will search for the

impacted test cases which evaluate those procedures. The mapping

between the test cases and the code procedures is available in the

TESTCASE_COVERAGE_STAT DB table. So, this table is used to find

the test cases which evaluate the changed procedures.

- Group the selected test cases into the pre-calculated groups

This step will group the selected test cases based on the test group id

generated based on procedure call graph using k mean clustering. The first

level of test case grouping details is available in the table TESTCASE_

EXECUTION_STAT under TEST_GROUP_ID column.

Per each group select the test case which has the highest coverage within

the changed procedures and if there is a tie choose the test with highest

total code coverage.

61

o Coverage percentage of the changed procedure from the selected

test case is considered as the primary selection criteria within the

test group. This information is gathered and persisted under

COVERAGE PERCENTAGE column of the

TESTCASE_COVERAGE_STAT table. This will make sure that

the selected test case will cover most of the functionality of the

updated procedure in the event of code change.

o Total test case coverage, i.e. total lines covered from the test case

over the total line count of the corporate action source code, is

considered as the secondary selection criteria for the test case

selection within the same test group. Total test coverage per test

case is available in the COVERAGE_PERCENTAGE of the

TESTCASE_ EXECUTION_ STAT table. This is to select the test

cases which evaluate the most complex business scenario with

higher code coverage.

- Prioritised the selected reduced test suite based on the below features using

weighted average score methods

o Procedure coverage

o Total line coverage of the system

o Execution time

- Run the reduced and prioritised test cases and extract the test case result

After executing the test cases selected and prioritised from the above criteria, the test

groups of the passed/completed test cases will be considered for the secondary level

of processing. This will reattempt the test case selection and prioritisation task for the

passed test groups individually to recognise another two test cases which could

potentially fail during execution.

- Find the groups where the selected test case is passed in the first level

processing

Once the selected test cases were executed from the first level of

processing, the passed test cases will be selected to identify their test group

62

id. Those test groups will be considered as the passed test groups for the

next step.

- Identify the test cases for secondary processing

For each passed test group, select all the test cases which evaluate the

changed procedure and remove the test case which was already executed

in first level processing. So, the secondary level processing will only

consider the newly selected test cases for each test group for the next step.

- Extract features for secondary level test cases

As described in section 3.1.7.2, apply tf-idf information retrieval method

to the selected test cases for the test group based on the procedure call

graph of each test case. Since the selected test case sample for the

secondary processing is very low compared to the primary processing,

dynamically performing this clustering during the actual secondary test

case selection is feasible.

- Cluster similar test cases within the primary test group

Cluster the test cases within the group selected for the secondary

processing using k-mean for the predefined cluster count. Considering the

number of test cases selected from each primary test group, cluster k

number for the secondary clustering is configured as 2 (k = 2) for testing.

Rest of the steps are similar to section 3.1.7.3. So additional 2 test cases

which are distinct from each other compared to the procedure call graph,

will be selected from each passed test group from the secondary test case

selection approach.

- Select a test case from each cluster within the group where the procedure

coverage and total code coverage is higher.

- Prioritised the selected test cases based on below features using the

weighted average score

o Procedure coverage

o Total line coverage of the system

o Execution time

63

3.2 Evaluation results

The evaluation of the proposed regression test case selection and prioritisation

methodology is carried out comparing the evaluation parameters defined in the section

2.3 with the following test approaches.

- Full regression test

Complete test suite including 874 E2E test cases

- Smoke test

Manually selected 15 E2E test cases from the CA test suite which cover

all the primary functional paths of the CA subsystem

- Random test

Randomly selected 25 E2E test cases from the CA test suite

The proposed methodology introduces a new test case categorisation method (test

groups) based on the functional workflows (business functionalities) of the system

under test. Hence the assessment of the evaluation parameters is more accurate and

relevant when it is done on the test group-level results instead of the results of the

individual test cases. In this section, the results of the evaluation parameters are

presented in both approaches, i.e. using individual test cases as well as the results of

the test groups, for more clarity.

3.2.1 Evaluation methodology

Following steps were carried out to gather the results of the test selection and

prioritisation approach for the comparison.

1. Introduces a bug/defect into the system

The first step is to select a procedure from the source code and plant a bug by

changing the code of the procedure so that the expected result will not be met.

This step was done manually by analysing the git commits for past procedure

changes. When selecting procedures and introducing defect, following aspects

were considered and tried to adhere as much as possible so that the actual

performance of the proposed approach could be evaluated.

64

- Select the procedures which are not triggered by the main functional paths

By avoiding the procedures/code segments used in the core business

functional paths, failed test cases will be limited, and it will help to capture

the true performance of the proposed test selection method, by evaluating

the edge conditions and uncommon test scenarios. If the procedures in the

core functional path were selected, most of the test cases will fail and will

be hard to compare the performance of the proposed approach with the

conventional methods. Because when only a small number of test cases

fail, it is not easy to identify those test cases from a large pool of test cases

in the regression test suite and capture the bug using the available test case

selection methods.

- The planted defect should change the output of the system

The introduced defect should change the output of the system, and it should

fail at least one test case in the regression test suite.

2. Integrate the defect code into the system and start the system.

3. Run the full regression test suite and persist the results

Execute the full regression test suite consists of 874 test cases and persist the

results into a DB table named TESTCASE_RESULT_STAT. This table

contains the output of each test case captured during the full regression test for

each defect introduced.

4. Select the test cases to execute using the proposed method

Execute the proposed regression test case selection and prioritisation tool by

providing the changed procedures and obtain the test cases to execute. Since

the proposed approach has two steps of selection, the second-based on the

output of the initial selection, the status of each test case from the the full

regression test were used as the results of the initial selection, instead of

actually executing the test cases. Then evaluate the performance of all the

selected test cases against the code change using the results in the full

regression test.

65

5. Select the test cases used for the smoke test and compare the output of each

test case using the full regression results for each defect.

6. Select test cases from random test selection techniques and compare the output

of each test case using the full regression results for each defect.

7. Calculate the evaluation parameters for each test approach using the test case

results persisted in the TESTCASE_RESULT_STAT table and evaluate the

performance of each test case selection/prioritisation approach.

For the evaluation parameter calculation, selected test cases are considered based on

the subset of test cases selected from each test selection approach, and relevant test

cases are considered based on the failed test cases during the test case execution for

each approach.

3.2.2 Test case reduction rate and efficiency

Test case reduction is one of the main reasons for promoting the regression test case

selection so that the reduces test suite can be used to detect the defects of a code change

as soon as possible. With higher reduction rate, test cases can be executed during code

change integration which helps to identify the defect as early as possible.

As per the test results in table 3.5, the proposed approach has a 99% average reduction

rate compared to the full regression test suite and average execution time is under 350s

(~6mins) per code change.

 Table 3.5: Test case reduction for different selection methods

Test #

Full

Regression

Test Count

Smoke Test

Count

Proposed

Approach Selected

Test Count

Execution

Time (s)

Reduction

Rate (%)

1 874 15 15 699 98.28

2 874 15 4 80 99.54

3 874 15 2 93 99.77

4 874 15 5 97 99.43

66

5 874 15 4 217 99.54

6 874 15 21 1327 97.6

7 874 15 3 99 99.66

8 874 15 3 160 99.66

9 874 15 16 653 98.17

10 874 15 13 962 98.51

3.2.3 Precision

Precision is one of the leading performance parameters in the test case selection

methodologies which can be calculated as the ratio of failed test cases of the selected

test set (relevant test case) vs. selected test cases. Table 3.6 shows the failed test case

count, total selected test case count and precision in percentage for the proposed test

selection method as well as the three other traditional test selection methods, i.e. full

regression, smoke test and random test selection, for a sample 10 code changes which

have planted defects.

Table 3.6 presents the precision comparison based on the individual test case counts,

and table 3.7 presents the precision comparison based on the test case groups which is

calculated as per the proposed test case selection method.

The proposed approach is not intended to select all or the majority of failed test cases

from the regression test suite since it is not efficient to execute multiple test cases

which evaluate the same code path even though those test cases are failure cases for

the particular code change. The rationale behind this approach is to cover the

maximum possible distinct functional paths to identify more defects in the system.

Even though this approach is not projected to have higher test selection precision, it is

still better than the other three approaches due to its reduced test suite.

67

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n

 %

Test Case #

Precision Percentage - Test Cases

Full Regression Smoke Test Random Test Proposed Method

Figure 3.12: Test case selection precision

Table 3.6: Precision comparison based on the individual test cases

The precision of the test case selection can be calculated considering the selected test

groups for execution and failed test groups from the selected groups for each test

selection methods. As per the results, the test group precision of the proposed approach

is higher than the traditional test selection methods. Even though all the test cases are

Test# Full regression Smoke Test Random Test Proposed Method

Selected

Test

Count

Failed

Test

Count

P% Selected

Test

Count

Failed

Test

Count

P% Selected

Test

Count

Failed

Test

Count

P% Selected

Test

Count

Failed

Test

Count

P%

1 874 14 1.6 15 0 0 25 1 4 15 2 13.33

2 874 4 0.46 15 0 0 25 0 0 4 2 50

3 874 7 0.8 15 0 0 25 0 0 2 1 50

4 874 3 0.34 15 0 0 25 0 0 5 1 20

5 874 13 1.49 15 1 6.67 25 0 0 4 4 100

6 874 16 1.83 15 0 0 25 1 4 21 3 14.29

7 874 15 1.72 15 1 6.67 25 1 4 3 3 100

8 874 2 0.23 15 0 0 25 0 0 3 1 33.33

9 874 33 3.78 15 0 0 25 1 4 16 3 18.75

10 874 13 1.49 15 0 0 25 0 0 13 3 23.08

68

not selected from the proposed method, all the failed test groups are selected for

execution. Hence it is guaranteed to cover all the functional code paths which could

have potential defects in the system.

Table 3.7: Precision comparison based on the test case groups

Test# Full regression Smoke Test Random Test Proposed Method

Selected

Test

Groups

Failed

Test

Groups

P% Selected Test

Groups

P% Selected

Test

Groups

P% Selected Test

Groups

P%

1 ALL 4,7 16.66 0,1,2,3,5,6,10,11 0

1,2,3,4,5,7,9 28.57

2 ALL 2,5 16.66 0,1,2,3,5,6,10,11 25

2,3,5,9 50

3 ALL 10 8.33 0,1,2,3,5,6,10,11 12.5

6,10 50

4 ALL 2 8.33 0,1,2,3,5,6,10,11 12.5

2,3,5,9 25

5 ALL 0,2,3,8 33.33 0,1,2,3,5,6,10,11 37.5

0,2,3,8 100

6 ALL 1,3,5 25 0,1,2,3,5,6,10,11 37.5

0,1,2,3,4,5,8,9,11 33.33

7 ALL 0,3,11 25 0,1,2,3,5,6,10,11 37.5

0,3,11 100

8 ALL 10 8.33 0,1,2,3,5,6,10,11 12.5

10 100

9 ALL 1,3,5 25 0,1,2,3,5,6,10,11 37.5

0,1,3,4,5,8,9,11 37.5

10 ALL 1,2,3 25 0,1,2,3,5,6,10,11 37.5

1,2,3,5,6,7,11 42.86

3.2.4 Recall

The ratio between selected failed test cases and the total failed test cases in the

regression test suite is calculated as the recall of the test selection method. As per the

test results in table 3.8, full regression test provides 100% recall since it executes all

the test cases in the test suite at the cost of ample execution time. Also, the recall rate

of the proposed method has comparatively better performance than the smoke test, and

random test approach regardless of the proposed method has no intention to capture

multiple failed test cases within the same test groups.

69

Table 3.8: Recall comparison based on the individual test cases

Test# Full regression Smoke Test Random Test Proposed Method

Total

Failed

Test

Count

Executed

Failed

Test

Count

R% Executed

Failed

Test

Count

R% Executed

Failed

Test

Count

R% Executed

Failed

Test

Count

R%

1 14 14 100 0 0 1 7.14 2 14.29

2 4 4 100 0 0 0 0 2 50

3 7 7 100 0 0 0 0 1 14.29

4 3 3 100 0 0 0 0 1 33.33

5 13 13 100 1 7.69 0 0 4 30.77

6 16 16 100 0 0 1 6.25 3 18.75

7 15 15 100 1 6.67 1 6.67 3 20

8 2 2 100 0 0 0 0 1 50

9 33 33 100 0 0 1 3.03 3 9.09

10 13 13 100 0 0 0 0 3 23.08

According to the proposed test selection approach, more relevant recall values could

be calculated considering the failed test group ids for the different test selection

methods, as shown in table 3.9. As per the test results, the recall rate calculated based

on the selected test groups, the proposed test selection approach has the 100% recall

rate which is same as the performance of the full regression test execution.

Table 3.9: Recall comparison based on the test case groups

Test# Full regression Smoke Test Random Test Proposed Method

Total

Failed

Groups

Executed

Failed

Groups

R% Executed

Failed

Groups

R% Executed

Failed

Groups

R% Executed

Failed

Groups

R%

1 4,7 4,7 100 - 0 7 50 4,7 100

2 2,5 2,5 100 - 0 - 0 2,5 100

3 10 10 100 - 0 - 0 10 100

4 2 2 100 - 0 - 0 2 100

5 0,2,3,8 0,2,3,8 100 0 25 - 0 0,2,3,8 100

6 1,3,5 1,3,5 100 - 0 5 33.33 1,3,5 100

70

Figure 3.13: Test case selection recall rate

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

R
ec

al
l %

Test Case #

Recall Percentage - Test Groups

Full Regression Smoke Test

7 0,3,11 0,3,11 100 0 33.33 3 33.33 0,3,11 100

8 10 10 100 - 0 - 0 10 100

9 1,3,5 1,3,5 100 - 0 1 33.33 1,3,5 100

10 1,2,3 1,2,3 100 - 0 - 0 1,2,3 100

3.2.5 F – Measure

The trade-off between precision and recall value are harmonised by calculating the F-

measure for the precision and recall values for each test scenario for different test

selection methodologies. According to the results in table 3.10, the proposed test

selection method secured the highest percentage value of F-measure compared to the

other 3 traditional test selection methods.

71

Table 3.10: F-measures for different test selection methods

Test #
Full Regression

(F%)

Smoke Test

(F%)

Random

Test (F%)

Proposed Method

(F%)

1 3.15 - 7.41 23.52

2 0.92 - - 66.67

3 1.59 - - 66.67

4 0.68 - - 33.33

5 2.94 10.53 - 100

6 3.59 - 7.14 25.01

7 3.38 11.12 7.14 100

8 0.46 - - 50

9 7.28 - 7.14 31.58

10 2.94 - - 37.50

Avg 2.69 2.16 2.88 53.43

3.2.6 Mutants killed

As per the test carried out on test selection methods, the defect detection capability of

the proposed test selection approach is comparatively higher than the other test

selection methods, obviously except for the full regression. In fact, for all the test

scenarios considered during this evaluation, all the planted defect was identified from

the proposed method, hence had 100% mutant killed rate.

Table 3.11: Mutants killed from each test selection methods

Test Selection

Method

Total defects Identified

Defects

Mutants

Killed

%

Full regression

Test

12 12 100

Smoke Test 12 2 16.67

72

Random Test 12 4 33.33

Proposed Test 12 12 100

3.2.7 Performance of the test selection levels

The proposed regression test selection and prioritisation method consist of two levels

of test selection, where the second level of selection is done based on the output of the

primary selection. As per the test results in table 3.12, over 82% of the identified

defects are detected from the primary selection, whereas the rest was detected from the

secondary selection. Hence it is vital to have both processing levels for the test

selection in the proposed approach.

Table 3.12: Defect detection capability of proposed test selection levels

3.2.8 Summary

When considering the evaluation parameters as mentioned in table 3.13, it is evident

that the proposed regression test selection and prioritisation approach standout the

other traditional test selection methods practised in the industry.

Table 3.13: Evaluation results summary for different test selections

Test Methods
Test Reduction

%
Precision % Recall % F %

Mutants Killed

%

Full regression

Test
0 1.37 100 2.69 100

Test# 1 2 3 4 5 6 7 8 9 10 Total

Failed Test Groups -

Level 1 Processing
2 2 1 1 4 2 3 0 2 2 19

Failed Test Groups -

Level 2 Processing
0 0 0 0 0 1 0 1 1 1 4

Total Defects 2 2 1 1 4 3 3 1 3 3 23

73

0 20 40 60 80 100 120

Full regression Test

Smoke Test

Random Test

Proposed Test

Te
st

 s
el

ec
ti

o
n

 m
et

h
o

d
s

Summary - Test Selection Performance

Mutants Killed % Recall % Precision % Test Reduction %

Smoke Test 98.28 1.33 5.83 2.16 16.67

Random Test 97.13 1.6 15 2.88 33.33

Proposed Test 99.01 42.28 100 53.43 100

All the test selection approaches expect regression test has excellent test case reduction

capability where the proposed method has a slightly higher reduction of 99.01 %

compared to smoke test and random test which have fixed number of test cases. When

it comes to precision, the proposed method clearly defeats the other three approaches

having over 42% precision rate. The recall rate of the proposed test selection method

is calculated based on the selected test groups. As per the results, the proposed method

also achieved the 100% recall rate as the full regression test, whereas the other two

methods obtain lower recall performance. Same as recall the detected defects (mutants

killed) percentage is 100% in both full regression and proposed method. Therefore, the

proposed test selection method has the full regression performance in the aspect of

recall and mutants killed and much higher performance in test reduction and precision

compared to full regression testing.

Figure 3.14: Evaluation results summary for different test selections

74

3.3 Conclusion

3.3.1 Outcomes of the research

As described in section 3.2, the proposed regression test case selection and

prioritisation approach provide better overall performance compared to other

traditional test cases selection methods. So, from this research, the following outcomes

can be identified on efficient regression testing.

1. To achieve the code changes based test case selection, it is required to maintain

a mapping between test cases and source code and granularity of this mapping

is one of the research question addressed during testing. Considering the

performance of the proposed test selection model, the procedure level test case

to source code mapping provides better results with lesser processing

complexity and higher statistic data maintainability.

2. Along with the development activities (CRs and bug fixes), gathered test cases

statistic details get deviated from the actual values and it requires constant

statistic gathering and maintenance. As per the evaluation carried out on the

proposed method, once a week statistic update is sufficient, which can be

scheduled to perform during the weekly full regression cycle as described in

section 3.1.7. Hence the overhead of managing and updating test case

statistic/coverage details is minimal.

3. Identifying and excluding the redundant test cases which evaluate the same

functional implementation is one of the main objectives of this research. This

is to achieve most effective reduced test suite for early defect detection. The

procedure level call graph-based test case grouping and selection technique

which described in this research can be recognized as a provable and feasible

solution for this requirement. Also, the performance gain from this technique

is comparably acceptable.

4. As per the test results and analysis carried out during the research

implementation, the coverage of the changed procedure for the test case and

the overall code coverage of the test case have been identified as the most

75

impactful features for change based test case selection and prioritisation. Also,

the procedure level coverage has a higher impact than the overall code

coverage for the defect detection capability of the test case. Statement level

heat map of the test case can be considered as a very accurate measurement for

the change based test selection. However, due to its complexity and high

maintenance cost, it was decided not to use this feature for this research study.

Further, the execution time of the test case has no significant impact on the

proposed test selection and prioritisation approach since it is capable of

achieving over 98% test case reduction.

5. According to the test results, the proposed method has 100% defect detection

capability (given that the regression suite covers all the business

functionalities) for test case reduction of over 98%. Hence the proposed

approach which selects test cases based on the code change and the test case

grouping and prioritises test cases based on its coverage details would be

capable of capturing all the defects with minimum test case execution.

6. The proposed test selection and prioritisation method can be easily automated

and integrated into the daily and weekly CI cycles, so that there will be no

overhead for the developers. Test case statistic gathering, extract useful

features and grouping functionality similar test cases can be integrated into the

weekly CI cycle which can be executed during full regression testing. Test case

selection, prioritisation and execution can be done during daily integration or

when merging the code change into the release path.

3.3.2 Challenges and limitations

Regression test case selection and prioritisation using machine learning principles is a

new area of research; hence there are limited literature on this topic. In this research

study, several challenges and limitations were encountered as described below.

3.3.2.1 Challenges

1. Selecting a suitable system for implement and test the proposed test selection

method

76

One of the main challenges of this research is to select a system to test the proposed

regression selection method. As mentioned in section 3.1.6, a system with a well-

maintained regression test suite which has higher source code and business

functionality coverage is required to obtain the true performance of this research.

2. Identifying and excluding the flaky test cases

Identifying and excluding the flaky test cases exists in the regression test suite is

another challenging task faced during research. Thirty-eight of such test cases has been

identified after performing multiple rounds of testing by executing the full regression

test suite. Hence rest of the test cases (874) were considered to be stable test cases

which were used for the research study.

3. Selecting defects to evaluate the proposed method

To test the performance of the proposed test selection and prioritisation model, it is

required to identify suitable code changes to the system which introduce defects into

the system. Those defects should not fail the most of test cases in the regression suite;

otherwise, the true performance of the proposed test selection approach will not be

evaluated. So, selecting such defects is a challenging task which requires a thorough

understanding of the source code as well as the business functionality

4. Running and analysing the full regression results

This is the most time-consuming activity during the evaluation. As per the regression

test implementation when there is a failure in the test scrip it takes long time to

complete because the script is waiting the system to provide expected results. Also,

limitations in the test environment cause additional overhead to the research

evaluation.

3.3.2.2 Research limitations

1. Limitations of available test case characteristics

During this study, we have considered only the test case characteristics which can be

readily generated by executing the test case, such as functions invoked by test case,

function coverage, total test case coverage and execution time. So, the characteristics

77

which requires history data or export knowledge of the test scenarios were not

considered for this evaluation. For example, past test case results, number of defects

identified from the test case, severity of these defects, importance of the business

scenarios evaluated by the test case and number of linked functional requirement for

the test case.

2. Evaluation was limited to unsupervised ML techniques

Due to the unavailability of expert knowledge on test case scenarios and their relevant

business requirements it is difficult to generate a labelled test data to train supervised

learning model. Also, it will create an additional overhead to the current development

practice, as it requires manual intervention for training. Hence this research study is

focused on fully automated regression testing selection strategy and evaluate only the

unsupervised ML methods which do not require labelled data for model training.

3. Function call sequence of a test case is not used for feature extraction

The test case feature extraction is done based on the importance of the functions

invoked by a test case and it is not considering the function invoked sequence. The tf-

idf text IR technique is employed for test case feature extraction and it gave us

dependable results to proceed with clustering. Hence requirement of employing

function invoked sequence didn’t arise for the selected test suite.

4. Changes to the code could invalidate the test case details

When the changes are carried out on the existing code due to the bug fixes or CRs, the

procedure call graph could change for the impacted test cases. This will invalidate the

gathered test case statistic as well as the test case grouping. Hence the test case

selection could not be accurate as expected. This is a limitation of the proposed

approach which can be minimised by frequent statistic gathering. Also, it is not

expected to have drastic changes to the code, which could change the procedure call

graphs of a test case for the projects in the maintenance phase.

3.3.3 Research assumptions

Following are the key research assumptions considered during the analysis.

78

1. Regression test case should evaluate the end to end functionality of the test

scenarios including any ripple effects to the system.

2. Test cases should be independent on each other and execution of one test case

should not cause any impact on the subsequent test case execution.

3. It is assumed that by selecting test cases which have highest line coverage of

the modified function and highest total code coverage per each test group i.e.

each business function, will evaluate updated code change in the function by

following the most complex business execution path.

4. It is expected not to have frequent changes which invalidate the gathered test

case details, specially the functions invoked by the test case, during the

maintenance periods of a product.

5. Also, it is assumed that the regression test suite covers the maximum possible

code coverage considering all the positive and negative test scenarios.

6. If changes to the test suite is required, those should be done before the code

changes are implemented and committed into the system.

3.3.4 Future work

Employing machine learning principles to enhance the code change based regression

test case selection and prioritisation method is an emerging research area which has

the potential to improve the efficiency of agile development as well as the quality of

the output product. Hence, this research is of much importance and this can be

enhanced further as suggested below.

1. The past test results of the test cases can be gathered and incorporated into the

selection algorithm because test cases with a higher failure rate have a high

chance of detecting defects of the updated code.

2. Employ various information retrieval algorithms to extract features of the

procedure call graphs, especially the order of the called procedures, and

compare the performance of these IR methods to find most suitable IR

algorithm.

79

3. Study on various clustering methods to group the test cases which evaluate the

similar functional area and compare the performance of each clustering method

to identify the most suitable clustering algorithm for this proposed regression

test case selection approach.

4. In this research, the test cases were selected based on the procedure level

coverage of the test cases. However, the statement level test case to source code

mapping provides more accurate information for the test selection with the cost

of complex and more volatile mapping logic. As future work, it is vital to

analyse the feasible method of gathering and maintaining the statement level

test case mapping against the code.

5. It is proposed to implement this test case selection method as a pluggable

module to integrate into the system’s version control system or CI system.

80

REFERENCE LIST

[1] S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran, “Regression Test Selection

Techniques: A Survey,” 2010.

[2] Atlassian, “What is Continuous Integration,” Atlassian. [Online]. Available:

https://www.atlassian.com/continuous-delivery/continuous-integration.

[Accessed: 17-Oct-2018].

[3] Atlassian, “Gitflow Workflow: Atlassian Git Tutorial,” Atlassian. [Online].

Available: https://www.atlassian.com/git/tutorials/comparing-

workflows/gitflow-workflow. [Accessed: 17-Oct-2018].

[4] R. Kazmi, D. Jawawi, R. Mohamad, I. Ghani, and M. Younas, “A Test Case

Selection Framework and Technique: Weighted Average Scoring Method,” Nov.

2017

[5] Sanjoy_62Check out this Author's contributed articles., sanjoy_62, and Check out

this Author's contributed articles., “Software Engineering: Software

Maintenance,” GeeksforGeeks, 11-Oct-2018. [Online]. Available:

https://www.geeksforgeeks.org/software-engineering-software-maintenance/.

[Accessed: 27-Dec-2019].

[6] S. Yoo and M. Harman, “Regression testing minimization, selection and

prioritization: a survey,” Software Testing, Verification and Reliability, 2010.

[7] E. D. Ekelund and E. Engstrom, “Efficient regression testing based on test history:

An industrial evaluation,” 2015 IEEE International Conference on Software

Maintenance and Evolution (ICSME), 2015.

[8] S. Puri, A. Singhal, and A. Bansal, “Study and Analysis of Regression Test Case

Selection Techniques,” International Journal of Computer Applications, vol. 101,

no. 3, pp. 45–50, 2014.

81

[9] J. Kasurinen, O. Taipale, and K. Smolander, “Test Case Selection and

Prioritization,” Proceedings of the 2010 ACM-IEEE International Symposium on

Empirical Software Engineering and Measurement - ESEM 10, 2010.

[10] A. Lawanna, “A Model for Test Case Selection in the Software- Development

Life Cycle,” 2013.

[11] M. K. Suppriya and A. K. Ilavarasi, “Test Case Selection and Prioritization Using

Multiple Criteria,” International Journal of Advanced Research in Computer

Science and Software Engineering, 2015.

[12] Lachmann, “Machine Learning-Driven Test Case Prioritization Approaches for

Black-Box Software Testing,” The European Test and Telemetry Conference,

2018.

[13] K. Jammalamadaka, and V. Ramakrishna, “Test Case Selection Using Logistic

Regression Prediction Model,” International Journal of Mechanical Engineering

and Technology, 2017.

[14] Y. Pang, X. Xue, and A. S. Namin, “A Clustering-Based Test Case Classification

Technique for Enhancing Regression Testing,” Journal of Software, vol. 12, no.

4, pp. 153–164, 2017.

 [15] K. Dhanadevan, J. Nallasamy, and S. Murugavel, “Neural Network Based

Regression Test Selection,” Sep. 2017.

[16] A. A., M. Akour, I. Alazzam, and F. Hanandeh, “Regression Test-Selection

Technique Using Component Model Based Modification: Code to Test

Traceability,” International Journal of Advanced Computer Science and

Applications, vol. 7, no. 4, 2016.

 [17] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement learning

for automatic test case prioritization and selection in continuous integration,”

Proceedings of the 26th ACM SIGSOFT International Symposium on Software

Testing and Analysis - ISSTA 2017, 2017.

82

[18] A. Beszedes, T. Gergely, L. Schrettner, J. Jasz, L. Lango, and T. Gyimothy, “Code

coverage-based regression test selection and prioritization in WebKit,” 2012 28th

IEEE International Conference on Software Maintenance (ICSM), 2012.

[19] Q. D. Soetens, S. Demeyer, and A. Zaidman, “Change-Based Test Selection in

the Presence of Developer Tests,” 2013 17th European Conference on Software

Maintenance and Reengineering, 2013.

[20] K. Godfrey, Kassambara, J. Romero, Kassambara, V. Kumar, Kassambara, and

M. Cassiano, “Determining The Optimal Number Of Clusters: 3 Must Know

Methods,” Datanovia. [Online]. Available:

https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-

clusters-3-must-know-methods/. [Accessed: 27-Dec-2019].

[21] Z. Sultan, R. Abbas, S. Nazir, and S. Asim, “Analytical Review on Test Cases

Prioritization Techniques: An Empirical Study,” International Journal of

Advanced Computer Science and Applications, vol. 8, no. 2, 2017.

[22] “Test Prioritization or Test Case Prioritization,” ProfessionalQA.com. [Online].

Available: http://www.professionalqa.com/test-prioritization. [Accessed: 27-

Dec-2019].

[23] I. Salian, “NVIDIA Blog: Supervised Vs. Unsupervised Learning,” The Official

NVIDIA Blog, 20-Aug-2019. [Online]. Available:

https://blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning/.

[Accessed: 23-Feb-2019].

[24] “idf :: A Single-Page Tutorial - Information Retrieval and Text Mining,” Tf.

[Online]. Available: http://www.tfidf.com/. [Accessed: 27-Sep-2019].

[25] Kasurinen, J., Taipale, O. and Smolander, K., 2010. Test Case Selection and

Prioritization: Risk-Based or Design-Based?

83

[26] Tibshirani, R., Walther, G. and Hastie, T., 2001. Estimating the number of clusters

in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 63(2), pp.411-423.

[27] Pravin, A. and Srinivasan, S., 2013. Effective test case selection and prioritization

in regression testing. Journal of Computer Science, 9(5), pp.654-659.

