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PART ONB

THE EFFECT OF BED FRICTION ON THE PLRFORMANCE OF
FIXED BED TIDAL MODELS OF ESTUARIES



List Of Symbols.

The following symbols are used except where

otherwise mentio aed.

Suffixes m and p refer to mo&el and prototype respecti-

vely.

A = Area of crossesection

b = Width of Section

C = Chezy coefficient

c = Wave celerity

d = Diameter of hemispherical cement blocks.

e = Vertical exaggeration =.XE ; Also diameter of uniform
hemispherical sand grain?s

f = (Efrictienrcoefficienyg

g = Kéeeleration'duel tolgravity.,

= Elevation of water level measured with respect to the

mean water level at section 1 .

Hs = Horizontal Scale =

‘ X
Hf = Frictional head loss in a pipe of length L and

diameter D in which the mean velocity of flow isV .

h = Depth of water in the model.

1 = Bed Slope

L = Wave length

n = Manning Coefficient

P = Wetted perimeter

R = Hydraulic mean depth

o = pipe radius measured to crests of roughness elements.

S = Centre to Centre spacing of hemispherical cement blocks.



Vs=

Tidal period
Time
Horizontal velocity

- = i
Vertical scale = o

Horizontal distance along the estuary
Vertical distance
Depth of water in the flume measured up to the

flat bed of the flume.




SUMMARY

This report describes an investigation that was

conducted on a fixed bed hydraulic model of the Solway Firth.

The aim of the investigation was to study the manner in
which the roughness of the bed of model influences the
performance of the model regarding tidal levels and tidal

velocities,

Models of estuaries are usually constructed to
a distorted scale and it is not possible to derive
theoretically, the correct magnitude of bed roughness
necessary in order to obtain dynamic similarity. In this
investigation, it was intended to study the extent to which
the tidal veldecdtlies;and ¢levations depend on bed friction
and alsc explore the possibility of ascertaining what
magnitude of bed roughness of model would produce dynamic

similarity between a given model and prototype.

The method adopted in this investigation was to
produce roughnesses of known magnitude on the bed of the
model and study the perfovrmance of the model under these
roughnesses. Bed roughness was produced by fixing
hemispherical cement blocks on the bed of the model
according to predetermined patterns. By means of g geries
of tests in a rectangular flume under uniform flow
conditions, the patterns required to produce the desired
magnitudes of roughness were determined. Tidal velocities
and Elevations were observed at seven points of the model

for three gifferent roughnesses of the bed.
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A theoretical analysis of the £low in the model
was also carried out taking into account, the bed roughness.
As a result of this analysis it waé found possible to
represent the flow in the model by means of a mathematical
equation adapted to a computer program. The results of this
mathematical analysis showed agreement with the observa-
tions made. This agreement failed in certain parts of the
model which remained dry during a certain period of the
tidal cycle causing discontinuity of the water level as a

function of time.

Although it is not possible to calculate the
correctamagnifude-of bed xoughness; for | the model, it has
been faund po'ssiblewith’“the above'‘théoretical analysis of
flow inrthe model, to select a suitable magnitude of bed
roughness which produces the desired behaviour of the
model as regards tidal levels. However, it has not been
possible in this investigation to verify the accuracy of
the representation of tidal velocities in the mathematical
treatment owing to the difficulty of measuring the mean
tidal velocities, since in most regions of the model, the
depths of flow were insufficient for accurate velocity

measurement .

In the range of bed roughnesses employed in
this investigation, it has been found that the effect of
bed roughness on the tidal elevations is comparatively

less significant than its effect on tidal velocities.




