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Abstract 

 

The Fingerprinting method or the Database Correlation Method (DCM) is a network 

based positioning technique which has shown superior accuracy. DCM is based on a 

pre-measured database of location dependent variables such as Received Signal 

Strength (RSS). The major challenge of the technique is the effort involved in 

forming the database, which prevents it being deployed in large, dynamic networks. 

 

The work presented in this thesis investigates the possibility of using network 

planning tool predictions instead of field measurements to create the fingerprint 

database for DCM. While the accuracy of this approach is lower than the DCM 

method with field measurements, further tuning of the predictions in order to 

improve the performance is proposed. The tuning method is defined as cell-wise 

calibration, which calibrates the predictions by using a lesser number of field 

measurements in a cell-by-cell basis. In addition, a novel fingerprint filtering 

approach and a fingerprint matching technique (a cost function) are proposed. 

 

The trial results show that, the performance of DCM using the proposed database is 

inferior to that using a measured database. However, the application of calibration 

process for predictions improves the performance up to an acceptable level. The 

calibration method, designed for the bad urban scenario is based on curve fitting 

whereas that for urban, suburban and rural environments is based on neural 

networks. In addition, the novel fingerprint filtering approach is robust for the bad 

urban environment while the novel cost function shows higher performance with the 

proposed database. 

 

The best positioning accuracy for the. bad urban environment is 200m in 80% of the 

estimates and that for the urban environment is 125m (80%). Remarkable 

performance improvement can be observed in the rural environment giving a 

positioning error less than 385m in 80% of the estimates. The performance in 



  

suburban environment is inferior to that-in both urban and rural, with an error less 

than 550m in 80% of the time. 

 

The proposed solution for positioning is best suited for the deployment in large 

dynamic networks as a network-based method to provide basic information services, 

such as nearest ATM machine, petrol. station or hospital, traffic information and 

location based advertising. 
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Chapter 1 

Introduction 

Being small and handy. the mobile phone has become a regular part in day today life. 

and the addition of novel applications and capabilities makes it even more personal 

and trusted. As a result the mobile service providers are striving to introduce value 

added features to attract potential customers. LocaJion-aware service is one such 

application. which offers enormous possibilities to bring in novel services for 2G and 

3G mobile networks. For some Location Based Services (LBS) it is sufficient to 

determine the cell of the mobile terminal but other services such as emergency calls or 

navigation systems require more accurate position determination techniques. 

Unfortunately. the GSM Network lacks positioning functionality; hence a separate 

positioning technology should be integrated to the network. 

On the other hand. Global Positioning System (GPS) has proven to be the most 

accurate with an average accuracy less than 1Om. However. some challenging issues 

regarding GPS positioning exist such as the non-availability of GPS enabled mobile 

devices. the poor estimation in harsh environmental conditions and the poor indoor 

coverage. \vhich make the system inappropriate for commercial applications such as 

localized information services. 

Thus. the estimation ofthe user's location from data that is inherently available in the 

cellular network. also known as cellular positioning, has become a key technology m 

mobile communications. 

1.1 Current status in the field of cellular positioning 

The market for location-based services holds enormous potential. The ability to tell 

users where they are. and how to get where they want to go as well as how long it 

will take to get there and what else is close by can enhance a wide array of 

applications. In addition. LBS tools have the ability to create geo-fences. the alerts 

issued via SMS or voice when a user has entered or exited a specified area [ l]. 

However. the reality of this LBS glory relies heavily on precise location determination 

techniques. 



( 'hapter I- Introduction 

In the United States. people facing a critical emergency situation can request 

assistance through dialing 911 emergency assistance services. Most of theses calls are 

made from mobile phones with the user being unaware of his or her whereabouts. 

Hence. Federal Communication Commission (FCC) has imposed. through E-911 

mandate. the mobile operators to precisely locate the callers requesting emergency 

assistance via 911 [2. ~l Phase II of this regulation imposes accuracy levels for 

different location technologies based on their implementation as set out by Table 1.1 

[2]. This was the wake up call for high enthusiasm in cellular positioning. 
, 

Table 1.1: FCC guidelines for location accuracy 

Source: [2] 

Type of location 

solution 

Handset-based 

Network-based 

67% of locations 

must be 

<50m 

<100m 

95% of locations · 

must be 

<150m 

<300m 

/~~ .. ·"· •' .. 

Furthermore. a recommendation has been issued for the optimal planning and 

implementation of emergency wireless location service, called E-1 12. for the 

European Union in 2004 [4]. Accordingly, in order to provide effective sen/ICe. 

location accuracy should be 50m or less in urban corridors/centers and the 

requirements for accuracy diminish as the distance from urban centers increases. i.e. 

the need for high accuracy is less stringent in rural environments [ 4]. 

As a result. several commercial positioning systems have been developed all over the 

world, namely. CellPoint [5]. SnapTrack [(l], Ericsson Mobile Positioning System [7] 

and BT-Cellnet [g]. which are based on Assisted GPS (A-GPS) and Enhance 

Observed Time Difference (E-OTD) positioning methods. The facts that these 

commercial systems are highly expensive and the upgrades to be done in the network 

in deployment prevent them being purchased by most of the mobile operators in 

countries like us. 

Hence there exists a need to come-up with more accurate and cost effective solution 

for location estimation in cellular networks. A technique based on existing radio 

signal data from a series of base stations would be a feasible solution. However, 
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Chapter I- Introduction 

significant signal level variations and multi-path efiects have proved a major obstacle 

in many developments. 

1.2 LBS applications and Performance requirements 

Some of the applications that have taken major attention in commercial location based 

services are illustrated in Figure 1.1 . 

./ Nearest service 
v 

news 

" 

Figure 1.1: Commercial LBS applications 

Information services are defined to provide the nearest service such as A TM machine. 

petrol station or hospitaL to provide trat1ic information and for advertising purposes. 

Navigation services could provide street-by-street turn-by-turn directions to a 

destination while tracking services include lone-worker tracking in high risk locations. 

criminal tracking and child tracking services to alert when the child moves away from 

a pre-defined area. Monitoring applications, like field force automation. mobile 

worker management and taxi fleet management are promising in most of the 

industries. 

The reliability of the above mentioned applications rely on the performance of the 

positioning technology. Accuracy and yield are the two principal measurements of the 

performance of location technologies. Accuracy refers to the radius in which a 

location technology can pinpoint the location of a mobile phone. while yield refers to 

3 
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the location technology's ability to obtain a location fix. expressed as a percentage 

success rate ['>]. In addition, the performance requirements of applications are 

partially dependent on where the Mobile Station (MS) to be located happens to be at 

that time. This represents whether the MS is inside a building (indoor), or outside in 

urban. suburban or rural environment. 

Table 1.2 summarizes the performance requirements of above mentioned applications. 

based on research conducted among key application developers [lJ]. 

Table 1.2: Performance requirements of selected Location Based Applications 
" 

Source: [9] 

Indoor Urban Suburban Rural 

Accurac! Yield Accuracy Yield Accuracy Yield Accurac~ Yield 

(m) (%) (m) (%) (111) (%) (m) ( '~'o) 

Information Services 

- Basic 50-I 00 80 500 80 1000 80 5000 80 

- Enhanced 20-50 90 50 90 50 90 50-I 00 90 

Navigation 10 95 10 99.9 10 99.9 20 99.9 

Field force 

automation/ work 

force management 50 95 50 95 50 95 100 95 

Lone-worker tracking 50 99.9 50 99,9 50 99.9 100 99.9 

Taxi dispatch n/a n1a 50 90 50 90 50 90 

Child tracking 50 99.9 50 99.9 50-100 99.9 50-100 99.9 

Medical alert 50 99.9 50 99.9 50-I 00 99.9 50-100 99.9 

1.3 Motivation 

A range of cellular positioning technologies have been researched all over the world. 

yet none of them have proven superior in terms of accuracy for all environments 

worldwide [1 0-28]. This opens the path to research on precise location estimation 

technologies. In addition, the lack of evidence in researching on cellular positioning 

techniques for improved accuracy in local environment provides a strong motivation 

to research on such techniques applicable for local context. 

4 



Chapter 1- Introduction 

During the author's final year project done as a partial fulfillment of the B.Sc. degree, 

different cellular positioning techniques were investigated and the accuracies of three 

of them. namely. the Geometrical Method. Statistical Method and the Database 

Correlation Method (DCM), were verified in local environment [ _ 0]. 

Consequently, the Database Correlation Method was proven to be more accurate in all 

three environments. urban, sub urban and rural. 

Even though the database correlation method has the potential for higher accuracies in 

all three local environments, the difficulty of creating the database with field test 
/ 

measurements has become a big challenge when deploying this technique in large. 

dynamic networks. Thus. there exist a need to come-up with a remedy for this 

deployment challenge and that paved the path for this particular research. 

1.4 Research Objectives and Contributions 

The principal objective of this research is to find a more practical method of applying 

the Database Correlation Method for location estimation in cellular networks. with 

less field measurements. In order to do this, the use of theoretical propagation models 

and/or Network Planning Tools to create a fingerprint database in local mobile 

network will be investigated. While the accuracy of this approach may be lower than 

the DCM method with field measurements, further tuning of the results in order to 

improve accuracy will be studied. 

The major contributions include: 

• Survey on fingerprinting methods for location estimation in cellular networks. 

• Study comprehensively the propagation modeling done by Service Providers 

and the tools used. 

• Develop the DCM by obtaining fingerprints through an appropriate 

propagation model and verify the accuracies of the method in all three 

environments, urban, suburban and rural. 

• Carry out drive tests in three different environments to obtain sample test data 

for deviation analysis, calibration and location estimation phases. 

• Analyze the deviations ofthe predictions from actual measurements. 

5 
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• Study the deviation of accuracy from the DCM implemented by field test 

measurements. 

• Design and develop a calibration method to tune the created database in order 

to minimize the above deviation. This includes calibrating the predictions 

using lesser number of field test measurements. 

1.5 Organization of the Thesis 

" 
This dissertation is a systematic study for applying location fingerprinting method for 

cellular positioning with the aid of propagation models. 

Chapter-2 is devoted for the literature review of cellular positioning techniques. 

specially fingerprinting method. radio wave propagation models and tools. and the 

techniques used for calibration such as neural networks. Next. in Chapter-3. the 

methodology applied in achieving the research objectives is presented 

comprehensively. This is followed by a detailed description of the environments. used 

for testing the developed methods for location estimation. Chapter-S is devoted for an 

inclusive analysis of the outcomes of this work and finally. Chapter-6 concludes by 

discussing the achievements. commercialization aspects and future work. 

6 



2.1 Cellular Positioning 

Chapter -2 

Literature Review 

Cellular positioning is merely the estimation of the locations of Mobile Stations ( f\1 S) 

using location sensitive parameters. While third generation mobile networks are 

enriched with positioning functionality. GSM netwc5rks should be integrated with a 

separate positioning unit as positioning functionality is deficient in GSM. 

Cellular positioning can be achieved in variety of ways. All of these vanous 

techniques differ in accuracy, cost, and ease of implementation. Because of this 

operators have to weigh the tradeoff's among several methods. While all of these 

methods apply to terrestrial cellular systems, some require modifications to network 

infrastructure only. whereas others require new technology in the subscriber units as 

well. 

Basically. all cellular positioning techniques have two roles, namely. Parameter 

Measurement (Location Measurement) and Position Determination (Location 

Estimation). These functions are performed by either MS or network. Consequently. 

cellular positioning systems are divided into three categories based on the role of the 

MS and the network. Those are Mobile based solutions. network based solutions and 

mobile-assisted network based solutions. 

In mobile based solutions. both parameter measurement and location determination 

are performed by the MS. Still, some assisting information (BS coordinates) might be 

needed from the network to enable location determination in the MS. Mobile-based 

implementation does not support legacy handsets [~ 1 ]. 

On the other hand. in network-based implementation one or more base stations (BSs) 

make the parameter measurements and send the measurement results to a location 

centre where the position is computed. This does not require any changes to existing 

handsets. which is a significant advantage compared to mobile-based or most mobile­

assisted solutions [31 ]. 

7 
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When the MS makes positioning measurements and sends the results to a positioning 

element located in the network for position determination, the system is called mobile­

assisted network based solution. Thus. the computational burden in mobile-based 

implementation is transferred to the positioning element: however, signaling delay and 

signaling load increase. especially when the estimated location information should be 

available at the MS. 

2.1.1 Positioning Parameters / 

A. C 'ell ID 

Cell-10 is the simplest positioning parameter. which gives cell sector information of 

serving cell in cellular networks. In current cellular networks. coverage is provided by 

a number of distributed cells. Each cell is normally divided into three sectors. Cell size 

varies from 300m to 3 km in urban areas and 3~20 km in suburban/rural areas. Hence. 

the accuracy of a positioning method. which gives the location of the BS as the 

estimated location, is based on the coverage area of the cell. This parameter is 

advantageous in the way that it doesn't require air interface resources and handset 

modifications in measurement procedure r 14]. Cell TO of the serve cell could be 

obtained in the idle mode of the hand-set. 

B. Timing Advance (TA) 

Timing Advance is a parameter used to synchronize the time frame of each mobile 

station at the BS. It gives a distance estimate between the BS and the MS. T A is 

calculated at the BS and sent it back to the MS. which is then made available in the 

Network Measurement Report (NMR) at the mobile. Timing Advance value ranges 

from 0 to 63 and each value represents a range of distance from MS to BS, where the 

mobile can locate. This distance range is given by Equation (2.1 ). 

1 1 
SSO.(TA ~-) :s; d :s; SSO.(TA +-)JA > 0 

2 2 (2.1) 

0 :s; d :s; 275m;TA = 0 

Since theTA value is known only in the dedicated mode (call on) this cannot be used 

to locate a MS in idle mode. The accuracy of the positioning method. that considers 

TA alone. decreases when the MS is far away from the BS. Therefore. T A is used 

combination with the other methods to improve the accuracy [~2]. 
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( ·. Received Signal Strength (RSS) 

In cellular environment MS can measure signals from several surrounding BSs. These 

signal strength measurements provide a distance estimate between the MS and BS 

(with the aid of propagation models) and the MS must lie on a circle centered at the 

BS (With the use of Cell-ID the BS location could be identified). 

" 

/ 
MS should !oc\lte within the"" 

intersecting area 

I ~"' 
,~, / /J 

, 

,/ 
/" 

"~:\',,, 
'• ... 

Figure 2.1: Distance to MS from several BSs using propagation models 
::;;ourcc: i29j 

The received signal strengths from serving cell and the neighboring cell(s) are 

available in the NMR at the mobile. By using this information at the mobile itself or 

by transmitting them back to the network, either a terminal based solution or a 

network based solution can be implemented. Received Signal Strength of the serve 

cell and neighboring cells could be obtained through the Broadcast Control Channel 

(BCCH) in idle mode as well. 

D. Angle ofArrival (AOA.) 

/ 

I if(""/ 

r·,,,, 
BS with directional 

antenna 

/ 

' ' ' ~ 

'1' ·l ~~ 

Figure 2.2: Angle of arrival parameter in GSM 
Source: [291 
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AOA parameter defines the angle of arrival of a signal from a MS at several BSs and 

could be measured through the use of antenna arrays. If a handset is within line-of­

sight. the antenna array can determine the direction of the incoming signal from that 

hand-set. A second base station with the same technology would then also locate the 

direction of the handset and pinpoint the MS location with the use of data from the 

first base station and assuming 2-0 geometry as shown in Figure 2.2 [29]. 

Line of sight between the MS and the BSs is essential for accurate measurement of the 

AOA. Hence. it is clearly not a parameter of choice in dense urban areas where line of 
" 

sight scenario is seldom present. However, the AOA could be used as a location 

sensitive parameter in rural and suburban areas and it is an advantage to be able to 

locate a MS using measurements from a minimum of two BSs [J 1 J. 

A major barrier to implement positioning techniques based on AOA in existing GSM 

networks is the need for an antenna array at each BS. It would be very expensive to 

build an overlay of AOA sensors to existing cellular network. However. since it is a 

network-based method and supports legacy handsets. it is developed by several 

companies as an E-911 solution [J l ]. In addition. applying AOA parameter in 

positioning techniques may introduce a capacity issues in cellular networks as the 

measurements taken at several BSs from a single MS requires time synchronization. 

This will result in the difficulty to serve a large number of simultaneous users. 

E. Propagation Time 

This is the one-way propagation time of a signal transmitted by the MS and received 

at multiple BSs. Alternatively; the measurement of the round-trip time of a signal 

gives a result twice that of the one-way measurement. The measurement of one-way 

propagation time requires the knowledge of the exact time at which the MS transmits 

and the BSs should have very stable and accurate clocks. But. the measuring of round­

trip-time does not rely on such synchronization between the mobile and base station. 

and is the common means of measuring propagation time [ l 8]. 

Since signals travel with a known velocity. the distance can be directly calculated 

from the propagation time. Geometrically. this provides a circle, centered at the BS. 

on which the MS must lie. By using at least three BSs to resolve ambiguities. the 

MS"s position is given by trilateration. 

10 
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.~-'J' 1 r·n. ~t"'",, 

' 

• 
A. 8 .. : ,. 

• r 

Figure 2.3: Propagation Time measurement 
'-'ourcc: [ l<\1 

Since the inaccuracy in timing synchronization translates directly to an imprecise 

location, the synchronization of the network base stations is very important when 

using propagation time as the location sensitive parameter. This is purely applicable 

for a network based solution, where the propagation time information at several base 

stations is taken in to consideration. 

F. Time Difference ofArrival (TDOA) 

!his is the time difference of the arrival of a signal from the MS at a pair of BSs. This 

can be derived by measuring the Time of Arrival (TOA) of the signal at each BS and 

sending them to a central site to compute the time differences. 

\ TDOA measurement defines a hyperbolic locus around the BS on which the mobile 

telephone must lie. The intersection ofthe two hyperbolic loci (using three BSs) will 

define the position of the mobile telephone as shown in Figure 2.4. 

A 
• 

D• 

' • l .. 

Figure 2.4: TDOA parameter 
Source: 1181 

11 



Chapter 2- Literature Revie1r 

A third TDOA measurement can be used to resolve the ambiguity of the hyperbolae 

intersecting at two locations. 

The synchronization of the base stations is an important issue in implementing 

positioning systems using TDOA parameter. This is also purely applicable for 

network based solution where additional hardware is needed at the BS to implement 

LIS. 2CJ]. 

2.1.2 Positioning Techniques / 

Positioning techniques in cellular networks could be classified in to three maJor 

classes based on the approach used. They are; 

• Geometrical Methods 

• Statistical Methods 

• Fingerprinting Methods 

This section reviews the existing literature on first two approaches while the third 

approach is comprehensively discussed in Section 2.2 as it is the basis for the research 

work presented in this thesis. 

A. Geometrical Methods 

Geometrical method is a traditional positioning approach to location estimation based 

on standard geometry. Geometrical algorithms form circles. hyperbolae or angles 

centered at the bearable base stations and estimate the location by intersecting those in 

2-dimension. Trilateration and triangulation are the basic geometry used in these 

methods. Different positioning parameters described in Section 2.1.1 can be used in 

triangulation and trilateration. 

Tvvo measurements of angle of arrival parameter from the MS at two different BSs 

could be triangulated to estimate the location of the mobile as shown in Figure 2.2 

[.1]]. 

In addition. the distance estimate. which is computed using the received signal 

strength and propagation models suitable for the environment or using the propagation 

time parameter between BS and MS. defines a circle around the BS on which the MS 

may locate. Then the position of the MS could be estimated by trilaterating three such 

12 



Chapter 2- Literature Revie~t' 

range circles at three bearable cells as shown in Figure 2.1. Theoretically. this would 

give a single intersection point. but due to multi-path effects and the constraints in 

propagation models. several intersection points will result. In such cases. the 

geometrical mean of all the intersection points could be taken as the estimated 

location as shown in Figure 2.5 [29]. 

¢1 
l 

..... :a 

/-----, Actual location~/--

X { 
/ I " 

~- ~k----~ 
I -., -" . 11---------- /' \ • -11' -- " 1 +----- Servmg ce / \ 
, I -

,·~~/ 

-~2--- ---:___Estimated 
;f- --·-

location 

Figure 2.5: Geometrical mean of all intersection points in geometrical method 
S,•urce: I 

Application of geometrical technique in location estimation is described in [2tJ] 

together with accuracy results in three different environments. The results of that work 

shows. the 80% accuracy of geometrical method lies in the range of 500m in urban. 

I OOOm in suburban and 1500m in rural environment. This is a low accuracy level for 

most of the location based services immerging today. 

B. Statistical Methods 

The second approach, which is based on statistical modeling. was first proposed by 

Teemu Roos. Petri Myllymaki and Henry Tirri in their paper. A Statistical Modeling 

Approach to Location Estimation [ 10]. The basic idea of this method is the 

construction of a statistical model which describes the distribution of signal strength at 

any given location. and to use the model to estimate the mobile unit's location when 

the signal strength is observed. The approach is strongly linked with propagation 

modeling. 

The use of statistical modeling gives several feasible solutions over other approaches 

like geometrical approach. The key point in geometrical approach is mapping 

measured signal properties to the location. In contrast to this. statistical modeling 

approach emphasizes propagation modeling. in which the dependency of the measured 

13 
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signal properties on the location variable is considered. Here. the location estimation 

problem is solved as inference-problem. which is the kind of reasoning typical of 

statistics in general [I 0]. 

In this approach. first, a propagation model is selected for received signal strength at a 

distance d from the transmitter. and then. the probability distribution of the received 

signal strength around a specific area is defined. Then it requires a calibration of 

propagation parameters appearing in the propagation model equation, with respect to 

the environment. This is also a statistical estimation process. which uses a huge 
/ 

amount of field test data relative to a particular environment [33]. After estimating the 

propagation parameters. location estimation for a particular set of observed signal 

strengths at a specific location can be done as an inverse. or else. an inference 

problem. 

Simulation results of this method for location estimation are given in [ 1 0] and [ 33 ]. in 

which the positioning error is less than 620m in 95% of the estimates. 

Furthermore. an enhancement to initial work in [l OJ has been proposed in [3.:1-]. in 

which a directional propagation model is considered. According to the results 

demonstrated in [3.:1-] the best value of the average error is around 340m. 

In addition. the statistical modeling approach has been tested in local context and the 

results are presented in [30]. Accordingly, the positioning error in local urban 

environment is less than 375m in 80% ofthe estimates. 

A different approach for statistical estimation has been proposed in [35]. which helps 

to reduce the error caused by the effect of signal fluctuations by acting as a filter for 

handling signal fluctuations. The simulation results show that the best average 

accuracy is around 260m. 

2.1.3 Performance Measures 

Commonly used accuracy measures in location estimation should be known in order 

to compare and understand the performance of different positioning technologies. This 

section reviews on different measures available in literature for this purpose. 

14 
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A. PositioninR error 

Positioning error is the Euclidean distance between the estimated location and true 

location as given in Equation (2.2) 

1 , , , 
d = -y(x,- xc)- +(y,- Yet +(z, -zct (2.2) 

Where. E(Xe.}'e.Ze) - estimated location 

T(x1.y~ozr) -corresponding true1ocation 

The error in the altitude is often ignored in cellular positioning. In addition. the true 

location might be replaced with the location calculated with the GPS receiver [36 ]. 

B. Circular Error Probability (CEP) 

Circular error probability or circular error probable (CEP) is the radius of a circle 

centered at the true position. containing the position estimate with a certain 

probability. Usually the radius of the 50% (R50) probability is used, but 67% (R67) 

and 95% (R95) probabilities are often quoted as in Figure 2.6 . 

" 
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Figure 2.6: Circular Error Probability 
Source 1361 

R50 equals the median of the positioning error distribution. A bit similar measure is 

the arithmetic mean which equals the sum of the positioning errors of the samples 

divided by the number of samples. The median is a much better measure than the 

arithmetic mean for highly asymmetrical distributions and hence more applicable in 

mobile positioning [36]. 

In case of three-dimensional accuracy, a common measure is Spherical Error 

Probability (SEP). which also takes the error in the altitude into account. 
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( '. ( 'umulative Distribution Function (CDF) 

Cumulative Distribution Function (CDF) is often used in visualizing the positioning 

error. A general impression of the error distribution can be obtained quickly by 

looking at the CDF graph. The X-axis represents the positioning error in meters and 

the percentage of all samples is depicted in theY -axis. 

l (H l'; f< '.: / 

Figure 2.7: Cumulative Distribution Function 
Sourc..:: I J(J I 

\.:'1Tt•t 

Median. R67 and R95 values can be approximated from the CDF graph by ocular 

estimation. 

D. Root Mean Square (RMS) Error 

The Root Mean Square error is defined by Equation (2.3). 

R.M.S. = _!_fd,2 
n i=l 

(2.3) 

Where. n - Number of position samples 

dl - Positioning error of i111 sample 

This measure represents the whole error distribution with one value and hence more 

comprehensive. 

Consequently. the most illustrative measure is CDF because it shows the whole error 

distribution. while the numerical values are used to simplify the representation [36]. 
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2.2 Fingerprinting Method 

Fingerprinting method for location estimation in mobile networks is also known as 

Database Correlation Method (DCM). This technique was first proposed by Heikki 

Laitinen. Jaakko Lahteenmaki and Tero Nordstrom in their paper. ""Database 

Correlation Method for GSM Location", [ l :2]. Fingerprinting Technique relies on a 

pre-measured database of a location dependent variable. In GSM networks. location 

dependent variable would be either the Received Signal Strength (RSS) or the 

Channel Impulse Response (CIR). Angle of Arrival can also be considered. but it 
/ 

requires additional hardware to perform the measurement. 

The key idea of DCM is to store the signal information seen by the MS. within the 

coverage area. in a database as signal information samples called FinRerprints [ l :2]. A 

fingerprint consists of signal information seen at a location together with the location 

coordinate. The measured signal information at the location to be estimated is 

compared with the fingerprints stored in the database and the location coordinate of 

the best matching fingerprint is taken as the estimated location. 

DCM is a general approach for positioning and can be applied for any cellular 

network or WLAN. Since this method does not assume any line-of-site propagation 

condition. it is robust for urban environments. where the multi-path phenomenon is 

directly applied. 

In generaL fingerprinting technique involves two phases . 

./ Database preparation (Off-line phase) 

./ Location estimation (On-line phase) 

2.2.1. Database Preparation 

The heart of the fingerprinting method is the database which consists of pre-measured 

samples of location sensitive parameters. Hence, much attention should be given for 

database preparation. 

RSS has been chosen as the location sensitive parameter in [ l :2]. Then, the database 

consists of RSS fingerprints within the area. A single fingerprint is made up of; 

Cell ID of all bearable cells 
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RSS of all hearable cells 

GPS coordinate ofthe measured location 

The fingerprints can be formed using either real measurements or predictions from 

planning tools. The original work has used real measurement for this purpose. A 

method of collecting fingerprints is also proposed in [ 12]. There, the measurements 

are taken at a very low speed along the selected routes and two measured fingerprints 

per second are taken on average. 

Besides, a more feasible approach for collecting database"fingerprints is proposed in 

[30]. The novel method averages the signal strengths often consecutive measurements 

along the route while the median value of ten GPS coordinates is taken as the location 

coordinate. Further, it proposes a sliding window approach, such that the last five 

measurements of one fingerprint contribute to the first five measurements of the next 

fingerprint. This helps to increase the fingerprint resolution. 

2.2.2 Location Estimation 

Location estimation algorithm in fingerprinting method is a simple correlation 

algorithm, which matches the measured signal sample at the location to be estimated, 

with the fingerprints stored in the database, and outputs the location of the best 

matching fingerprint as the estimated location. The number of comparisons can be 

reduced by filtering the fingerprints using other parameters such as serving cell and 

timing advance [36]. 

In [ 12], the fingerprint matching was based on the least mean square approach, which 

uses to calculate a cost for each fingerprint. 

d(k) = Icr- gi(k)) 2 + p(k) (2.4) 

Wherej; is the signal strength of the measured sample on the ith celL g/k) is the signal 

strength of the kth fingerprint on the same cell. The summation is taken over the 

hearable cells that are found in both of the fingerprints. A penalty term p(k) is 

introduced for each cell that is found in only one of the fingerprints. The database 

fingerprint with the lowest value for d(k) is set to be the best match for the measured 

sample. 
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The trail results in urban and suburban areas in Finland [12] show that the above 

algorithm can provide a positioning error less than 90m (90%) in urban whereas the 

error for suburban is 190m (90% ). 

Some what different approach is presented in [23]. Instead of using the LMS, another 

method (EXP) motivated by the Gaussian probability distribution is introduced as 

shown in! ion '.5). 

p = -J Pf, \'!' * pf'en 
1 -a(k), I /-r;(k) ' 

n I TI e -( :_I_~)- * 1 n e -( . I c cr .~.1111 )-

(2.5) 

Where PExP is the probability computed for n cells to match the measured sample with 

the k111 database fingerprint and Prcn is the penalty term consists of all the penalty 

contributions computed for cells. which do not exist in the database fingerprint. f is 

the signal strength of the measured sample on the i111 celL g/k) is the signal strength of 

the k111 database fingerprint on the same cell and g(k)min is the weakest signal level in 

the database fingerprint. The parameter a characterizes the deviation between the 

signal strength values. The database fingerprint with the highest probability P is set to 

be the best match for the measured sample. 

The positioning trial carried out in the urban area of Germany yields positioning 

accuracy of 98m (67%) for LMS approach and 83m (67%) for EXP approach whereas 

that of suburban area is 602m (67%) for LMS and 607m (67%) for EXP approach. 

In addition a different way of calculating the penalty term for Equation (2.3) 1s 

proposed in [:i6]. The modified equation is given in Equation (2.6). 

d(k) = Iu;- gi(k))
2 + l:Cf, -lmaJ

2 + IUma"- gt(k)f (2.6) 
J 

Where.f is the RSS of the i111 cell in the measured sample, g/k) is corresponding RSS 

\alue of the k111 database fingerprint, .!; is the RSS of the f 11 bearable cell in the 

measured sample which is not hearable in the k111 database fingerprint gj(k) is the RSS 

of the 1111 bearable cell in the database fingerprint which is not hearable in the required 

location and l max replaces the missing signal strength values. 
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The trial results presented in [36] demonstrates that the positioning error is less than 

67m in 67% of the time and less than 277m in 95% of the time in urban environment 

of Finland. 

More recent approaches involve the application of Neural Networks (NN) for 

fingerprint matching [:22. 28. 371. In [37], a multi-layer perceptron architecture 

with 22 inputs. 2 hidden layers and 2 outputs has been proposed for location 

estimation in fingerprinting methods. The work done in [ 2-1-1 is based on a Feed 

forward neural network. which has been trained using Extended Kalman Filtering 
/ 

Method. In [251. the positioning using NN has been tackled in two ways; as a function 

approximation problem and as a multi-class classification problem. 

2.2.3 Related Work 

As explained in Section 1 A, the major objective of this research is to investigate the 

possibility of using propagations models/tools to form the fingerprint database in local 

context and come up with a more practicable solution for deployment of fingerprinting 

technique in large dynamic networks. Number of research has been carried out in this 

regard and this section reviews them briefly. 

The work presented in [23] involves the use of propagation models (Hata-Okumura 

for suburban/rural scenario and Extended Walfisch-Ikegami model for urban scenario) 

for the formation of database. The results show that the positioning error is less than 

282m (95%) in urban while that is less than 1 023m (95%) in suburban/rural. A 

prediction model based on Outdoor and Outdoor-to-indoor coverage in urban areas at 

1.8 GHz. has been used in [3 7] to form the fingerprint database. Further. the predicted 

data has been calibrated with the aid of a neural network. The NN used for calibration 

consists of 24 inputs and 22 outputs. The inputs correspond to the predicted RSS 

values for all the cells (22) within the area and the location coordinates while the 

outputs correspond to the corrected RSS values of 22 cells. This includes only one NN 

for calibration of the prediction in the whole area. Since the number of inputs and the 

outputs are high. the computational burden involved in training phase is large. In 

addition. the structure of the NN changes when new cells are added to the network. 

which requires training of the NN again for whole environment calibrating all 

predictions and replacing of the database with newly, calibrated values. Hence the 
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maintenance load is high with this type of a structure. A positioning trial carried out in 

an urban environment in Germany has shown that the positioning error is less than 

175m in 67% of the time while that is less than 220m in 95% of the time. 

2.3 Radio Wave Propagation Models and Tools 

A Propagation Model is a mathematical formulation for characterization of radio wave 

propagation within the environment, as a function of frequency. distance and other 

environmental parameters such as. terrain profile. clUtter, etc [38]. Propagation 

Models are useful in predicting the path loss or the received power of the signals 

transmitted by a far away transmitter. at a specific location. 

The mechanisms which govern radio wave propagation are complex and diverse. They 

can be attributed to three basic phenomena. namely. reflection, diffraction and 

scattering. Reflection occurs when the radio wave impinges upon obstructions whose 

dimensions are very large compared to the wave length of the radio wave. Diffraction 

explains how the radio waves can travel in urban and rural environments without a 

line-of-sight path. Scattering occurs when the radio path contains objects with 

dimensions that are on the order of the wave lengths or less of the propagation wave 

[39]. 

Propagation models can be either Empirical or Deterministic or a combination of these 

two. While the empirical models are based on the measurements. deterministic models 

deal with the fundamental principles of radio wave propagation. Empirical models 

implicitly take all the environmental influences into account, which is the major 

advantage. However the accuracy of these models depends not only on the accuracy of 

the measurements. but also on the similarities between the environment to be analyzed 

and the environment where the measurements are carried out [ 40]. On the other hand. 

deterministic models can be applied to different environments without affecting the 

accuracy since they are based on the principles of physics. But the deterministic 

algorithms are very complex and lack computational efficiency [ 40]. 

The prediction models are classified into two major categories on the basis of the 

radio environment. They are Indoor propagation models and Outdoor Propagation 

models. Further, in respect of the size of the coverage area. the outdoor propagation 
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models are sub divided into two additional classes. macro cell and micro cell 

prediction models [ 40]. 

· hcs some 

"'ll\ ironment and a arc g1vcn 111 

2.3.1 Hata-Okumura Model 

This is a totally empirical model which uses four parameters. namely. the frequency 
" 

(f). distance (d). base station Antenna height (h8s) and the height of the mobile 

antenna (h\lls), for the estimation of the propagation loss [ 41]. 

The median Path Loss equation of Hata-Okumura model is given in X 

The model predictions are mainly applicable for macro cellular environments, which 

is usually the case in most sub urban and rural environments. Urban environment 

mainly consists of micro cells: hence this model is not valid. 

2.3.2 Walfisch-Jkegami Model 

The dominant Propagation Mechanism in Walfisch-Ikegami Model is the propagation 

oYer the rooftops with diffraction into street canyons [ 41 42]. This model is mainly 

suitable for medium cells in built-up areas. The model allows improved path-loss 

estimation by considering the profile of the environment including: 

- Heights of buildings 

- Widths of roads 

- building separation 

- Road orientation with respect to the direct radio path 

However this model is still statistical and not deterministic because a topographical 

database of the buildings cannot be considered. 

\tore details on Walfisch-Ikegami Model including path loss equation are given in 

\ 
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2.3.3 Outdoor and Outdoor-to-Indoor Coverage in urban areas at 1.8 GHz 

This is a run-time enicient three-dimensional propagation model for the prediction of 

outdoor-to-indoor coverage of small macro cells in urban areas at 1.8GHz based on 

high resolution building data [4~]. 

( )utdoor Prediction method 

The model has been designed to predict the coverage for small macro cells in dense 

urban areas where the BS antenna is mounted above the rooftop level. In such case. 

the propagation paths are divided into two models for analysis, 1'1amely, Vertical Plane 

\1odel (VPM) and Multi-path Model (MPM). If the vegetation obstructs the 

propagation path of each ray. an additional vegetation loss is computed based on a 

\ egetation model for the environment. The effect of the terrain height variation is 

considered by using the effective antenna height and the absolute building height 

\\hen diffraction losses are calculated. 

( )utdoor-to-Jndoor Prediction Method 

An important feature of this model is the prediction of propagation at indoor areas 

ti·om Outdoor BSs. The model uses two approaches to predict indoor coverage from 

outdoor BSs. The first approach is an empirical modeL where the indoor coverage at 

ground f1oor is derived from the outdoor path loss outside the building at a height of 

.2m and the predictions for the higher f1oors are derived using a height gain model. 

lhen a semi-empirical model is used including more deterministic components such 

as angle of incidence, as a further refinement. 

2.3.4 CRC- Predict Propagation Model 

CRC- Predict is a VHF/UHF Propagation Prediction ModeL used for estimating radio 

-;ignal strengths on terrestrial paths at VHF and UHF. given a transmitter location, 

power. and a receiver location(s) [44]. Since transmission paths are often obstructed 

hy terrain. the model can operate on a topographic database consisting of terrain data 

lll count the effect of the obstruction. The calculation includes diffraction losses due to 

terrain obstacles (e.g. Hills. trees. buildings. etc.). The diffraction calculation is done 

h\ starting at the transmitting antenna and finding the radio field at progressively 
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greater distances. At each step. the field at a point is found by a numerical integration 

O\ er the field values found in the previous step. 

CRC-Predict model is the most widely used propagation prediction model in the suite 

of PlanetEV Network Planning Tools. 

The model equation is given in 

The special features of this model include; 

if The model dynamically takes the terrain profile (through the diffraction loss) 

" of the area into account and provides the facility of optimizing the model for 

specific area by tuning for the local terrain profile. 

if Also includes the clutter information of the environment to calculation 

if Can be optimized for a specific environment 

2.-t Neural Network Techniques 

:\ neural network is an intellectual abstraction which would enable a computer to 

\\Ork in a similar way to that in which the human brain works [4.5]. It has been 

ck\ eloped as a tool to mimic some unique characteristics of a human brain such as the 

ability to learn general mechanisms from presentation of a reduced set of examples. or 

to retrieve correct information from missing or distorted input data. 

The biological neuron has two parts. Dendrites and Synapses. Dendrites are 

e\tensions of a neuron which connect to other neurons to form a neural network 

'' hcreas the synapses are the gateways which connect to dendrites that come from 

other neurons. Figure 2.8 depicts the structure of a biological neuron. 
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Figure 2.8: A Biological Neuron 
Source: 
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Neuron receives information from other neurons, processes it and then relays this 

information to other neurons. It integrates the pulses that arrive and when this 

integration exceeds a certain limit neuron in turn emits a pulse. Dendrites modify the 

amplitude of the pulses traveling through them. This modification varies with time, as 

the network 'learns'. The neural network stores information in the pattern of 

connection weights. When a connection (dendrite) is very strong, the importance of 

the neuron from which this connection comes has an important role in the network. 

/ 

2.4.1 The mathematical representation of a neuron 

A first-order mathematical model for a neuron is shown in Figurl' 2(). The neuron 

itself only performs accumulation and thresholding tor incoming pulses. When a pulse 

comes from a connection, it is first multiplied by a number called the weight of the 

connection which assigns a certain importance to the connection, and then 

accumulates the overall result. The accumulated result is passed through a threshold 

\\ hich emits a pulse when a certain value is reached. The output of the threshold stage 

is in turn connected to the inputs to several other neurons. 

~,; ,conocction weigh" 

Threshold 

Output 

multiplication 

Figure 2.9: Mathematical Representation of a Neuron 

I ill' signals transmitted through biological neurons are in the form of pulses. Hence. a 

lurther simplification is adopted assuming a set of real numbers are fed in and a single 

re,d number is generated at the output. Instead of a biological threshold function. a 

mathematical function such as the sigmoid function, arctangent, arcsine. etc is used. It 

i" normally called node transferjimction. 
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\lode Transfer Functions should be smooth and continuous (i.e. should not be 

piecewise linear or step function) with an absolute upper and lower limits. It should be 

differentiable too. It is desirable that the derivative can be re-written in terms of the 

function itself, which simplifies the mathematics and improves the efficiency. 

2.4.2 Neural Network Topology 

The principal importance of a neural network is not only the way a neuron is 

implemented but also how their interconnections (topology) "'are made. The topology 

of a human brain is too complicated to be used as a model because a brain is made of 

hundreds of billions of connections which can't be effectively described using such a 

lo\v-level and highly simplified model. 

Thus a simple topology for easy implementation on a digital computer is defined with 

three layers, namely, input layer, hidden layer and output layer. All neurons from one 

layer are connected to all neurons in the next layer. 

This can be represented in mathematical notation as given in Figure 2.1 0. 

;, fl 

L 

'··------

.p-h : :~: f21L \\: a .v 

il •· f~ IJ.\ I\\ :p h: I' b): 

Figure 2.10: Mathematical Notation for Neural Networks 

Source: 
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2.4.3 Training a neural network 

A neural network is unable to solve any particular problem until it is trained. Like a 

little baby, whose brain is fully developed and ready for work but who is not able to 

do anything because it has not experienced any stimulus. So a neural network without 

learning is analogous to a human without education. 

In training stage. the network is fed with a set of numbers and the result is obtained 

from the output layer. The weights of the connections are initially in a random state: 

hence. the result at the beginning is not the exact one expected. Therefore. the weights 

of the connections are changed until the desired result is obtained (Trained). Next. 

another input is fed and the weights are adjusted continuously. until the desired output 

is obtained for each and every input. The entire set of training examples must be 

shown to the network many times in order to get a satisfactory result. 

After all of this training. the network is able to solve the particular problem and it is 

said that the network has learned, and its 'knowledge' is stored by all the different 

connection weights. 

It is necessary that the sufficient training examples are available to train the neural 

network weights and biases. A generally accepted guideline is to have the number of 

training examples more than or equal to five times the number of parameters to be 

adjusted during training [ 48]. 

s;:::s.N (2.7) 

Where. N - Total number of parameters to be adjusted 

S - Number of training samples. 

If the number of training samples is less. the network will learn the training set rather 

than building a statistical model for the problem being discussed. In this case NN will 

lose the ability to generalize and this is known as over fitting. Two methods have been 

described in [ 4 7] to reduce over fitting when a lesser number of training data is 

available. These are called, Regularization and Early Stopping. 

Selection of an algorithm for training is also a key factor in neural network design. A 

number of training algorithms are available; however. none of them have proven 

superior for all the problems. Some training algorithms used during this work have 

been described in 
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2.4.4 Neural Networks for Calibration 

Neural Networks are universal approximators. which can be used to fit any continuous 

function defined on bounded inputs to a pre-defined arbitrary degree of accuracy. It 

has the flexibility & the ability of dealing with uncertain data. Due to these facts. 

neural networks are applicable in calibration. which tries to model a relationship 

between corrupted data and real data. 

The application of neural networks for multivariate calibration with chemical data has 

been widely discussed in [49]. Multi-layer Perceptrons with Bqck Propagation training 

algorithm has been adopted in that work. In addition. neural networks have been used 

to correct the RSS predictions obtained from propagation models. in [_; 7]. A Multi­

layer feed forward neural network with 24 inputs and 22 outputs has been applied for 

calibration in that work. The calibrated prediction data are applied for fingerprinting 

and the results show a significant improvement in positioning accuracy after 

calibration. 
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Methodology 

The methodology applied towards achieving the goals of the research is described 

comprehensively in this section. 

The Figure 3.1 shows a summary of the methodology in block diagram form. 

" 

Make use of Signal Make use of actual 
strength Predictions Measurements 

Sub Rural Sub 
Urban (C) Urban 

--
(B) 

L,_ 

Figure 3 .I: Summary of Methodology 

l h~.· major goal is to investigate the possibility of using predictions obtained from 

pwpagation models to create the database and come up with a best solution for 

location estimation with improved accuracy. This is accompanied by the comparison 

nt the performance of DCM algorithms using a predicted database and a measured 

dauhase and make use of a lesser number of field measurements to tune the 

pr~.'dictions in order to reduce the deviation between the measurements and the 

predictions. Hence, the research deals with both actual and predicted strengths. As 

illu-.;trated in Figure 3.L the performance offingerprinting method will be investigated 

f(\r three different environments, namely, urban, suburban and ruraL using predicted 

ti11~crprints as well as measured fingerprints. 

ill\ methodology involved in applying the techniques for a particular environment is 

ili~htrated in Figure 3.2. 
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Database Preparation 
(Predicted & Actual) 

- Section 3.1 -

... 
Analysis of Deviation 

between predictions and 
actual measurements 

- Section 3.2 -

• 
Evaluation of the Performance of " 

DCM for Predicted Fingerprints in 
comparison with the Measured 

Fingerprints 
- Section 3.3 -

~ 
Calibrating the 

Predictions 
- Section 3.4 -

Performance analysis after calibration 
and come up with a technique giving 

better performance 

Figure 3.2: Methodology for a selected environment 

rach step of the methodology in Figure 3.2 will be described comprehensively in the 

next sections. 

3.1 Database Preparation 

The database is the key element in any positioning technique based on fingerprinting. 

This reference database consists of location sensitive parameters observed by the 

mobile station at different locations together with the location coordinates. called 

fingerprints. RSS being selected as the location sensitive parameter. a fingerprint 

consists of the RSS values from all hearable cells at a location together with the cell 

10 and the GPS coordinates ofthat location. 
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This research involves two databases. namely Predicted Database and Measured 

Database. Fingerprints of predicted database are created using the signal strength 

predictions and that of the measured database are created using the field test trials. 

3.1.1 Predicted Database 

During the planning process of wireless networks, propagation predictions are 

computed for each base station within the whole range considering the type of the 

environment clutter information and topography in order to arfalyze the coverage and 

interference scenario. This research makes use of such a modeL called CRC-Predict 

propagation modeL described in Section 2.3.4. to obtain predictions. 

In addition to the specific features of CRC-Predict propagation modeL the fact that it 

is used in the Network Planning Tool available at a local service provider would 

enable obtaining predictions tuned to the local environment. 

.·1. lnterfacinl{ to the Planning Tool 

Even though, the planning tool available at the local mobile network readily provides 

the predictions for a given location, the challenge was to read those predictions to 

positioning application. The interfacing methodology applied for this task is illustrated 

in Figure 3.3. 

Grid TranslatorlPro for PlanetEV 

Read through 
---• Matlab 

Figure 3.3: Methodology for interfacing to planning tool 
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The steps of interfacing to planning tool can be describes as below. 

• Planning tool stores if s predictions in a grid file format which is specific to it. 

This grid file format is not compatible with the commonly used ASCII grid 

format. Therefore the Planning Tool specific grid files should be converted to 

ASCII grid tile format. 

• A Tool called '·Grid Translator Pro for PlanetEV" (From Geomatics Systems). 

which is an add-on running on Maplnfo Professionals. is used to convert planning 

tool grid tiles to GeotitT Format [50]. _. 

• Those Geotiff files are converted to ASCII grid files through GDAL (Geospatial 

Data Abstraction Library) Utilities [51]. 

• ASCII grid files are readable through Matlab 

Figure 3.4 shows a snapshot of Grid Translator Pro for PlanetEV tool used to perform 

the conversion from planning tool specific grid files to Geotiff tiles. 

',) 

Figure 3.4: Grid Translator Pro for PlanetEV 
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B. Fingerprint ('real ion 

The planning tool predicts the signal strength for the coverage area of the cell with a 

resolution of 5m in urban environment and that of 25m in suburban and rural 

environments. If the same resolution is used in this work. the database becomes 

unnecessarily large. Therefore the predictions along roads are used and this results in a 

predicted database with fingerprints along roads of the considered area. 

The predicted strengths from different cells correspond to a particular location are 

collectively stored together with the location coordinate. aj a fingerprint. The cell with 

the largest predicted strength in that collection is selected to be the serving cell. The 

information on serving cell is useful in location estimation process described 111 

3.3. 1 .The format for such a fingerprint database is shown in Figure 3.5. 

Figure 3.5: Format of the Fingerprint Database 
Cell IDs have been changed for the purpose of reporting 

3.1.2 Measured Database 

The measured database consists of the fingerprints collected along the roads within the 

area. 

A. Data Collection 

Drive tests are performed along the roads with a speed less than 20 km/h and the 

measurements are taken by a mobile measurement unit interfaced to a laptop PC. 

Simultaneously. the coordinates of the measurement locations are taken using ,a GPS 

receiver interfaced to the same laptop PC. The GSM module inside the mbbile 

' measurement unit is capable of measuring signal strengths from six surrounding base 

.,., 
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stations including serving cell and five neighboring cells. Then a single measurement 

consists of received signal strength from up to six bearable cells and the location 

coordinates. The average time taken for one measurement is 15 seconds. 

In addition. the measurements are performed in idle mode rather than in the active 

mode of the GSM module. This is to justify the error performance for the normal 

conditions as all the mobile stations are in idle state unless they are taking calls. 

receiYing calls or performing other activities such as browsing the internet video 

conferencing. which need the interaction with the network. 
/ 

B. Fingerprint Creation 

A possible method of creating fingerprints through drive tests is illustrated in [ 12]. 

\e\crtheless. the author has taken a different and more practical approach suits for the 

local context. 

In that. ten consecutive measurements along roads are taken to form a single 

fingerprint. Then. the fingerprint consists of the average Received Signal Strength of 

each cell appears in those ten measurements together with the median location 

coordinates corresponds to the ten locations. The cell having the largest average 

received signal strength is taken as the serving cell of the fingerprint. In addition a 

sliding window approach has been applied. as illustrated in Figure 3.6. in order to 

increase the fingerprint resolution. The last five measurements of the first fingerprint 

contribute to the first five measurements of the second fingerprint by increasing the 

fingerprint resolution by a factor of 2. 

L_ __ 

Measurement 

/ 
Test route 

tl!easurement: 
RSS of hearahle 

cells+ 
GPS coordinate 

Ave•ag;ueasu•ements 

~ 

fi - . 
Averaged RSS from 
each hcarahlc cell + 

Median GPS coordinate 

Figure 3.6: Methodology of fingerprint creation for measured database- Sliding Windm\ 
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3.2 Deviation Analysis 

hen though the planning tool predictions are tuned to the local environment, they still 

may differ from the actual measurements obtained in the same environment. Hence. 

one of the major activities of this research is to comprehensively analyze the deviation 

between predicted and actual measurements. This section describes the methodology 

used for that task. 

The deviation analysis can be divided in to two methods. 

I. Cell-wise analysis J 

II. Fingerprint-wise analysis 

3.2.1 Cell-wise Analysis 

The deviation is analyzed separately for each cell. This uses the measurements 

obtained at different locations within the coverage area of the cell and the predictions 

of the same locations. 

This is done according to the Equation (3.1 ). which computes the Root Mean Square 

Error for a cell. 

RMSEk = 
1 \I 

-"f)RSS~;1 - RSS'k.i )2 

Nk 1=\ 

(3 .1) 

\\here RMSEk - Mean Square Error of k111 cell 

RSSk1 -Measured Received Signal Strength ofk111 cell at i111 location 

RSS 'k 1 -Predicted Received Signal Strength of k111 cell at i111 position 

Nk -Total Number of test points for the k1
h cell 

I he RMSE per cell is calculated in two ways. which differ in the manner the values 

arc substituted. In first. the RSS values are substituted in dBm for Equation 3.1 and 

the RMSE value is computed in dB. The next method involves substituting the RSS 

\alues in mW. and computing RMSE in mW which is then converted to dBm by 

wking log. 
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3.2.2 Fingerprint-wise analysis 

Fingerprint-wise analysis includes calculating the root mean square error between the 

predicted and measured fingerprints at different locations, using the Equation (3.2) 

and(3.3). 

Where RMSE, 

RSSmean.J 

RS....,S., 'mean.t 

N 

3.3 Positioning Algorithm 

RMSE, = .. J[RSSme""'- RSS,mewu f (~_2) 

\ 

RSS/11'""' = :,LRS'Sd 
IY k~l 

(3 .3) 

" 
- Root Mean Square Error for i111 fingerprint 

- Mean value of the measured signal strength of all cells 

at i111 fingerprint 

- Mean value of the predicted signal strength of all the 

cells at i111 fingerprint, calculates similar to 3.3 

- Total number of cells per fingerprint 

!he basic steps of location estimation in fingerprinting methods are described in 

\,:~1!\lll 2.:2 . .2. The methodology applied for location estimation in this research is 

presented in this section. 

The positioning algorithm consists of two phases, namely fingerprint filtering and 

location estimation. 

3.3. 1 Fingerprint Filtering 

In order to reduce the burden encountered in correlation process, the number of 

database fingerprints to be correlated is limited using some filtering criteria. The idea 

of tiltering is to sort out the potential solutions for the location estimation problem. In 

particular. the use of serving cell information is much applicable since the serving cell 

dctines a probable area to locate the mobile station. In addition. Timing Advance 

pctrameter available in GSM networks [32] is another option. but the fact that the 
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correct timing advance value can be measured only in active mode. prevents it being 

applied in this research (as the measurements are taken in idle mode). 

A. :Vo1·e! Filtering Approach 

It was observed that the measured database with high resolution contains a 

considerable number of fingerprints having same serving cell. This leads to the 

selection of a far away fingerprint as the estimated location by removing the closer 

ones in the matching process. This scenario is illustrated in Figure 3.7. 

6.802 

6.8 

6.798 

6.796 

6.794 

~ 
:::J 6.792 ...... 
~ 

6.79 

6.788 

6.786 

6.784 

6.782 
79.89 

211' 
7~ 

2~«f 

Actual loc 

10~ 

33Estimated loca 

200m 

400m 

600m 

BOOm 

1000m 

79.895 79.9 79.905 
longitude 

79.91 79.915 79.9 

Figure 3.7: Far away estimation when filtering only by serving cell 
Original is in colour 

According to Figure 3. 7. there are several fingerprints having same serving cell as the 

location measurement. Among them. the DCM with minimum cost estimation has 

selected a far away fingerprint as estimated location. vvhen closer fingerprints exist. 

Therefore if those fingerprints are further filtered in order to select only the closest 

ones. then the estimation would be much accurate. 

Hence. an extension to filtering approach is proposed in this research. in which the 

fingerprints are first filtered based on the serving cell and a score is calculated for 

each filtered fingerprint using Equation 3.4 .After that, the first K-number of 

fingerprints having the highest score values are selected as the neighbors of the 

location to be estimated. 
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Score (i) = (Number o(matching cells in measurement & the Fingerprint) 

Max(Numher ofcells in Measurement,Numher o{cells in Fingerprint) (3.4) 

Where score(i) - Score of the i111 Fingerprint 

In Equation (3.4), the number of cells contributing to both fingerprint and the 

measurement is referred as matching cells. 

The novel method is based on the assumption that if the number of matching cells are 

higher. the closer the fingerprint to the location to be estimated. This can be proved 

taking the same example illustrated in Figure 3.7. 

In Figure 3. 7. there exist a considerable number of fingerprints which are within 200m 

from the actual location. The Table 3.1 shows the score values and the cost values 

calculated for some fingerprints. 

Table 3 .I: Score values and cost values of fingerprints 

FP ID # of matching cells Score Cost 

26 5 0.833333 335.3153 

27 5 0.833333 335.3667 

259 5 0.625 330.3193 

258 5 0.555556 330.5279 

263 '") 0.375 332.9468 .) 

213 4 0.363636 333.3909 

254 '") 0.333333 328.0078 .) 

33 2 0.285714 322. ;93' 

Without the novel filtering method. the algorithm selects the Fingerprint 33 as the 

estimated location as it has the lowest cost among all. When the number of matching 

cells is considered. Fingerprints 26. 27, 259 and 258 proved to be closer than 

Fingerprint 33. Among them, Fingerprint 26 & 27 has the highest score and the novel 

filtering method selects those two as the potential solutions. Amongst, the fingerprint 
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26 has the lowest cost and the location of that is selected to be the estimated location 

\\ ith novel approach. This result is shown in Figure 3.8. 
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Figure 3.8: Results using novel filtering approach 
Original is in colour 
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I knee. the novel filtering method has the ability of filtering outliers. This filtering 

method is tested with different K values for better performance. 

3.3.2 Location Estimation 

Location estimation phase includes finding the best solution out of potential solutions 

tiltcred in filtering process. This involves a correlation algorithm for fingerprint 

matching. As described in Section 2.2.2, several matching techniques are available in 

literature. This section describes the author's approaches in fingerprint matching. 

Till' correlation function used for this purpose is known as Cost Function. and the 

correlation co-efficient is known as the cost. Altogether five Cost Functions have been 

USL'd to come up with a best solution for each environment. Almost all the Cost 

r unctions are based on the signal distance between the database fingerprint and the 

111L'asurement taken at the location to be estimated. 

l!nally. the location of the database fingerprint giving a smallest distance from the 

lllL"Ctsurement is taken as the estimated location. 
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( 'ost Function-0 

I his is the simplest form ofthe Cost Functions, which considers only the cells present 

111 hoth fingerprint and the measurement. The function is defined in l·.q ~.5. 

d(k) = Iu; -g(k))2 
(3.5) 

\\here d(k) - Cost for k111 fingerprint 

f _ RSS of i111 hearable cell in the location to be estimated 

"' 
glk) - RSS ofthe same i111 cell in k1

h database fingerprint 

The summation is taken over the cells which are found in fingerprint 

and measurement both. 

1! ( ·ost Function -1 

I here exist situations where. some cells are hearable at the location to be estimated, 

hut are not appearing in the fingerprint and the cells which are significant in the 

fingerprint are insignificant at the location to be estimated. In such cases the signal 

~trengths of those cells can be added as a penalty for the cost calculated in I· 

giving a new Cost Function defined in Equation 3.6. 

d(k) = Ict:- g,(k))~ + z:.r~ + z:g,(k) (3.6) 
J 

\\here 

_ RSS of the /h hearable cell at location to be estimated which is not appearing 

111 the k111 database fingerprint 

gJkJ - RSS of the 1111 hearable cell in the database fingerprint which is not bearable 

;tt the location to be estimated 

I he second and third parts of the Equation are known as penalty terms. 

( 'ost Function -2 

t ost Function-2 is a derivative of Cost Function- I with a modified penalty term. In 

t ost Function -1. the RSS of a penalty cell is directly substituted as penalty. However, 

it is reasonable to think that a particular cell is not appearing in the fingerprint or the 

111easurement because the signal strength from that cell is extremely low at those 

l\1cations. Hence, those missing signal strengths in fingerprint or the measurement can 
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be replaced by the threshold level of the receiver as shown in Lquation 3.7. This form 

of the Cost Functions can be found in the literature as well [36]. 

d(k) = Icr,- g, Ck))
2 + IcJ, -l,J2 + Iu~~~-g 1(k))

2 
(3.7) 

Where lm -Receiver Threshold (usually -lOOdBm) 

D. ( 'ost Function-3 

Cost Function-3 is a modified version of Cost Function-0 by introducing the averaging 

of the cost over the number of matching cells in both fingerprint and the measurement 

and defined in Equation (3.8). 

\ I 

I c;;- g,(k))2 
!=I 

d(k) = N1 (3.8) 

Where: Nl -Number of cells present in both measurement and Fingerprint 

The significance ofthis Cost Function is described below. 

In signal strength matching scenario. it is reasonable to think that. if the number of 

matching cells for one fingerprint and the measurement is greater than that for another 

fingerprint and the measurement. then the former fingerprint is closer to the location 

to be estimated than the latter. Still, there is a possibility of selecting latter fingerprint 

as the estimated location when using Cost Function-0. This is 

Fingerprint-! 

Cell A -6Sd81 

Cell B -70dB 

CeiiC -7ldB 

Cell D 

Cell E 

Fingerprint-2 

Cell A -65dBm 

Cell B -72dBm 

Cell C -70dBm 

Cell D -90dBm 

Cell F -89dBm 

Measurement 

Cell A -68dBm 

Cell B -70dBm 

CeiiC -75dBm 

Cell E -90dBm 

Cost Function-0 

Cost Function-3 

Figure 3.9: Significance of Cost Function-3 
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:\ccording to Figure 3.9. the number of matching cells in fingerprint 1 & the 

measurement is 4 and that in fingerprint 2 and measurement is 3. Hence it is 

reasonable to think that the fingerprint 1 is closer to the measurement location than 

fingerprint-2. However. the Cost Function -0 gives a lowest cost for fingerprint 2. 

selecting it to be the estimated location. When the newly defined Cost Function -3 is 

applied. it selects the fingerprint -2 as the best matching one, which is true according 

to above argument. 

F C 'ost Function--/ 
" 

lhe author proposes another Cost Function which is a derivative of Cost Function-2. 

A similar argument as applied in relation to Cost Function-3 can be used to describe 

the validity of Cost Function-4 as well. The resulting Cost Function is given in 

f quation 

\ I .\2 \'3 

L(I-x,(k))" L l I )1 I u/11- x,(k))l (, I - 111 

d (k) = t~l + ,~1 + /~1 

Nl N2 N3 
(3.9) 

Where N 1 -Number of cells present in both measurement and the fingerprint 

N2- Number of cells present in measurement but not in fingerprint 

N3- Number of cells present in Fingerprint but not in measurement 

In the location estimation process all these five Cost Functions have been applied 

together with two filtering methods described in Section 3.3.1. Figure 3.10 illustrates 

all the approaches taken in location estimation process to come up with a best solution 

using a measured database. 
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Positioning 
Algorithm 

~ 
~ ~ 

Filter Fingerprints by Filter Fingerprints by 
Serve Cell -(A) Serve Cell - (B) 

~ ~ 

I ,ocation Estimation by Further filtering using Score 
Cost function 0 - 4 Function with Different K values 

(Score_K) 

Location Estimation by 
Cost function 0 - 4 

Figure 3.10: Different approaches of Positioning Algorithm 

·'A Calibration Process 

\ccording to the results shown in , it is evident that there exist a 

, 1 msiderable deviation between the predicted signal strength and actual signal 

'trength. Further, the results in Section 5.2 show that the performance of Database 

( 1J1Telation Method using a predicted database is inferior to that using a Measured 

I >atabase in all three environments, urban, suburban & rural. Hence the author's 

~ •hjective is to develop a technique that can be used to minimize the deviation between 

r neasured and predicted signal strengths such that the performance of DCM is 

t tnproved. 

1 he approach of correcting predicted signal strengths using a lesser number of 

1r1easured data is applied and this is referred to as Calibration throughout this thesis. 

I he approaches taken in designing a calibration technique are comprehensively 

,:JScussed in this section. 

I \\O approaches have been taken, namely, Neural Network based Approach and 

( urve Fitting based approach. These two approaches will be discussed in Section 

·. ·t.l & 3.4.2 respectively. 

43 



Chapter 3- Methodofof..,r;' 

Calibration 
Approaches 

~ 
~ ~ 

Neural Network Curve Fitting 
based approach based approach 

Figure 3.11: Approaches for calibration , 

· urthermore. the author has identified two variants of calibration process called. Cell­

' i:-;e Calibration and Fingerprint-wise Calibration. Cell-wise Calibration is defined as 

, \llTccting the predicted signal strengths of different cells separately. Here. a 

'c~libration technique based on neural networks or curve fitting is designed for each 

, L~ll separately. In contrast to that. Fingerprint-wise Calibration involves designing a 

:..:lobal calibration technique for a particular environment such that all the predicted 

: i ngerprints could be corrected together. The author has identified characteristics of 

'l'lth variants as listed in Table 3.:? and selected the one suitable in achieving goals. 

\ work similar to Fingerprint-wise calibration has been done [:I 7] to calibrate 

Jlrcdicted fingerprints using neural networks. in which all the fingerprints for the 

"L'kcted area are calibrated using a single neural network with 24 inputs and 22 

'1utputs. 24 inputs consist of 22 predicted RSS from 22 distinct cells within the 

"elected area and 2 location coordinates while 22 outputs correspond to the predicted 

1\SS of each cell in the input. This kind of a topology has several drawbacks in 

practical implementation. Since the number of inputs and outputs are higher it requires 

lllorc processing power in training the neural network for better approximation. In 

<tddition. if this is to be implemented in large. dynamic networks where the new cells 

c~re added frequently. the whole neural network should be re-trained for the entire area 

\\ tth the addition of new input and output. i.e. the topology of the neural network 

~hould be changed with the changes in network. In addition more work is needed in 

ltnding an optimum calibration technique. 
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Table 3.2: Characteristics of Cell-wise calibration and Fingerprint-wise calibration 

Cell-wise Calibration 

I· Predictions of each cell are 

calibrated separately I e 

I. If neural network techniques are 

used. the network topology IS I • 

simple 

Fingerprint-wise Calibration 

Predictions of all the cells are 

calibrated using a single technique 

The network topology is complex m 

using neural networks 

-' 

• Possibility of applying curve fitting j • The possibility of applying curve 

techniques is there fitting techniques is less 

' • The maintenance burden involved I • The work load involved in adding 

in adding new cells to the network 

is low 

1 • Possible to achieve higher 

accuracies as the predictions of each 

cell are optimized separately 

new cells to the network is high 

• Since the predictions of all cells are 

optimized together more sophisticated 

optimization techniques are needed 

for better optimization 

Despite the fact that cell-wise calibration involves calibrating the predictions of each 

cell separately. it requires a lower maintenance work in adding new cells to the 

network after deployment. In addition. it has the potential for higher accuracies as the 

predictions are optimized per cell. Furthermore, it provides a simple but optimum 

solution for calibration than Fingerprint-wise approach. Due to these reasons. Cell­

vvise calibration is selected for calibration process of this research. 

The following sections describe the application of neural networks and ~urve fitting 
•:jl ... ·' for cell-wise calibration. 

3.4.1 Neural Network based Approach 

'?6: ·:~ ... 
\: ·~ .. ~. ~· 

--~. 

Neural Networks being universal approximators. makes them applicable for the 

calibration problem in this research as it also attempts to approximate a relationship 

between the predictions and actual signal strengths within the coverage range of a cell. 

The flexibility & the ability of dealing with uncertain data make the neural networks 
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more robust in function approximation. The applicability of neural networks in 

calibration problem is proved in the literature [3 7. 49] as well. 

A. Setwork Topology Design 

Designing the topology of the neural networks involves deciding on number of inputs. 

number of outputs. number of hidden layers. and number of neurons to be used 111 

each layer and transfer functions for each layer. 

The number of inputs and the outputs should be selected appropriately for the 

problem. It is needed to identify the varying parameters related to the problem. Goal 

of the cell-wise calibration is to minimize the deviation between predicted strength 

and actual strength. The signal strength differs from location to location and varies 

with the distance from transmitter. Therefore the parameters applicable for this 

scenario are predicted signal strength. location of the prediction. location of the 

transmitter and distance from the transmitter. The output is obviously the corrected 

signal strength. Apart from this. it is possible to vary the format of the input and the 

output. 

The number of hidden layers in neural network is related to the complexity of the 

network. More hidden layers provide better approximation to complex functions. It is 

said that a neural network with one hidden layer and appropriate number of hidden 

neurons is enough for most function approximations. Therefore, most of the 

topologies designed by the author consist of one hidden layer. In addition the number 

of neurons per layer is also an important parameter in neural network design. 

Increasing the number of neurons increases the number of weights to be trained. It is a 

fact that the number of training example should be five times greater than the number 

of weights and biases to be trained [ 48]. Hence. it should be careful when increasing 

the number of neurons as it may violate the previous rule. 

In that view. the author has come up with five different neural network topologies to 

be used in this work. Those are categorized as Multi-Layer Feed Forward Neural 

1\ietworks and are describe below. 

!. Simple Neural NeHvork-1 (simple _NNJ) 

This is a simple feed forward back propagation neural network with one hidden layer. 

fhe parameters for this are given below. 
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o One Input source 

[Predicted Strength: Loc _lat; Loc _lon; Cell_lat Cell_lon] 

o One hidden layer ( 10 neurons with arctangent transfer function) 

o One output (calibrated strength with linear transfer function) 

o Performance function - Regularized Mean Square error 

The input vector to this neural network consists of five inputs, including the predicted 

strength. latitude and longitude of the measurement location_,and latitude and longitude 

of the location of the cell. The output of the neural network is the calibrated strength 

at the given location. The performance function is selected to be the regularized mean 

square error as it helps to improve the generalization [ 4 7l The total number of 

\Veights to be adjusted is 60 in this neural network. 

2. Cel!JVeural ;Vel1t'ork-l (cell_NNJ) 

o One Input source 

[Predicted Strength; Loc _!at; Loc _lon] 

o One hidden layer (8 neurons with sigmoid transfer function) 

o One output (calibrated strength with linear transfer function) 

o Performance function- Regularized Mean Square error 

This neural network reduces the number of inputs to 3 by eliminating the location of 

the transmitter. One hidden layer with 8 neurons is used to get the calibrated strength 

as the output. It consists of 32 weights. 

3. Custom 1Veural Network-] (custom NNJ) 

The third topology is a custom topology, which deviates from the standard neural 

network structure [ 4 7]. It is a complex structure with following parameters. 

o Three Input sources 

Predicted Strength 

[Latitude of Location ; Latitude of cell location] 

[Longitude of Location ; Longitude of cell location] 
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o Five layers (3. 6. 6. 2. 3 neurons with arctangent sigmoid. sigmoid. 

sigmoid transfer functions and random bias values) 

o One output (calibrated strength with linear transfer function) 

o Performance function- Regularized Mean Square error 

The structure of the Custom neural network- I is shown in Figure J.l :2. The total 

number of weights and biases to be adjusted is 60 . 

.f.. Custom lv'eural Nenvork-2 (custom_NN2) 
_. 

This is a derivative of custom neural network-! with reduced number of inputs and 

layers. 

o One Input source 

[Predicted Strength; Loc _I at; Loc _Ion; Cell_lat; Cell_lon] 

o Two layers (5, 10 neurons with arctangent, arctangent transfer 

functions and -1 bias values) 

o One output (calibrated strength with linear transfer function) 

o Performance function- Regularized Mean Square error 

This consists of 80 weights and biases and the structure of the neural network is 

shown in l·igurc .3.13. 

5. Loss Neural Neflmrk-1 (LossNNJ) 

As mentioned earlier, the format of the input and the output of the neural network can 

be varied. As such, the LossNNl has been designed to output the error in signal 

strength loss in predictions and actual measurements. This is defined in hHwti,)n 3.1 O-

J:. 

Loss/ = Transmitted Puwer- Predicted Strength (dB) 

Loss2 =Transmitted Power- Actual Strength (dB 

(3.10) 

(3 .11) 

Error= Loss]-- Loss2 =Actualstrength-Predictedstrength (dB) (3.12) 

Then the calibrated strength can be derived from Equ:1tion 3.!3. 

Calibrated Strength =Predicted Strength + Error (3.13) 
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Chapter 3- Methodology 

The parameters for the neural network are shown below. 

o One Input source 

[Loc !at: Loc Ion] - -

o Output 

- [error in loss] 

o One hidden layer (5 neurons with sigmoid transfer function) 

o One output (error in loss with linear transfer function) 

o Performance function - Regularized Mean Square error 

The topology of the neural network is simple with the location coordinates being the 

tv,o inputs and the error in loss as the output. The network consists of 15 parameters 

that should be trained before applied in calibration. 

B. Training Neural Networks 

Adjusting the weights and the biases of the neural network is referred to as training. 

During the training, the weights and the biases of the network are iteratively adjusted 

to minimize the performance function of the network. The network is trained by 

introducing known inputs and the target outputs to the network. A sufficient number 

of training samples should be available in order to obtain better performance. In 

additions the training samples should represent the overall problem space in order to 

reduce the over fitting. 

Selecting a proper training algorithm is a key parameter in neural network training. 

Several training algorithms are available with different variants [ 4 7. :'2], but none of 

them has proven superior for all the problems. Hence. selecting a proper training 

algorithm is more over less a trial and error approach. 

During this work, the author uses five different types of training algorithms which are 

explained in Appendix B. Those are, 

, Gradient Descent Algorithm 

, Gradient Descent Algorithm with Momentum 

, BFGS Algorithm 

, Resilient Back propagation Algorithm 
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,- Particle Swarm Optimization Algorithm 

These algorithms have different parameter to be adjusted appropriately for the 

problem. Hence. all the neural networks are trained with difTerent training algorithms 

hy varying their parameter until a better solution for the calibration problem is 

obtained. 

Furthermore. the sample data available for training are divided in to two sets. namely. 

training set and testing set. and the performance of the trained neural network is 

C\ aluated according to the mean square error computed for te§ting set. 

3.4.2 Curve Fitting based Approach 

Curve fitting provides means of finding a curve which matches a series of data points. 

It supports in finding a relationship between one dependent variable and several 

independent variables. The calibration problem in this research is also of same type. 

\\here the relationship between the predicted signal strength and the actual signal 

strength is approximated. Hence the curve fitting method is applicable for the problem 

being dealt with. 

Curve fitting is of two types. namely Parametric fitting & Non parametric fitting. 

Parametric fitting is based on a priori knowledge of a specific modeL which involves 

tinding co-efficient of the model. In contrast, the non parametric fitting does not 

assume any model and fits smooth curves through the available data points. The 

author uses parametric fitting for calibration during this research. 

Robust least squares fitting method provided in Matlab Curvefitting Toolbox is used 

with its two variants Least Absolute Residuals (LAR) & Bi-square weights [57]. The 

LAR scheme finds a curve that minimizes the absolute difference of the residuals 

(data - fit). rather than the squared differences. Therefore, extreme values have a 

lesser inf1uence on the fit. On the other hand, Bi-square weight scheme minimizes a 

weighted sum of squares of residuals. where the weight given to each data point 

depends on how far the point is from the fitted line. For most cases. the hi-square 

weight scheme is preferred over LAR because it simultaneously seeks to find a curve 

that fits the bulk of the data using the usual least squares approach, and it minimizes 

the effect of outliers. [57]. 
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I our models available in the Toolbox are used for fitting curves. They are: 

1. Polynomial - Degree 2 

Y = aX 2 +bX +c ............................ (3.14) 

2. Polynomial- Degree 3 

Y=aX 1 +bX 2 +cX+d ··························· (3.15) 

3. Exponential -1 

Y = a.exp(bX) .t ........ (3.16) ··············· .... 

4. Exponential- 2 

Y = a.exp(hX) + c.exp(dX) ........................... (3.17) 

· l'2llrl' 3.!-+ shows two different approaches for curve fitting. In each approach. curves 

:.1re fitted for Polynomial Degree-2. Polynomial Degree-3. Exponential -1 and 

~xponential -2. Then. the best fit curve for each cell is identified among those four 

curves using the Root Mean Square Error computed for the testing data set. 

I 

LAR fitting 
(Curvefit_A) 

Polyn~mial Polynomial 
(Degree-2) (Degree-3) 

Curve Fitting 
I 

~ 

Bi-square Weights fitting 

Ex potential 
(Degree- I) 

Polynomial 
(Degree-2) 

Exp±ential 
(Degree-2) 

Polynomial 
(Degree-3) 

(Curvefit_B) 

Exponential 
(Degree- I) 

Exponential 
(Degree-2) 

Figure 3.14: Curve fitting approaches 
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Chapter 4 

Test Environment 

Proving the performance of newly built positioning methodology in different 

environments, urban. suburban and ruraL is a key goal of this research. This also 

includes comparing the performance of Fingerprinting method using a measured 

database with that using a predicted database. Hence. measur~ments should be taken 

extensively in all three environments in order to create the measured database. to 

calibrate the predictions as well as to form the test points. 

As a result three areas come under urban, suburban and rural environments were 

selected and the measurements were taken extensively. This chapter describes the 

measurements set up used in test drives and the nature of the selected environment 

comprehensively. 

4.1 Measurement Setup 

A mobile measurement unit and a GPS receiver (Garmin GPS II+), interfaced to a 

laptop are used as the measurement tool during this work. The mobile measurement 

unit is a hardware module built for the purpose of measuring signal strengths in GSM 

netv,orks. It uses a GM862-PCS module for measuring GSM signals. The signals are 

measured through the BCCH channel in idle mode. The complete measurement setup 

is shown in I it:urc 4.1. 

Figure 4.1: Complete measurement set up 
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1 :n~asurement taken by this setup consists of the GPS coordinates and the received 

• 1 cella I strengths from the serving cell and up to five neighboring cells. The format of a 

, lli~le measurement is shown in Figure } 

Session ID Neighbor no CeiiiD Lac ARFCN Stength TA 
I 0 A 7777 122 48 0 

I B 7777 119 53 
2 c 7777 102 60 

Session ID Latitude Longitude .t 

I 0647.807 07954.079 
2 0647.805 07954.082 

Figure 4.2: Format of a measurement 

IL·st drives are performed along roads of the selected area by a van equipped with the 

'lh:asurement tool. Collecting measurements to form the measured database is done by 

"'ntinuously moving along the roads in a speed less than 20km/h. Those 

'Ih:asurements are also used in calibration purpose. Test points collection is done 

.tl, )ng the same roads in a different manner, by which the vehicle is stopped for a 

ilLTiod of time enough to take a set of 10 measurements from the measurement set up. 

75 

70 

~ 65 
'0 
..:.. 60 
.c:: 
0, 55 
= Q) 

~ 50 
(/) 

45 

40 

Signal strength variation of ace II at a location over 10 measurements 

2 3 4 5 6 

Measurement 

7 8 9 10 

--+- 1st measurement set 

2nd measurement set 

3rd measurement set 

---)f ·· 4th measurement set 

~x-- 5th measurement set 

Figure 4.3: Signals strength variation of a cell at a location over ten measurements 

\. a result a test point consists of 10 measurements. In location estimation. the 

-Ii:2lHithm averages the signal strengths of the distinct cells in those 10 measurements 

hl'll)rc correlating with the database. This approach was selected to compensate the 

\<~nation in signal strength at a given location over the time. When considering the 10 
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measurements at a test point the signal strength from a particular cell varies 

considerably. The variation is also in a random fashion. This is illustrated in l 

~l However, hgure 4.4 in tum shows that the variation in average signal strength 

taken over I 0 measurements is not that significant. Hence. it was decided to take I 0 

measurements per location and average out in location estimation. 

Average Signal Strength variation over 10 measurements 

75 

70 
/ 

'E 65 
Ill 

~ 60 
.J:: 

0, 55 
c 
Q) 

.!:; 50 
(f) 

45 

40 
1st measurement 2nd measurement 3rd measurement 4th measurement 5th measurement 

set set set set set 

Figure 4.4: Average signal strength variation at a location 

-'.2 lJ rban area selection 

l he urban area is basically defined as highly populated with high building density 

\\ ith tall towers. In the cellular environment it contains large number of near by cells 

\\ hich are mostly come under Micro Cell category. Propagation phenomenon like 

multi path fading and scattering are highly observable in this area. 

In Sri Lanka. the Colombo city area falls under this category of environments. An area 

clround 2.5 km2
. covering Bambalapitiya to Colpetty, is considered as the urban 

environment in this work. Two roads, namely, Galle Road and Duplication Road. can 

h'-' identified as having different characteristics within the selected area. The portion of 

~he Galle Road of selected area is bordered by tall buildings and there exist no bushes 

,11 trees along the border of the road. Hence, the signals are highly reflected and 

blocked and severe fading occurs along the road as illustrated in Figure . Hence. 

this road is considered as Bad urban scenario. In contrast to that, the duplication road 

1" hordered by small buildings and there exist trees and bushes along the border of the 

r. 'ad. The fading along the Duplication road is inferior to that along the Galle road. as 
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ill m I . 4.6. Therefore, duplication road can be considered as typical 

urban scenario. 

A tutal of 70 cells are hearable within the selected urban environment. 

0 
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E' -2o 

~ -30 

::; -40 
en 
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.... 

RSS variation of Cell- B Along Galle Road 
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-~" ,/"' /•,,, ,...• ..... ~ ......... ""- ,./ ~ / " 
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Figure 4.5: Received Signal strength variation along Galle road in urban environment 
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-60 

-70 

56 

RSS variation of a cell along Duplication Road 
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Distance(m) 
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I igure 4.6: Received Signal strength variation along Duplication road in urban environment 

Accnrdingly. measurements are taken along the duplication road and the Galle road as 

measured fingerprints and test points. Meanwhile, the predicted database is also 

created along both roads using the signal strength prediction of planning tool. !· 

shows the fingerprints formed along both roads using predictions while the 

mcJsured fingerprints are shown in Figure 4.8. 
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(a) 

Chapter .f.- Test Environment 

Barrbalapitiya 

(b) 

Figure 4.7: Predicted Fingerprints along roads in urban area 

(a) Along Galle road (b) Along Duplication road 

Bambalapitiya Bambalapitiy a 

(a) (b) 

Figure 4.8: Measured Fingerprints along the roads in urban 

(a) Along Galle road (b) Along Duplication road 

l..1hk· --L l summarizes the number of fingerprints and the test points obtained along 

each road. 

Table 4.1: Summary of fingerprints and test points in urban environment 

-~ 

Measured Predicted 
Road Test Points 

Fingerprints Fingerprints 

Galle Road 311 66 50 

-~ 

Duplication Road 295 71 63 

58 



Chapter../- Test Environment 

.t.3 Suburban area Selection 

The population and the building density are relatively low in suburban environment 

compared to the urban. The cells have larger coverage range and they are situated far 

apart than in urban environment. Multi-path fading and scattering are there with the 

Line of Site propagation up to some extent. 

In Sri Lanka, the areas like, Moratuwa, Horana, Panadura. Maharagama, Homagama, 

Kiribathgoda, Kadawatha etc are come under this category. An area of about 6km
2

, 

around the University of Moratuwa, from Katubedda juncti9n to Piliyandala, is 

selected as the suburban area in this work. Since a clear distinction of the environment 

cannot be observed along different roads, all the roads in selected area are taken 

together in testing. The total number of hearable cells within the selected suburban 

area is 45. 

:V1easurements are taken along the roads to form measured fingerprints and the test 

points \Vhile the predicted database is created along the same roads using the signal 

strength prediction of planning tool as illustrated in Figure 4.9 (a) and (b). 

, ,... . 
...... i We,.fv ala~~ anpola • ..,._I • • .. _ . '--4...1 ,. ... . . .,.,.. •, 

' ' \ . . ... ' ' . . . .. ... ., - . ~ . , .. '" .... -L 
tvloraturrulla 

l R~a,rdala 

J-•~~" .J...I•. "v'~ 
"" . ....,. ... 
.. •"" ? 
~~ 
..,., '· J. ) 
·'".. 't ~ 

GONA M.A. DrTT A 

Figure 4.9 (a): Predicted Fingerprints in suburban 

, .. .. ..._ f'le$ ala~:&- 1·,. 1 
, • Piliyandala 

• • "' • wO a 11 
I? • • • • • .... . ·. *' ·L~ , : • r .. -c .. <·":,.·. "''&...f~ ...... 12 . • ,,...... . ,. . . '! •.. . .. . ... . ~· .. . ·. . ... -... . .·~.. . .. . .~ ... ·. . ... . -~. . ~ .., ·. .... . .. 

• f' • • .. • ••• ,, 
• •• • • : • •..,.. •• • I Ktial'liJnna 
I • • :Molp• •• •• • • .. .. :·· : ... ... : . , . . . .· . . . . .. ·~ • 

bratumulla GONA fv1A om A 

Figure 4.9 (b): Measured Fingerprints in suburban 

c 4.2 summarizes the number of fingerprints and the test points obtained along the 

roads in suburban. 
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Table 4.2: Summary of fingerprints and test points in suburban environment 

i Measured Predicted 
I 

Test Points 
I 

Fingerprints Fingerprints 

518 3210 312 

I 

!he -..,ignal strength variation of a particular cell within the selected area is shown in 
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Figure 4.10: RSS variation of a cell in suburban area 
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.. u Rural are Selection 

Rural area is basically defined as less populated with low building density. In the 

cellular environment, it has a small number of base stations with larger coverage area. 

cla:-,silicd as macro cells. 

In Sri Lanka. the areas like Anuradhapura. Ibbagamuwa, Melsiripura, Wariyapola etc 

arc come under this category. Accordingly. an area of about 4km
2

• around 

Ihhagamuwa is considered as the rural area in this research. All the roads in selected 

area are taken together as in suburban scenario. A total of 20 cells are hearable within 

the -;elected rural area. 

l1~.: t ll (a) (b) show the measured fingerprints and the predicted fingerprints 

along the roads in this area. 
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l . , 
" 

' 
.; 

• . . . • ... , 
.t , .,. 

~· v • . 
""• .. . ., 
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" . . ... 

.t 

(a) (b) 

Figure 4.1 I: Predicted and measured Fingerprints in suburban 
(a) Predicted (b) Measured 

. . 
' ... 

Tahk 4.3 summarizes the number of fingerprints and the test points obtained along the 

roads in rural environment. 

E 
aJ 
~ 
.:. 

"' c: 
~ 
(j) 

Table 4.3: Summary of fingerprints and test points in rural environment 

Measured Predicted 
! 

Test Points 
Fingerprints Fingerprints 

I 281 I 
170 154 

I 

-L l? shows the received signal strength variation of a cell in rural area. 
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Figure 4.12: RSS variation of a cell in rural area 
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4.5 Analysis of RSS variation 

Due to the propagation phenomena such as reflection. diffraction scattering occur in 

mobile environment. the received signal strength varies considerably in nearby 

locations as well as the same location at different times. This section analyses such 

deviations occur in ditTerent locations during day time. 

In order to do this. signal strengths from all bearable cells are measured at a particular 

location continuously, hour-by-hour. from morning to evening of the day. The 

analvsis of RSS variation of three locations within the University of Moratuwa is 
• .t 

presented in this section. 

4.5.1 Location-]- ENTC Balcony 

Figure 4.13 illustrates the variation of average received signal strength of di±Terent 

hours of the day-1 at a location in ENTC Balcony. Even though the serving cell was 

appeared to be same over ditTerent hours. there is a considerable variation of the 

signal strength of serving cell. Signal strength has increased considerably within the 

hours 2-3 and 3-4. 
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Figure 4.13: Average RSS variation in different hours of day-! at ENTC Balcony 
Cell IDs have been changed for the purpose of reporting 

The signal strength variation at the same location in the next day is completely 

ditTerent from that in day-1 as demonstrate in Figure 4.14. A considerable decrease in 

signal strengths of all bearable cells can be seen after 12 noon. This could be due to a 

change done in transmission parameters by the operator. 
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Nc\ ertheless, the relative positions of the RSS of neighboring cells with respect to that 

of sen ing cell are seem to be constant. 

Average RSS variation over time within day-2 (ENTC Balcony) 
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Figure 4.14: Average RSS variation in ditTerent hours of day-2 at ENTC Balcony 
Cell IDs have been changed for the purpose of reporting 

4.5.2 Location-2- University Front 

At the second location, the average received signal strength of most of the cells Is 

more over less a constant over the different hours of the day. In addition there exist a 

considerable difference in signal strengths of serving cell and other cells and also the 

relative positions of RSS of neighboring cells with respect to that of serving cell are 

some \vhat similar. 

Average signal strength variation in different hours of the day (University Front) 

75 

70 

i 65 

~ 
~ 60 

! 
55 

50 

'* 

10-11 11-12 12-1 

...... 
··:·::~ 

·-------::.:::~ ...... ..__._.. 
m 

---····---- ···~-- --K··· ·-- jo: 

1-2 2-3 3-4 
Hour 

--+-###1 

###6 

###8 

·- ###9 
7\ ###4 

Figure 4.15: Average RSS variation in different hours of the day at University front 
Cell IDs have been changed for the purpose of reporting 
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4.5.3 Location-3- Near IT Office 

Figure 4.16 shows the average RSS in different hours of the day at a location near IT 

o!Ttcc. A considerable variation in RSS of serving cell and one neighboring cell can be 

seen after 12 noon. However. the relative signal strength is almost the same in most of 

the time. 
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Figure 4.16: Average RSS variation in different hours of the day-! near IT office 
Cell IDs have been changed for the purpose of reporting 

4.5.4 Impact on DCM Algorithm 

ThL' analysis shown in sub Sections 4.5.1 to 4.5.4 demonstrates the variation 111 

rccciwd signal strength at a location with respect to time. Furthermore. it 1s 

\\ lll1hwhile to analyze the effect of this RSS variation on the performance of DCM. 

Accordingly. the author has performed a positioning test for the measurements taken 

at E'\ITC-Balcony. In this test, all the measurements taken within the day are divided 

in to groups of I 0 consecutive measurements. such that each group resembles one test 

point. This resulted in 118 test measurements at the same location. The GPS 

C(lordinates of the test location is measured to compare the accuracies. The algorithm 

used for location estimation is Approach-A with Cost Function-2 and measured 

database for suburban. 

l igure 4.17 shows the positioning error graph plotted for each test measurement. 
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Positioning error for consecutive test measurements at one location within a day 
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Figure 4.17: Error for consecutive test measurements at one location within a day 

The location estimate given by DCM algorithm is almost the same for all test 

measurement at a location, while there were four cases out of 118 where a different 

estimate was given. Hence, it can be concluded that the impact of RSS variation with 

respect to time on the DCM algorithm is negligible. 
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Chapter 5 

Results Analysis 

The results of the methodology described in Chapter 3 are presented in this chapter. 

Section 5.1 discusses the results of the deviation analysis between predictions and 

measurements while Section 5.2 to Section 5.6 discuss the results using predicted 

database. results using measured database. performance comparison using predicted 

and measured databases. performance of ditterent calibration techniques and overall 

results analysis. respectively. The 
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Figure 5.1: Organization of the Presentation of Results 
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RPot Mean Square Error is used as the performance measure in deviation analysis 

\\ hereas the cumulative distribution function of positioning error is used in performance 

analysis of database correlation method with different positioning algorithms. 

S.l Deviation Analysis 

De\ iation analysis was done using two approaches, namely cell-wise analysis and 

tingerprint-wise analysis. as described in 

section per each environment. 

3 .2. Those results are discussed in this 

" 

5.1.1 Urban Environment 

I C ia!le Road 

C L'll-wise Analysis 

I ; :-;. l shows the Root Mean Square Error computed in dB and dBm per cell along 

( 1al le Road in urban environment. 

.\ccordingly. the RMSE lies in the range of 5dB ~ 45 dB. while that in dBm is 

cnmparable to measured values. The average deviation is 20.18 dB. Hence. the 

ch:\ iation between planning tool predictions and the actual measurements along Galle 

Road is considerable. 

Table 5.1: Cell-wise analysis- Galle Road 
Cell IDs have been changed for the purpose of reporting 

Cell ID RMSE-(dB) RMSE-(dBm) Cell ID RMSE-(dB) RMSE-(dBm) 

***1 19.23 -50.76 ***7 15.67 -62.02 

***2 20.28 -50.01 ***8 I 0.51 -48.94 

***3 I 0.33 -51.80 ***9 13.50 -50.36 

~ 

***4 32.24 -52.52 **10 15.47 -51.95 

~ 

***5 I 0.44 -50.37 **11 14.16 -58.31 

~ 

***6 18.29 -51.89 **12 11.24 -55.40 
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\ctual signal strengths and predicted signal strengths of a celL along Galle Road. are 

plotted in the same graph with respect to the distance from the transmitter. in r· 
. This also proves the existence of a considerable deviation between predictions and 

actual measurements along Galle Road. 
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Figure 52: Signal Strength Comparison of a cell along Galle Road 

I mgerprint-wise analysis 

1rc 5.3 illustrates the RMSE per fingerprint, computed by Lquation ( 3 along 

l1alle Road while I· 5.4 shows the RMSE histogram. Here, the deviation lies in the 

range of OdB - 48dB with an average of 22dB. This also proves the higher deviation in 

predictions along Galle Road. which is selected to be the Bad Urban scenario. 
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Figure 5.3: RMSE plot for Fingerprints along Galle Road 
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RMSE Histogram of fingerprints along Galle Road 

0.18 

0.16 

0.14 
Ql 0.12 
Ol 
~ 0.1 c 

_0_ 0 

~ 0.08 

~ 0.06 
0.04 

nn 0.02 

0 o o ~-n ~ o ~ ~ fu ~ ~ o ~ o o 
2 4 6 8 1 0 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 

" RMSE(dB) 

Figure 5.4: RMSE Histogram of Fingerprints along Galle Road 

U J)uplication Road 

(ell-wise Analysis 

\ccording to Table 5.2. which shows the Root Mean Square Error for some cells. the 

Jc\ iation between the predicted and actual measurements along Duplication road lies in 

tl1l' range of 5dB-30dB. which is lesser compared to that along Galle road. The average 

Jc\ iation is 16 dB. Hence. the deviation of predictions from actual measurements along 

Duplication road is moderate. 

Table 5.2: Cell-wise Analysis- Duplication Road 

- - - - - -- ------- - -- - ~- ---- --- -r ------o Cell IDs have been changed for the ouroose of 

Cell ID RMSE-(dB) RMSE-(dBm) Cell ID RMSE-(dB) RMSE-(dBm) 

-

###1 8.40 -65.57 ###7 6.19 -59.27 

-
###2 14.80 -56.53 ###8 11.34 -61.02 

-· 

###4 11.86 -61.01 ###9 13.22 -50.49 

###5 36.69 -53.59 ##10 12.80 -50.46 

###6 5.16 -54.82 ##11 12.10 -53.68 

f 1ngerprint-wise analysis 

I 1~ure 5.5 shows a plot of RMSE of fingerprints along Duplication Road. The RMSE 

ranges from OdB to 35dB with an average value of 14. 7dB. This deviation is better 

l'( nnpared to that along Duplication road. 
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RMSE plot of fingerprints along Duplication Road 
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"' Figure 5.5: RMSE plot of fingerprints along Duplication Road 
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Figure 5.6: RMSE Histogram of fingerprints along Duplication Road 

I urthermore. the histogram shown in Figure 5.6 illustrates that the RMSE for more than 

RO% of the fingerprints is below 25dB. 

5.1.2 Suburban Environment 

Cell-wise analysis 

Results ofthe cell-wise analysis along roads in suburban are given in Table 5.3. 

\ppm·ently. the deviation lies in the range of 5dB - 20dB with an average of 1 OdB. The 

Je\ iation computed in dBm is also lower than that in urban environment. Hence. it is 

-:\·ident that the planning tool predictions are closer to actual measurements in suburban 

--·n\ ironment than in urban. 
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Table 5.3: Cell-wise analysis- Suburban 
-- ~ -~ ~£·- r~·~~~- ~· ·-r~·~···o 

II IDs have been changed f, " 

Cell ID RMSE-(dB) RMSE-(dBm) Cell ID RMSE-(dB) RMSE-(dBm) 

$$$2 14.36 -73.70 $$$3 8.06 -63.21 

I 

I 

$$$7 6.17 -69.41 $$$1 I 0.75 -57.86 

I $$$9 7.64 -75.01 $$$6 11.34 -72.72 I 

I 

I $$$8 15.35 -80.17 $$$5 5.94 -76.54 

I 

" 
Figure 5. 7 shows the actual and predicted signal strength variation of a cell in suburban. 
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Figure 5.7: Signal strength variation of a cell in suburban 

I ingerprint-wise analysis 

RMSE plot of Fingerprints in suburban 
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Figure 5.8: RMSE plot of Fingerprints in suburban 
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From Figure 5.8. it appears that the RMSE of fingerprints in suburban area ranges from 

OdB to 15dB. which is lesser than that in urban area. The average value of that is 5dB, 

\Yhich is quite good. This is also proved by the histogram shown in Figure 5.9. 
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Figure 5.9: RMSE histogram of Fingerprints in suburban 

5.1.3 Rural Environment 

Cell-wise analysis 

The results of cell-wise analysis shown in Table 5.4 give evidence to the fact that the 

de\iation between measured and predicted strengths is comparatively small in rural 

enYironment. While the deviation in dB lies in the range 3dB-15dB with an average of 

7.8dB. that in dBm is small compared to measured strengths. 

Table 5.4: Cell-wise Analysis- Rural 
Cell IDs have been changed for the purpose of reporting -

Cell ID RMSE-(dB) RMSE-(dBm) Cell ID RMSE-(dB) RMSE-(dBm) 

&&&3 9.29 -58.40 &&&5 13.82 -86.59 

I &&&2 8.04 -60.11 &&&6 8.24 -72.14 
I 

&&&7 8.14 -55.61 &&&9 5.89 -89.45 

&&&4 8.51 -55.58 &&&1 6.49 -92.25 
j 

Figure 5.10 shows the signal strength variation of a cell in rural environment, with 

respect to the distance from the transmitter. Accordingly, the deviation is even lower in 

rural environment compared to urban and suburban environments. 
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Signal Strength Variation of a cell in Rural 
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Figure 5.10: Signal strength variation of a cell in Rural 

Fingerprint-wise analysis 

The RMSE plot shown in Figure 5.11 and the histogram plot in Figure 5.12 

demonstrate the lower deviation between measured and predicted fingerprints in rural 

environment. 

RMSE plot of Rngerprints in Rural 
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Figure 5.11: RMSE plot of Fingerprints in rural 
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Figure 5.12: RMSE histogram of Fingerprints in rural 
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5.2 Performance of DCM with Predicted Database 

One of the major objectives of the research is to analyze the performance of database 

correlation method with predicted database in all three environments. This section is 

deYoted for the demonstration of the results of that work. 

5.2.1 Urban 

A. Galle Road 
" 

Figure 5.12 shows the error CDF curves of database correlation method with 

positioning approach-A which uses the serve cell for fingerprint filtering as described 

in :-lcct 3.3. Five curves correspond to five different Cost Functions introduced in the 

same section. 

It seems that the approach -A with novel Cost Function. Cost Function-4. performs 

well with predicted database along Galle Road. This demonstrates the potential of the 

novel Cost Function for higher accuracies over others. However. the positioning error is 

less than 330m in 80% of the estimates. which is not an acceptable result for urban 

sccnano. 
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Figure 5.13: Error CDF of Approach-A with Predicted Fingerprints- Galle Road 

I he error performance of positioning approach-B. which uses the novel filtering 

method described in Section 3.3. for a predicted database along Galle road is illustrated 

111 Figure 5.14 for different Cost Functions. It appears that. the approach-B with K=8 
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and Cost Function-4 gives better performance with a positioning error less than 245 m 

in 80% of the estimates. 
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Figure 5.14: Error CDF of Approach-B with Predicted Fingerprints- Galle Road 

Finally. Figure 5.15 demonstrates a comparison of the best results from positioning 

approach-A and approach-B with a predicted database along Galle road. This also 

compares those two approaches with the basic Cell_ID method for positioning. 
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Figure 5.15: Error comparison using predicted fingerprints- Galle Road 

It is clear that. the novel filtering method with K=8 and Cost Function-4 has the better 

performance when using a predicted database in fingerprinting method. The positioning 

error is less than 245m in 80% of the estimates while that is less than 400m in 90% of 

the time. 

Table 5.5 summarizes those results comparing with that of basic Cell_ID method. The 

performance of DCM with predicted database is far better than that of Cell_ID method 

along Galle road in urban environment. 
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Table 5.5: Results summary using predicted database 

With Predicted Fingerprints 
Cell ID Method 

Score 8-Cost Function-4 

80% (m) 245 370 

90% (m) 400 475 

Maximum (m) 616 1020 

Minimum (m) 31 / 27 

Average (m) 173 245 

STD (m) 138 185 

Median (m) 130 200 

I rom here onwards, the results of novel filtering approach with K =8 and Cost 

~-unction-4 is referred to as the results with predicted database along Galle road. 

lJ Duplication Road 

I he performance of predicted database along Duplication road in urban environment is 

discussed in this section. 

Error CDF of Approach-A with Predicted Fingerprints-(Aiong Duplication road) 
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Figure 5.16: Error CDF of Approach-A with Predicted Fingerprints- Duplication Road 

\c:cording to Figure 5.16, all the Cost Functions. except Cost Function- L have a 

C:\ltllparable performance in approach-A. Among them. Cost Function-4 can be selected 
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to be the best with all error statistics. mean. median and standard deviation. The 

positioning error with Cost Function-4 is less than 185m in 80% of the estimates. This 

is an acceptable result for urban scenario. 
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Figure 5.17: Error CDF of Approach-8 with Predicted Fingerprints- Duplication Road 

Furthermore. the performance of positioning approach-B with different K values does 

not show a clear distinction from each other. Among them. approach-B with K=20 and 

Cost Function-4 seems to be better. 

From the comparison in Figure 5.18. approach-A with Cost Function-4 can be selected 

to be the best with predicted fingerprints along the duplication road giving a positioning 

error of 185m in 80% of the estimates and that of 235m in 90% of the estimates. This 

result is far better than the results of Cell_ID method for positioning. 
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Figure 5.18: Error comparison using Predicted Fingerprints- Duplication Road 
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Table 5.6 gives a summary of the best results along Duplication road using a predicted 

database. 

Table 5.6: Results summary with predicted fingerprints- Duplication Road 

With Predicted Fingerprints 

A Cost Function-4 Cell ID Method 

80% (m) 185 225 

9oo;;, (m) 235 320 
-· 

Maximum (m) 343 463 

Minimum (m) 7 1 1 

Average (m) 114 158 

STD (m) 83 105 

Median (m) 90 139 

These results of approach-A with Cost Function-4 using a predicted database is referred 

to as results with predicted database along Duplication road in future sections. 

5.2.2 Suburban 

!his section discusses the results of approach-A and approach-B for positioning using a 

predicted database along the roads in suburban environment. 
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Figure 5.19: Error CDF of approach-A with predicted fingerprints- Suburban 
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It is clear from Figure 5.19 that the positioning error is Jess when using novel Cost 

Function. Cost Function-4. with approach- A in suburban. 

Furthermore, when using approach-B with predicted fingerprints in suburban 

emironment. the performance is better with K=8 and Cost Function-0. This is 

demonstrated in Figure 5.20. 
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Figure 5.20: Error CDF of approach-8 with predicted fingerprints- Suburban 

Figure 5.21 shows a comparison between approach-A and approach-B with predicted 

tingerprints in suburban. 
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Figure 5.21: Error comparison using predicted fingerprints- Suburban 

Apparently, approach-B with K=8 and Cost Function-0 has a better performance with 

an error less than 700m in 80% of the estimates while that is less than 800m in 90% of 

the estimates. 
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Table 5.7: Results summary with predicted fingerprints- Suburban 

With Predicted Fingerprints 

Score 8 Cost Function-0 Cell ID Method 

80% (m) 700 1400 

90% (m) 800 1675 

Maximum (m) 1293 2699 

Minimum (m) 24 "' 
31 

Average (m) 482 1037 

STD (m) 283 485 

Median (m) 436 1030 

Table 5. 7 summarizes the error statistics of best approach using predicted database in 

suburban in comparison with those of Cell_ID method for positioning. The results with 

a predicted database for fingerprinting are far better than that of Cell_ID method for 

positioning in suburban environment. 

The best results obtained with a predicted database using novel filtering method with 

K=8 and Cost Function-0 are referred to as the results of suburban environment with a 

predicted database in future sections. 

5.2.3 Rural 

Ihe outcomes of same approach-A and approach-B for positioning in rural environment 

with a predicted database are described in this section. 

The performance of approach -A is comparable for all Cost Functions. except Cost 

F unction-1. Among them, Cost Function-4 can be selected as the best since it performs 

slightly better in higher percentages as can be seen by the Figure 5.22. 
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Figure 5.22: Error CDF of approach-A with predicted fingerprints- Rural 

Figure 5.23 shows the positioning error CDF for approach-B with different K values 

usmg a predicted database. There also, the performance is comparable for K =8 and 

K = 10. 
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Figure 5.23: Error CDF ofapproach-B with predicted fingerprints- Rural 

I he comparison of two approaches shown in Figure 5.24 illustrates that, approach-A 

\\ :th Cost Function-4 has the highest performance with a positioning error less than 

-fll.:,m in 80% of the time while that is less than 600m in 90% of the time. This 

Pl·rt!.mnance is remarkable for a rural environment 
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Figure 5.24: Error comparison using predicted fingerprints- Rural 

The error statistics for the best approach using DCM with predicted database are shown 

in Table 5.8 compared with those ofCell_ID method for the same environment. 

Table 5.8: Results summary with predicted fingerprints- suburban 

With Predicted Fingerprints 

A Cost Function-4 Cell ID Method 

80% (m) 495 1125 

90% (m) 600 1200 

Maximum (m) 3842 4949 

Minimum (m) ..... 398 .) 

Average (m) 331 1003 

STD (m) 393 606 

Median (m) 274 907 

5.3 Performance of DCM with Measured Database 

This section figures out the performance of fingerprinting method using a measured 

database in all three environments consider in this research. 
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5.3.1 Urban 

A. Galle Road 

f 1gure 5.25 illustrates the positioning error CDF of approach-A using a measured 

Jatabase along Galle road. It can be seen that all the Cost Functions have a similar 

performance while Cost Function-4 giving the best. 

The performance of approach-B with different K values for measured data is shown in 

Figure 5.26. There, the performance of K=3 and K=5 are comparable with K=5 giving 

a slightly best values. _. 
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Figure 5.25: Error CDF of approach-A with measured fingerprints- Galle road 

Error CDF of Approach-B with Measured Fingerprints- Galle Road 
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Figure 5.26: Error CDF of approach-B with measured fingerprints- Galle road 
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The performance comparison of approach-A and approach-B demonstrates that both 

approaches have a similar performance along Galle Road for measured fingerprints. 

Among them. approach-B with K=5 and Cost Function-4 has a slightly higher 

performance giving a positioning error of 225m in 80% of the estimates and that of 

425m in 90% of the estimates. 
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Figure 5.27: Error comparison using measured fingerprints-- Galle Road 

A summary of the error statistics of the best approach using measured fingerprints 

along Galle road is given in Table 5.9 in comparison with the Cell_ID method for 

positioning. 

Table 5.9: Results summary with measured fingerprints- Galle road 

With Measured Fingerprints 

Score 5-Cost Function-4 Cell ID Method 

90% (m) 425 475 

80% (m) 225 370 

Maximum (m) 2070 1020 

Minimum (m) 13 27 

Average (m) 188 245 

STD (m) 341 185 

Median (m) 67 200 
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B. Duplication Road 

The error performance of positioning approach-A using measured fingerprints along 

Duplication road is shown in Figure 5.28. It appears that, Cost Function-3 has a better 

performance over other in approach-A giving a positioning error less than 118m in 80% 

of the estimates. 
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Figure 5.28: Error CDF of approach-A with measured fingerprints- Duplication road 

Positioning approach-B for different K values has a similar performance as shown m 

1-igure 5.29 and K=5 can be selected as the best among them. 
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Figure 5.30 illustrates a comparison of positioning error of two approaches together 

with that of Cell_ID method. It appears that approach-A with Cost Function-3 

performs well with a positioning error less than 118m in 80% of the estimates and 

135m in 90% of the estimates. These results using a measured database for DCM is far 

better than those of basic Cell 10 method. 
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Figure 5.30: Error comparison using measured fingerprints- Duplication road 

Performance comparison of DCM with measured database and Cell_ID method along 

Duplication road is shown in Table 5.1 0. 

Table 5.10: Results summary with measured fingerprints- Duplication road 

With Measured Fingerprints 

A Cost Function-3 Cell ID Method 
I 

80% (m) 118 225 

90% (m) 135 320 

Maximum (m) 256 463 

Minimum (m) 4 11 

Average (m) 72 158 

STD (m) 54 105 

Median (m) 56 139 

I 
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Approach-A with Cost Function-3. which gave the best results with a measured 

database along duplication road. is referred to as the results of DCM with measured 

database along Duplication road in future sections. 

5.3.2 Suburban 

According to Figure 5.3 L which shows the error CDF of approach-A using a measured 

database along roads in suburban environment. Cost Function- I and Cost Function-2 

has a comparable performance while Cost Function-4 has a ~creasing performance 

tt)\\ards higher percentages. Among them. Cost Function-2 can be selected to be the 

best. when considering other statistics as mean. median and standard deviation. 
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Approach-B with different K values also has comparable performances and among all. 

K = 3 with Cost Function-4 can be selected to be the best. 

hgure 5.33 demonstrates a comparison between the best methods in approach-A and 

approach-B. Clearly, approach-B with K=3 and Cost Function-4 gives a higher 

performance with a positioning error less than 525m in 80% of the estimates and 750m 

in 90% of the estimates. This is a poor performance for suburban environment. 
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Figure 5.33: Error comparison using measured fingerprints- Suburban 

!able 5.11 summarizes the error statistics of best methods in suburban in comparison 

\\ith that of Cell ID method. 

Table 5.11: Results summary with measured fingerprints- Suburban 

With Measured Fingerprints 

Score 3-Cost Function-4 Cell ID Method 

80% (m) 525 1400 

90%) (m) 750 1675 

Maximum (m) 1218 2699 

Minimum (m) 5 31 

I 

Average (m) 325 1037 

STD (m) 266 485 

I 

Median (m) 261 1030 

-
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5.3.3 Rural 

Error CDF of Approach-A with Measured Fingerprints- Rural 
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Figure 5.34: Error CDF of approach-A with measured fingerprints- Rural 

It can be seen from Figure 5.34 that the performance of DCM with approach-A using a 

measured databse is competitive with Cost Function-2 and Cost Function-4. 

Consequently, Cost Function-2 can be taken as the best as its performance increases 

rapidly at higher percentages while the performance of Cost Function-4 decreases. 

The performance demonstration in Figure 5.35 says that, approach-B with different K 

\alues has comparable performance for all K values and among them, K=2 with Cost 

Function-2 can be selected to be the best. 
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According to the comparison of approach-A and approach-B in Figure 5.36, approach­

B with K=2 and Cost Function-2 is best for rural environment with measured database. 
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Figure 5.36: Error comparison using measured fingerprints- Rural 

l able 5.12 summarizes the accuracy statistics of positioning in rural environment using 

a measured database in comparison with those of Cell_ID method. 

Table 5.12: Results summary with measure fingerprints- Rural 

With Measured Fingerprints 

Score 2-Cost Function-2 Cell ID Method 

80% (m) 540 1125 

90% (m) 700 1200 

Maximum (m) 3424 4949 

Minimum (m) 
,., 

398 j 

Average (m) 351 1003 

STD (m) 384 606 

Median (m) 260 907 
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5.-l Pl·rformance Comparison using Predicted and Measured Databases 

Thi, ~cction is devoted for the performance comparison of Database Correlation 

\let t1 'd using measured database and a predicted database in three different 

em· r· 'nments. urban, suburban and rural. Furthermore, the performance is compared 

\\ itl1 :hat of basic Cell_ID method for positioning. 

5.4.1 Lrban 
_. 

.-1 i "die Road 

f>o-,ttlnning error comparison. using measured and predicted fingerprints. along Galle 

road ts shown in Figure 5.37. It appears that, in lower percentages, the performance is 

henl·r \\ith measured fingerprints while that is better with predicted fingerprints in 

perL·l·ntages above 90%. Hence, it can be stated that the DCM with predicted 

1inL:,Tprints has a potential for better accuracies along Galle road. 
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Figure 5.37: Error comparison using measured and predicted databases- Galle road 

. \ , . 1111parison of error statistics, such as maximum, minimum, average and median. for 

111L'd'-Urcd and predicted databases is shown in Table 5.13. 
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Table 5.13: Performance comparison using measured and predicted fingerprints- Galle road 

- With Predicted 
I 

With Measured 

I 

Fingerprints Fingerprints Cell ID 
I 

I 
Score 5-Cost Function-4 Score 8-Cost Function-4 Method 

! 90% (m) 425 400 475 

I 

I 80% (m) 225 245 370 

Maximum (m) 2070 616 1020 

" 
Minimum (m) 13 31 27 

i 
I Average (m) 188 173 245 

I 
: STD (m) 341 138 185 
I 

I 

I 

Median (m) 67 130 200 

i 

n Duplication Road 

lhe performance is far better with a measured database along Duplication road as it 

appears in Figure 5.38. Further, the performance of Cell_ID method is inferior to both 

,lf other methods. 
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Figure 5.38: Error comparison using measured and predicted fingerprints- Duplication road 

I able 5.14 gives a comparison of positioning error statistics of DCM with measured 

.md predicted databases. 
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Table 5.14: Performance comparison using measured and predicted fingerprints- Duplication road 

With Measured With Predicted 

Fingerprints Fingerprints Cell ID 

A Cost Function-3 A Cost Function-4 Method 

80% (m) 118 185 225 

90% (m) 135 235 320 

Maximum (m) 256 343 463 

" 
Minimum (m) 4 7 11 

Average (m) 72 114 158 

STD (m) 54 83 105 

Median (m) 56 90 139 

5.4.2 Suburban 

Comparison shown in Figure 5.39 demonstrates that the performance of DCM with a 

measured database is superior to that with a predicted database in suburban. However. 

both perform comparatively at higher percentages. The performance of Cell_ID 

method is poorer than other two methods. 
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Table 5.15 gives a summary of comparison shown in Figure 5.39. 

Table 5.15: Performance comparison using measured and predicted fingerprints - suburban 

With Measured With Predicted 

Fingerprints Fingerprints Cell ID 

Score 3-Cost Function-4 Score 8 Cost Function-0 Method 

80'Yo (m) 525 700 1400 

90% (m) 750 800 1675 
" 

Maximum (m) 1218 1293 2699 

Minimum (m) 5 24 31 

I 

Average (m) 325 482 1037 

STD (m) 266 283 485 

Median (m) 261 436 1030 

5.4.3 Rural 

Rural environment exhibits a remarkable performance with a predicted database which 

is almost comparable to the performance with measured database. 
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\\ hen considering the 80th percentile and 90th percentile the performance of predicted 

database is superior to that with measured database. This is due to the lower deviation 

hL'l \\ een predictions and measurements in rural environment as pointed out in Section 

"' In addition, the performance of DCM with measured and predicted databases is far 

h~.'ller than that of Cell ID method. 

l ~tblc 5.16 summarizes the performance shown in Figure 5.39 comparing with Ceii_ID 

m\..'lhod. 

Table 5.16: Performance comparison using predicted and measured fingerprints - Rural 
,; 

-

With Measured With Predicted 

Fingerprints Fingerprints Cell ID 

Score 2-Cost Function-2 A Cost Function-4 Method 

80% (m) 540 495 1125 

90% (m) 700 600 1200 

'VIaximum (m) 3424 3842 4949 

Minimum (m) 3 " 398 .) 

Average (m) 351 331 1003 

-

STD (m) 384 393 606 

Median (m) 260 274 907 

::i.S Performance of different Calibration Techniques 

\ccording to the deviation analysis in Section 5. L there exist a considerable deviation 

t~~_'tween measured and predicted signal strengths in urban area while the deviation is 

moderate in sub urban and small in rural. Hence. calibration techniques were applied 

t· 1r minimizing the deviations such that the performance of database correlation method 

1, enhanced. 

1ccordingly. the performance after calibration with different techniques is analyzed in 

''Jts section in order to come up with a best technique for calibration. 
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5.5.1 Neural Network Techniques 

I he performance of database correlation method after calibrating the predictions using 

di t t'erent neural networks is analyzed for all three environments. 

r rhan Galle Road 

I J\ e different neural networks were tested by training with different algorithms. as 

lk"cribed in Section 3.4. with the data along Galle road. It appears that the neural 

net\\ ork trained to output the error in signal strength loss has a potential for better 

pLTformance in calibration (Figure 5.41 ). The training algoritkm used to train this 

J1l'ural network for cells is BFGS algorithm. 

Error CDF after Calibration using Neural Networks~ Galle Road 
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f igure 5.41: Positioning error CDF after calibration using different neural networks- Galle road 
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Figure 5.42: Performance comparison of neural network techniques -Galle road 
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l ::cure 5.42 shows a comparison of the best performance obtained after calibration 

th ttg neural networks. with the performance using measured and predicted databases. 

\j•parently. the neural network calibration has improved the performance along Galle 

r. 1.1cl. hut it is inferior to the performance using measured data at lower percentages. 

{ rhan - Duplication Road 

I 1c.:urc 5.43 shows a performance comparison of calibrations using neural network 

:1 ~' 1ned to output the error in signal strength loss with different training algorithms and 

11 ~ ming parameters. It seems that, LossNN1_ 2. which was trained by particle swarm 

''I'~ 1mization algorithm type-2, has given a better performance using positioning 

.wproach-A with Cost Function-4. 
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\,_:-_:,)rding to the comparison in Figure 5.44, the neural network calibration has 

tlllilrmed the performance ofDCM. however that is poorer than the performance with a 

tlli.<~Sured database along Duplication road. 

'>'uhurhan 

\1m~ng four different forms of LossNNL the second form has shown supenor m 

·i111urhan and the positioning approach-A with Cost Function-2 is the one which 

1 utc hes that calibration. The training algorithm used for training of LossNN 1 2 ts 

.1,trticle swarm optimization common type. ,/! 
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Figure 5.45: Positioning error CDF after calibration using different neural networks- Suburban 
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I 1 ~- _ : c 5.46 demonstrates that the performance after calibration is better than before 

v.ti 1 t•ration as well as it is superior to the performance using a measured database in 

ht~ ~~-r percentages. 

, ) ,· uru/ 

1 , , , , forms of LossNN 1 were tested for calibration in rural environment, in which the 

!l' -, form. LossNNl_L trained using particle swarm optimization common type 

,de:< rithm. has succeeded in calibration. The best performance in positioning error is 

,:--, 'm in 80% of the estimates. which is superior to the perfol)11ance of suburban 

,·t ronment as \veil. 
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Figure 5.47: Positioning error CDF after calibration using different neural networks- Rural 
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\ remarkable improvement can be seen in performance after calibration using neural 

IL't \\ orks in rural environment. It is a cut above for the performance using both 

llcasurcd and predicted data. 

'.5.2 Curve Fitting Techniques 

un e fitting is the second approach used in calibration of predicted data using a lesser 

1umber of measured data. Calibration process using curve fitting was carried out as 

!~scribed in Section 3.4 and the results of that work are demonstrated in this section. 

( rhan- Galle Road 

· 1gure 5.49 illustrates the error performance of positioning algorithms after calibrating 

11e predicted data using curve fitting methods along Galle road. Clearly, the 

. un etitting_ B. which uses Bi-square weights fitting method, has given better 

1crformance over curvefitting_A, which uses Least Absolute Residual fitting method. 
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Figure 5.49: Positioning error CDF after calibration using curve fitting methods- Galle road 

i he performance comparison shown in Figure 5.50 illustrates that positioning 

tpproach-B with K=5 and Cost Function-2 after calibration with curvefitting_B has a 

-lightly improved performance over using the predicted data along Galle road. 
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Performance comparison of Curve fitting Technique- Galle Road 
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Figure 5.50: Performance comparison of curve fitting techniques- Galle Road 

Crhan - Duplication Road 

\ccording to Figure 5.5 L curvefitting_ B performs well in calibration over 

~ un cfitting_ A , proving the robustness of bi-square weights fitting method. 
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Figure 5.51: Positioning error CDF after calibration using curve fitting methods- Duplication road 

['he comparison in Figure 5.52 demonstrates that the performance after calibration with 

-.:urve fitting is superior to that using predicted data while that is inferior to the 

pcrfcwmance using measured data. 
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Performance Comparison of Curve Fitting Methods- Duplication Road 
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Figure 5.52: Performance comparison of curve fitting methods- Duplication road 

C •. Suburban 

Figure 5.53 illustrates the performance of two curve fitting methods. in which. 

curvefitting_ B has an improved performance in calibration along roads in suburban. 
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Figure 5.53: Positioning error CDF after calibration using curve fitting methods- Suburban 

Hmvever. the performance of curvefitting_ B is inferior to the performances using both 

measured and predicted databases. Hence. curve fitting would not be a solution for 

calibration of predictions in suburban environment. 
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Performance Comparison of Curve Fitting Methods- suburban 
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Figure 5.54: Performance comparison of curve fitting methods- Suburban 

f) Rural 

\pparently, the performance of both curve fitting methods for calibration is alike m 

rural environment. Further, the performances of them are comparable to those using 

measured and predicted databases too. These are illustrated in Figure 5.55 and 5.56 

t\:spectively. 
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Figure 5.55: Positioning error CDF after calibration using curve fitting methods- Rural 
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Performance Comparison of Curve Fitting Methods- Rural 
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Figure 5.56: Performance comparison of curve tltting methods- Rural 

5.5.3 Comparison of Curve Fitting & Neural Networks 

!his section compares the performance of DCM after calibration using neural networks 

and curve fitting methods in order to come up with a best calibration technique which 

minimizes the positioning error in each environment. 

.!. Urhan- Galle Road 

The performance after calibration using curve fitting and neural networks is comparable 

along Galle road. However. the error statistics shown in Table 5.17 demonstrates that 

curve fitting method is better than the neural network techniques for calibration. 
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Figure 5.57: Performance comparison of curve tltting & neural networks for calibration­
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f knee. it can be concluded that, curve fitting method with bi-square weight fitting is 

("lest in calibration along Galle road and the positioning approach-B with K=5 and Cost 

! unction-2 is the best algorithm fits after calibration in this environment. Positioning 

error less than 200m in 80% of the estimates and less than 330m in 90% of the 

.:stimates is the highest performance obtained after calibration in bad urban scenario. 

Table 5.17: Results summary of curve fitting & neural networks for calibration-- Galle road 

Neural Networks for Curve Fitting for 

calibration calibration 
.1' 

90% (m) 320 330 

soo;;, (m) 235 200 

Maximum (m) 673 572 

Minimum (m) 31 24 

Average (m) 160 149 

STD (m) 128 123 

Median (m) 131 106 

H Crhan - Duplication Road 

I nlike along Galle road. neural network techniques work best in calibration along 

Duplication road as shown in Figure 5.58. 
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The positioning algorithm-A with Cost Function-4 has given best results after this 

calibration, with an error less than 125m in 80% of the estimates and less than 180m in 

90% of the estimates. This is an acceptable result in urban environment for most of the 

information providing services. 

Table 5.18: Results summary of curve fitting and neural networks for calibration -Duplication road 

Neural Networks for Curve Fitting for 

calibration calibration 

90% (m) 180 _. 190 

80% (m) 125 150 

Maximum (m) 433 546 

Minimum (m) 9 16 

Average (m) 89 107 

STD (m) 83 104 

Median (m) 65 78 

( ·. Suburban 

Performance Comparison of Curve fitting & Neural Networks for calibration ·Suburban 

110 00% 

100 00% 
{. 

90 00% 

80 00% Cur.€fit_B-

70 00% 
'" 

Score _1 0 _ costfunctlon-4 

"' /v' "' 60 00% c: , LossNN1_2_Cost Funct1on-2 

'" 50 00% ~ 

'" c.. 40 00% / 

30 00% 

20 00% 

10 00% 

0 00% 

0 100 200 300 400 500 600 700 800 900 1000 1250 1500 1750 2000 2250 2500 

Error Less Than (m) 

Figure 5.59: Perfonnance comparison of curve fitting & neural networks for calibration- Suburban 

As shown in Figure 5.59, neural network technique has the highest performance as a 

calibration technique in suburban environment. Neural network trained to output the 
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error in signal strength loss is the best for calibration in suburban environment while 

positioning approach-A with Cost Function-2 is better in location estimation. 

!able 5.19 summarizes the results after calibration. Positioning error less than 550m in 

RO% of the estimates is the better solution achieved in suburban environment. 

Table 5.19: Results summary of curve fitting and neural networks for calibration- Suburban 

Neural Networks for Curve Fitting for 

Calibration Calibration 

" 
80% (m) 550 925 

90% (m) 625 1250 

Maximum (m) 1363 3673 

Minimum (m) 4 12 

Average (m) 432 677 

STD (m) 287 670 

Median (m) 391 506 

---

J) Rural 

Similarly. neural network technique has the highest performance for calibration in rural 

environment as well. 

110.00% 

100.00% 

90 00% 

80.00% 

70 00% 

60 00% 

50 00% f 
0.. 40 00% 

30 00% 

20 00% 

10 00% 

0 00% 

Performance Comparison of Curve Fitting & Neural Networks for Calibration· Rural 

/ 
'' )' 

LossNN1 1 -A_ Cost 
Function-2 

" - Curwfit_B- A_Cost 
Functlon-4 

() '0 '0 () () () '0 () '0 '0 D ·" D ·" S\ ·" D 
"" rv0 

"'c::; 1><
0 

0° ro0 
'\

0 
'<>
0 

0° ""
0 

.... rvvy ""c::; "" vy '15'" cfi'vy rv"0 

Error Less Than(m) 

Figure 5.60: Performance comparison of curve fitting & neural networks for calibration- Rural 
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According to the error statistics shown in Table 5.20. positioning error is less than 

385m in 80% of the estimates while that is less than 500m in 90% of the estimates in 

rural environment. This is far better than the performance in suburban environment and 

is remarkable. 

Table 5.20: Results summary of curve fitting and neural networks for calibration- Rural 

Neural Networks Curve Fitting for 

for Calibration Calibration 

80% (m) 385 ,. 500 

90% (m) 500 650 

Maximum (m) 3502 3842 

Minimum (m) 4 
,.., 
.) 

Average (m) 318 349 

STD (m) 381 394 

Median (m) 234 393 

5.6 Overall Performance Analysis 

Finally. the overall analysis of the results discussed so far is presented for urban. 

suburban and rural environments. The results of urban environment is discussed under 

two categories. bad-urban and urban correspond to Galle road and Duplication road 

respectively. Furthermore, the results of each environment are compared with the 

performance of basic Cell_ID method for positioning. 

5.6.1 Urban 

A. Galle Road 

It appears that. the performance of database correlation method with a calibrated 

database is superior to that with a predicted database. while it is inferior to that with a 

measured database. StilL the performance after calibration is much better than the 

performance of Cell_ID method as can be seen in Figure 5.61. 
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Figure 5.61: Overall results analysis- Galle road 

Ultimately, the positioning error is less than 200m in 80% of the estimates whereas that 

is less than 330m in 90% of the time along Galle road. Accordingly. the accuracy has 

been improved by calibration in bad-urban environment up to a certain level. 

Table 5.21: Overall results summary- Galle road 

Measured Predicted Calibrated Cell ID Method 

90% (m) 425 400 330 475 

80% (m) 225 245 200 370 

Maximum (m) 2070 616 572 1020 

Minimum (m) 13 31 24 27 

Average (m) 188 173 149 245 

STD (m) 341 138 123 185 

Median (m) 67 130 106 200 
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15. Duplication Road 

[- igure 5.62 demonstrates the results analysis along Duplication road which was 

-;dected to be the normal urban environment. The performance of DCM has been 

1mproved clearly by calibration in this environment. StilL the performance after 

-:alibration is superior to that of Cell_ID method and the DCM with predicted database. 
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Figure 5.62: Overall results analysis- Duplication road 

!he best solution shows an error of 125m in 80% of the time and that of 180m in 90% 

of the time. The average error obtained in this work for normal urban environment is 

89m while the median error is 65m. 

Table 5.22: Overall results summary- Duplication road 

I Measured Predicted Calibrated Cell ID Method 

90% (m) 135 235 180 320 

80 1% (m) 118 185 125 225 

I 

I Maximum (m) 256 343 433 463 
I 

Minimum (m) 4 7 9 11 

I 

I Average (m) 72 114 89 158 

STD (m) 54 83 83 105 

! Median (m) 56 90 65 139 
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';.6.2 Suburban 

')1milarly. the performance has been enhanced by calibration in suburban environment. 

I he improvement in 801h percentile is 150m while that in 90th percentile is 125m. In 

.tddition. the performance curve after calibration takes over the curve using a measured 

,btabase near to 801h percentile. 
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Figure 5.63: Overall results analysis-· Suburban 
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['he improvement in performance after calibration is clearly demonstrated by Table 

:".23. However, the best results obtained for suburban environment is not that 

significant for most of the location based services. 

Table 5.23: Overall results summary- Suburban 

I 

I 
Measured Predicted Calibrated Cell ID Method 

80% (m) 525 700 550 1400 

I 
90°/., (m) 750 800 625 1675 

I Maximum (m) 1218 1293 1363 2699 

I 
I Minimum (m) 5 24 4 31 

I Average (m) 325 482 432 1037 

I 
I STD (m) 266 283 287 485 
I 

I 
' 
I Median (m) 261 436 391 1030 

I 
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Chapter 5- Results Analysis 

'i.6.3 Rural 

\ notable improvement in performance can be seen in rural environment after 

.. alibration. As it appears in Figure 5.64, the performance curve after calibration takes 

. )\ er that using both measured and predicted database in all percentages. 

"' Ol 

"' 'E 
"' (,) 

~ 
a. 

Overall Results Analysis- Rural 
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Error Less Than (m) 

Figure 5.64: Overall results analysis- Rural 

Measured 

--Predicted 

~Calibrated 

Ceii_ID Method 

[he positioning error is less than 385m in 80% of the time while that is less than 500m 

n 90% of the time in rural environment. This is significant for most of the location 

11ased services in rural environments. 

Table 5.24: Overall results summary- Rural 

Measured Predicted Calibrated Cell ID Method 

80% (m) 540 495 385 1125 

90°/t, (m) 700 600 500 1200 

Maximum (m) 3424 3842 3502 4949 

Minimum (m) 3 3 4 398 

Average (m) 351 331 318 1003 

STD (m) 384 393 381 606 

Median (m) 260 274 234 907 

---------
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Chapter 5- Results Analysis 

5.6.4 Overall Results 

This section is devoted for summarization of the performance of DCM in all three 

environments using measured. predicted and calibrated databases. A comprehensive 

results summary is shown in Table 5.25. 

In addition. a comparison of the results of this work with the results published in [23] 

and [3 7] is shown in Table 5.26. The work in [23] is entirely based on a predicted 

database using wave propagation models whereas that in [37] involves a calibrated 

predicted database. .> 

Table 5.26: Results comparison with other results in literature 

Urban Rural 

Results in Results in Results in Results in Results in Results in 

this work 1231 1371 this work 1231 1371 

67% Not 
error 95 83 175 270 607 

available 
(m) 

95% Not 
error 265 192 220 600 1021 

available 
(m) 

Further more. a comparison of the final outcomes of this research with the outcomes of 

author·s final year project (FYP) in similar title [29]. is given in Table 5.27. 

Apparently. the performance in both urban and rural environments has been improved 

drastically by the new positioning approaches together with the calibration techniques. 

However, the performance in suburban environment is inferior to that obtained in FYP 

stage. 

Furthermore. Figure 5.65 illustrates the estimated locations of one test trial together 

with the actual location in maps for four areas. along Galle road. along Duplication 

road. suburban and rural. 
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Chapter -6 

Conclusion 

i he major objectives of this work are to investigate the possibility of applying 

1rcdictions obtained from theoretical propagation models/tool to create the fingerprint 

Lnabase for Database Correlation Method in local context and to come up with an 

mproved technique for location estimation. which is feasible for the deployment in .. 
,trge dynamic networks. 

! his chapter summarizes the major contributions of this work while presenting a brief 

malysis of overall results, commercialization aspects and future directions for further 

cscarch. 

o.l Contributions 

\ t the wry beginning. a comprehensive review of existing literature on the subject 

\\as carried out to get familiar with the status of positioning including all the 

technologies that have already been invented. 

\fter that. a systematic methodology for creating a fingerprint database using network 

planning tool predictions has been introduced. In addition. an extensive measurement 

.:ampaign was carried out for taking measurements in three different environments. 

urban. suburban and rural. 

A detailed analysis of the deviation between network planning tool predictions and 

actual measurements shows that there exists a considerable deviation in urban 

em ironment. while the deviation in suburban is moderate and rural is even lower. 

Methods for minimizing the above deviation. defined as calibration. were proposed 

based on neural network techniques and curve fitting techniques. The cell-wise 

calibration process proposed in this thesis is advantageous for deploying the technique 

in large. dynamic networks. 

Furthermore. a novel fingerprint filtering method and a novel Cost Function (Cost 

I· unction-4) for fingerprint matching were proposed for location estimation and there 

\ alidity has been proved with a measured and a predicted database. 
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Chapter 6- Conclusion 

1 1 addition. the impact of RSS variation over different hours of the day on DCM 

, igorithm was analyzed and the results show a negligible impact. 

I 1nally. the performance of DCM algorithms using a measured database. a predicted 

,tatabase and a calibrated database was evaluated comprehensively. and the results 

, lww that the calibration process has been able to improve the performance 

.<lticeably. 

o.2 Trial Results 
"' 

. he results analysis in chapter 5 shows that the performance of DCM usmg a 

'redicted database is inferior to that using a measured database in all environments 

·'\cept the rural environment. But, the application of a calibration process has 

mproved the performance considerably. by bringing the CDF curve with a calibrated 

Jatabase closer to that with a measured database in urban and suburban environment. 

\ remarkable performance was observed in rural environment after calibration. The 

,1erformance after calibration was even higher than that using a measured database in 

·ural. 

\ccording to the results. the novel fingerprint filtering method is robust for bad urban 

,'11\ ironment. which was selected to be along Galle road. In addition. the proposed 

\ ·ost Function (Cost Function-4) for location estimation has shown better results with 

t predicted database in all three environments. Furthermore, the calibration method 

t1ascd on neural network techniques has been succeeded in urban. suburban and ruraL 

11ut for bad urban the best matching calibration methods was the one based on curve 

titting. 

"- onsequently. the best results obtained for bad urban environment show a positioning 

~rror less than 200m in 80% of the time while that is for urban environment is less 

than 125m (80%). A notable performance of positioning error less than 385m in 80% 

,Jf the estimates was obtained for rural environment after calibration. This is an 

dutstanding achievement of this research. The performance in suburban environment 

ts inferior to that in both urban and rural environments. and the best accuracy was less 

than 550m in 80% ofthe estimates . 

. \ccording to the accuracy requirements of different Location Based Services. as 

shown in Table 1.2. the accuracies achieved during this work for all three 
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Chapter 6- Conclusion 

environments are sufficient to provide basic information services such as nearest 

ATM machine, nearest hospitaL nearest petrol station, traffic information and location 

based advertising. The results in rural environment show a far better performance than 

the requirement shown in Table 1.2 for the same environment. 

6.3 Commercialization Aspects 

The proposed method for location estimation in cellular networks has been designed 

suitably for deploying in large dynamic networks. The rriethod involves a predicted 

database of fingerprints instead of a measured one. This eliminates the initial 

deployment cost encountered in carrying out measurement campaigns for the 

formation of measured database as well as the maintenance burden involved in 

upgrading the network by introducing new cells and making changes to the existing 

infrastructure. 

At the same time, the proposed calibration method, known as cell-wise calibration. is 

more applicable for the performance enhancement as well as for the ease of upgrading 

the database. If a new cell comes up, it's just a matter of calibrating the predictions of 

that particular cell and updating the database by inserting the calibrated predictions of 

new cell to existing fingerprints, without altering the existing ones. In addition, the 

proposed calibration process provides the flexibility of re-calibrating the fingerprints 

in cell-by-cell basis to make the database compatible with environmental variations. 

Furthermore, the accuracies demonstrated by the developed method in three 

environments comply with the accuracy requirements for basic information services as 

illustrated in [9]. In addition, the accuracy obtained in urban environment complies 

vvith the accuracy requirement of FCC recommendations for network based solutions 

[2. ~ J. 

Hence, the proposed solution is best suited for the deployment in large dynamic 

nctvvorks as a network based method for positioning to provide basic information 

services such as the nearest A TM, the petrol station etc. 
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Chapter 6- Conclusion 

hA Future Work 

I his research has demonstrated the possibility of applying network planning tool 

predictions for the formation of fingerprint database in local context. Since the 

Lalibration has shown to be a better way for performance enhancement. further 

research can be carried out towards improving the performance of calibration. 

!n addition, the analysis of RSS variation in Section 4.5 shows that the RSS variation 

-J r neighboring cells relative to that of the serving cell is some what similar throughout 

the day. This introduces a different direction for formation oJ fingerprints. in which 

the RSS of neighboring cells relative to serving cell are stored rather than absolute 

'alues; in order to reduce the effect comes with the variation of absolute values of 

RSS. 

h1rthermore. novel correlation algorithms can also be researched to be compatible 

\\ ith the novel database. 

Since a significant improvement in performance can be observed in rural environment. 

it is worthwhile to carryout further research towards enhancing this performance 

further. which will help to a massive enhancement in location based services in rural 

environment. 
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ABBRIVIATIONS 

2G Second Generation 

3G Third Generation 

A-GPS Assisted GPS 

AOA Angle of Arrival 

ARFCN Absolute Radio Frequency Channel Number 

ATM Automated Teller Machine 

BCCH Broadcast Control Channel " 
BS Base Station 

CDF Cumulative Distribution Function 

CEP Circular Error Probability 

CIR Channel Impulse Response 

DCM Database Correlation Method 

E-OTD Enhance Observed Time Difference 

FCC Federal Communication Commission 

FYP Final Year Project 

GDAL Geospatial Data Abstraction Library 

GPS Global Positioning System 

GSM Global System for Mobile 

LAR Least Absolute Residuals 

LBS Location Based Services 

LMS Least Mean Square 

LOS Line Of Sight 

MPM Multi-path Model 

MS Mobile Station 

NLOS Non Line of Sight 

NMR Network Measurement Report 

NN Neural Networks 

PSO Particle Swarm Optimization 

RMSE Root Mean Square Error 

RSS Received Signal Strength 

SEP Error Probability 

SMS Short Message Service 
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!\ Timing Advance 

:DOA Time Difference of Arrival 

!OA Time of Arrival 

HF Ultra High Frequency 

\'HF Very High Frequency 

\'PM Vertical Plane Model 

\\1M Waltisch-lkegami Model 

\\l.AN Wireless Local Area Network 

" 
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Appendix A 

PROPAGATION MODELS 

A.l Hata-Okumura Model 

The median Path Loss equation of Hata-Okumura model is given in 

L( dB) = 69.5 5 + 26.16log10 f; 1H= - 13.82log10 hHs - a(h111 ) + ( 44.9- 6.55log10 hHs) log10 d'"' - K 

Where h1 (m) -Base station antenna height 

h2 (m) - Mobile antenna height 

dkm (km)- Link distance 

fitH::: (MHz) - Center frequency 

" 

a(h2)- MS Antenna height-gain correction factor 

K - Correction factor for suburban and open areas. 

Following are the range of parameters applicable for this model. 

150 MHz :S f\m::: :S 1500 MHz 

1 km :S dkm :S 1 0 km 

30m :S hRs :::;200 m 

1 m :S h1rs :S 1 0 m 

(A.l) 

The parameters of Hata model in different area types are given in table A.l and table 

A.2 

Table A. I: Hata Model Parameters: a (h,) 

Type of area a(h2) 

Medium-small city (1.1 log 10 fMIIz- 0.7) h2- (1.56 log 10 fMHL 

- 0.8) 

Large city (fl\mz>300 MHz) 3.2 (log 10 11.75 h2) 
2-4.97 

I 

( f\1Hz~300 MHz) 8.29( log 101.54 h2) 
2
- 1.1 

I 
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Table 2-A.2: Hata Model Parameters: K 

Type of area K 

Open rural 4.78 (log 10 fMllz) 2 -18.33 log 10 fMllz + 40.94 

Suburban 2 [log 10 ( ff\1llz/28 )~ + 5.4 

Large city is defined as a city having building heights greater than 15 m. 

; 

A.2 Walfisch-lkegami Model (WIM) 

WIM is a semi-deterministic model for medium-to-large cells in built-up areas. It has 

been shown to be a good fit to measured propagation data for frequencies in the range 

of 800 to 2000MHz and path distances in the range of 0.02 to 5 km. 

WIM distinguished between LOS and NLOS propagation situations. 

;VLOS parameters 

Table A.3: NLOS parameters for WIM 

hh (m) = Base station antenna height over street level 4 ~50 m 

hm (m) = Mobile antenna height.. .................................. 1~3m 

hn (m) = Nominal height of building roofs 

:1hb (m) = hh-hs = Height of base station antenna above rooftops 

1'1hn (m) = hs-hm = Height of mobile antenna below rooftops 

b (m) = Building seperation ........................................ 20~50m etc. 

11' (m) = Width of street.. .............................................. (b/2) if no data 

(j) (degrees) = Angle of incident wave with respect to street 90u if no data 
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f3asc Antenna d 

hb 

hm 

Street Level Mobile 

" 
Figure A.l: WIM Parameters 

In the absence of data. building height in meters can be estimated by three times the 

number of floors. plus 3m if the roof is pitched instead of flat. The model works best 

for base antennas well above the roof height. 

For NLOS propagation paths the WIM gives the expression in equation (A.2) for the 

path loss in dB. 

Where 

Where 

where 

Lon 

Lrts + Lmds 2:: 0 L .\LOS = { Lrs + Lrts + Lmds, 

Lt· . s. 
Lrts + Lmd > 0 (A.2) 

Lt:s - Free space loss 

Lrts - Roof -to-street diffraction and scatter loss 

Lmds - Multi-screen diffraction loss 

Lon - Orientation loss 

L1~ = 32.45 + 20 log 10 dkm + 20 log 1o.fitH:: (A.3) 

Lrts = -16.9- 10 log 10 W + 10 log 10/itH::+ 20 log 10 ~ hm+ Lon (A.4) 

-10+0.354{[), 0~{[)~35° 

2.5 + 0.075(Q>-35°). 35° ~ ([> ~ 55° 

4.0-0.114({[>-55°), 55°~{[)~90° 

Lmds = Lbsh + ka + kd log 10 dkm + kr log 10/I!H::- 9 log 10 b (A.5) 

Lhsh - Shadowing gain (negative loss) 
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Lhsh - {-l'il.log 10 (l+ ~ h,), 

0. 

54. 

ka 54 + o.8 1 L1 h,l, 

54+ 0.8 1 L1 h,l( dk,,/0.5), 

kd ={18, 
18 + 15 ( I ,1 hhl I hB), 

c.. h, >() 

,1 h, :S 0 

,1 hb > 0 

L1 h, :S 0 and dkm 2: 0.5 

L1 h, :S 0 and dkm < 0.5 

,1 hb > 0 ,. 

,1 hb :S 0 

kl= -4 + 
( f\!Ho -1) 

0. 7 925 , medium city and suburban 

1.5 ( ·~~~ -I). metropolitan area 

A.3 Outdoor and Outdoor-to-Indoor Coverage in urban areas at 1.8 GHz 

In the Vertical Plane Model (VPM), if the antenna height hb is below 70m or the 

length of the propagation path (!) over buildings exceeds a selected field distance d,. 

the COST-23!-Wa(fzsch-IkeRami-Model is selected. If the height of the diffracting 

edges are not homogeneously distributed ad the MS is not located within a street 

canyon. the Kn(le-Edge Model is applied. 

In the case of non line-of-sight, the path loss is computed by equation (A.6). 

L/1'.\1 = (1- g)(L,\ + LH) + gL,. (A.6) 

Where: 

LK- Diffraction loss ofthe knife edge model 

L13 - Basic path loss using the dual-slope approach 

Lw- Path Loss due to the Walfisch Type Model 

R = Rh·g\, (Gain calculated based on the antenna heights) 
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lor the line-of-sight situation, the path loss is calculated based on the LOS part of the 

Walfisch-Ikegami Model. 

Determination of path loss using Multi Path Model (MPM) is given in [4:\]. Vector 

data format is used in considering the scattering areas. MPM considers paths due to 

:-.ingle scattering process and the path loss from the BS to scattering area and from 

scattering area to the MS is assumed to be equal to Free-Space Loss. 

AA CRC- Predict Propagation Model " 

This model defines the received signal strength at the mobile by equation (A. 7). 

/~11 = ~ 
1 

+ K
1 
+ K,_ log41) + K3 log(H,

11 
)+ K4 Diff'ractin+ K, log(Hett )log~)+ K6 (H"" 11 ) + K,1111 ,,, 

(A.7) 

Where 

PRx- The received Power in dBm 

PTx - Transmit Power (EIRP) in dBm 

K 1 - A constant off-set in dB 

K2- Multiplying Factor for Log( d) 

K3 - The Multiplying factor for log(Heff). Compensates for gain due to 

Antenna height 

K4 - Multiplying Factor for Diffraction Losses 

K5 - Okumura Hata type of Multiplying factor for Log(Heff)log(d) 

Heff- Effective height of base station Antenna from ground 

Diffration- Loss due to diffraction over an obstructed path 

Kclutter- Loss in dB for the clutter type 

Hmerr- Mobile Effective Antenna height 
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NEURAL NETWORKS 

B. I Neural Network Training Algorithms 

It is desirable to modify the connection weights of the network until the desired output 

is obtained, during the training phase. Since the network weights are initially random. 

it is likely that the initial output value will be very far from the desired output. Hence. 
"' 

an algorithm should be used which efficiently modifies the different connection 

weights to minimize the errors at the output. Such algorithms are called Neural 

Net\vork Training Algorithms. 

Numerous training algorithms have been presented in literature [ 4 7. -· ] with their 

pros and cons in relation with the application. One algorithm may work better in one 

application and may be worst in another. Therefore. it is needed to select the algorithm 

which performs well in the particular application. Several training functions studied 

by the author during this research are given below. 

Most training algorithms use the gradient of the performance function to determine the 

weight adjustment towards the minimum of the performance function. The gradient is 

determined using a technique called back-propagation. which involves performing 

computations backwards through the network. 

i. Back-propagation Algorithm (Gradient Descent) 

The simplest implementation of back-propagation learning, updates the network 

weights and biases in the direction in which the performance function decreases most 

rapidly (the negative of the gradient). An iteration of this algorithm can be written as: 

Xk+l =Xk -(lr·gk) (8.1) 

Where xk - vector of current weights and biases 

gk _current gradient 

lr - learning rate 

This is also called as Gradient Descent training .fimction. Here, the learning rate is 

used to determine the amount of changes to the weight and biases. The larger the 
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learning rate, the bigger the step. If the learning rate is made too large, the algorithm 

becomes unstable. If the learning rate is set too smalL the algorithm takes a long time 

to converge [ 4 7]. 

ii. Gradient Descent with Momentum 

This is a derivative of Gradient Descent Algorithm, which is used to provide a faster 

convergence in the training process by using a momentum. Momentum allows a 

network to respond not only to the local gradient but also to recent trends in the error 

surface. Acting like a low-pass filter. momentum allows the network to ignore small 
" 

features in the error surface. 

The major problem with gradient descent is that. the training process may get stuck in 

a shallow local minimum. This can be avoided using momentum. With momentum a 

net\vork can slide through such a minimum. 

Momentum can be added to back-propagation learning by making weight changes 

equal to the sum of a fraction of the last weight change and the new change suggested 

by the back-propagation rule. The magnitude of the effect that the last weight change 

is allowed to have is mediated by a momentum constant (me). which can be any 

number between 0 and 1. When the momentum constant is 0. a weight change is based 

solely on the gradient. When the momentum constant is 1. the new weight change is 

set to equal the last weight change and the gradient is simply ignored [ 4 7]. 

The new weight change dXis given by equation (B.2). 

dX = (me · dX pm ) + (lr · (1- me) · g k ) (8.2) 

where d.X:pre 1 - Previous change to the weight or bias 

Rk _Current gradient 

me - Momentum Costant 

lr - Learning Rate 

iii. Resilient Back-propagation 

Multilayer networks typically use sigmoid transfer functions in the hidden layers. 

These functions compress an infinite input range into a finite output range. Sigmoid 

functions are characterized by the fact that their slope must approach zero as the input 
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gets large. This causes a problem when using steepest descent to train a multilayer 

network with sigmoid functions. since the gradient can have a very small magnitude: 

and therefore. cause small changes in the weights and biases. even though the weights 

and biases are far from their optimal values. 

The purpose of the resilient back-propagation (Rprop) training algorithm is to 

eliminate these harmful effects of the magnitudes of the partial derivatives. 

In this algorithm. the magnitude of the derivative has no effect on the weight update 

and only the sign of the derivative is used to determine the direction of the weight 

update. The size of the weight change is determined by a s~arate update value. 

The update value for each weight and bias is increased by a factor delt_inc whenever 

the derivative of the performance function with respect to that weight has the same 

sign for two successive iterations. The update value is decreased by a factor delt_dec 

v.henever the derivative with respect that weight changes sign from the previous 

iteration. If the derivative is zero. then the update value remains the same. Whenever 

the weights are oscillating the weight change will be reduced. If the weight continues 

to change in the same direction for several iterations. then the magnitude of the weight 

change will be increased [ 4 7]. 

iv. BFGS Algorithm 

This is a Quasi-Newton algorithm of Numerical Optimization category. This is an 

alternative to conjugate gradient methods for fast optimization. 

The basic step of Newton's method is: 

xk+l = xk - A;!gk (B.3) 

Where A~;. is the Hessian matrix (second derivatives) of the performance index at the 

current values of the weights and biases. 

Newton· s method often converges faster than conjugate gradient methods. 

Unfortunately, it is complex and expensive to compute the Hessian matrix for feed-

forward neural networks. 

There is a class of algorithms that is based on Newton· s method, but which doesn't 

require calculation of second derivatives. These are called quasi-Newion (or secant) 

methods. They update an approximate Hessian matrix at each iteration of the 

algorithm. The update is computed as a function of the gradient. The quasi-Newton 
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method that has been most successful in published studies is the Broyden, Fletcher, 

Goldfarb. and Shanno (BFGS) update. 

The BFGS algorithm requires more computation in each iteration and more storage 

than the conjugate gradient methods. although it generally converges in fewer 

iterations. The approximate Hessian must be stored. and its dimension is n * n. where 

n is equal to the number of weights and biases in the network. For very large networks 

it may be better to use Rprop or one of the conjugate gradient algorithms [47]. 

v. Particle Swarm Optimization algorithm (PSO) " 

Particle Swarm Optimization is a population based optimization algorithm that is 

motivated from the simulation ofthe social behavior [54]. Ifthe optimization problem 

is regarded as a bird swarm looking for food in the sky, then one bird is a particle of 

PSO algorithm which conducts the search in the solution space. In this regard, the 

PSO algorithm consists of particles which are flown through the solution space 

towards the global optimum value. 

Every particle of the PSO algorithm is one of the solutions. and it adjusts its flying 

according to its own experience and others. The best position that every particle has 

experienced during flying is the best solution found by itself. And the best position 

that group has experienced is the best solution found by the swarm. The first is called 

personal best (pBest). the last is called global extreme (gBest). The fitness value 

decided by optimization is used to evaluate that the particle is good or bad. Every 

particle can adjust itself according to pBest and gBest. which makes the particle 

swarm move to good area. 

Particles can adjust its velocity and the position according to equation (B.4) and (B.5). 

v = w * v + c * rand()* (p - x ) + c * Rand()* (p - x ) id !d l 1(/ td 2 gd gd 

Where. 

x"l = x,c~ + v,d 

Cl & C2 

Rand() & rand() 

w 

Xi 

- Acceleration constants 

-two random functions in the range [0 l] 

- Inertia weight 

- Position of ith particle 

IX 
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Pi 
- pBest position of ith particle 

pg - gBest postion of the swarm 

There is a Toolbox for particle swarm optimization in Matlab [55. 56]. Three types of 

algorithms have been developed in that for Neural Network training. Those are called 

Common type. Type-1 and Type-2. 

The Common type algorithm uses the general equation given in equation (B.4) with 

user defined inputs for w. c1 and c2• Type-1 and Type-2 uses pre-defined values for 

those variables. Those are given in table B.l. "' 

Table B-1: Values for PSO variables 

Variable Type-1 Type-2 

w 0.6 0.729 

CI 1.7 1.494 

c2 1.7 1.494 
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