GREEN ICT PRACTICES FOR ACHIEVING COST EFFECTIVENESS OF ELECTRICITY USAGE OF ICT IN SRI LANKAN APPAREL INDUSTRY

Amarasinghe D M T

(159103L)

MASTER OF BUSINESS ADMINISTRATION

IN

INFORMATION TECHNOLOGY

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2017

GREEN ICT PRACTICES FOR ACHIEVING COST EFFECTIVENESS OF ELECTRICITY USAGE OF ICT IN SRI LANKAN APPAREL INDUSTRY

Amarasinghe D M T

(159103L)

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Business Administration in Information Technology

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2017

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where acknowledgement is made in the next.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as article or books).

D M T Amarasinghe

Date

The above candidate has carried out research for the Master's dissertation under my supervision.

Dr. Shantha Fernando (Supervisor)

Department of Computer Science and Engineering

University of Moratuwa.

Date

ABSTRACT

It is well known that the protection of the environment not only paves the way for a healthier life but also is required for the sustainability of our resources. Green concept has been identified as a perfect method to apply in all aspects of sustainability. Green Information Technology has occupied a leading role of Green concepts. Green ICT concept involves in reusing, reducing and recycling resources of ICT.

The objectives of this research are to identify Green ICT practices that significantly reduce electricity consumption for ICT in Apparel Industry operating in export processing sector in Sri Lanka, to describe the barriers for implementing those practices and to determine how the apparel industry can overcome those barriers. The findings of this study can be utilized for the benefit of the organizations in apparel industry and other types of organizations which are interested to implement Green ICT practices successfully. There are certain organizations in apparel industry which are already successful in implementing Green ICT practices while others are yet to implement.

Our results show that reducing datacenter power utility is the most significant practice for reducing electricity consumption of ICT while reducing electricity utilization for all equipment and printers' power utility are also important contributory factors. Further, lack of awareness of Green ICT among the staff has been identified as the main barrier for implementing those practices. However, conducting awareness program and doing cost benefit analysis can overcome the barriers for implementing Green ICT practices.

ACKNOWLEDGEMENT

There is a team who are happily enjoying the outcome of this research. My sincere thank should goes to this team since without their contribution, this study would not see the destination of tour.

First and foremost, I would like to extend my sincere thank to my supervisor Dr. Shantha Fernando, Department of Computer Science and Engineering, University of Moratuwa, for his tremendous guidance, advices, support, encouragement and especially the kindness and patient throughout the research. Those qualities were always encouraged me to complete this research.

I must thank Dr. Dilum Bandara, who is the coordinator for the MBA – IT 2015 batch and for being the facilitator for Research Skills subject.

Further I extend my gratitude to all academic and non-academic staff of Department of Computer Science & Engineering and entire staff of the University of Moratuwa for their support in numerous ways.

I sincerely thank all the ICT staff in Apparel Industry in Sri Lanka who responded to my interviews and questionnaire. All my mates in MBA – IT 2015 batch were awesome throughout the journey of this course. Finally my special thank should go to my wife Dr. Nadeeja Amarasinghe and my daughter Pudamsa for helping and being patient throughout this period and without your support, this research would not have been a success.

TABLE OF CONTENTS

ABSTRACT	. iv	
ACKNOWLEDGEMENT v		
TABLE OF CONTENTSvi		
LIST OF FIGURESix		
LIST OF TABLES	x	
LIST OF ABBREVIATIONS	. xi	
1 INTRODUCTION	1	
1.1 Current Status	2	
1.2 Preliminary survey	3	
1.2.1 Preliminary data collection	3	
1.2.2 Interview	4	
1.3 Problem Statement	4	
1.4 Research Questions	5	
1.5 Research Objectives	5	
1.6 Research Design	5	
1.6.1 Scope of the study	6	
1.7 Thesis outline	6	
2. LITERATURE REVIEW	8	
2.1 Importance of Green ICT	8	
2.2 How Organizations implement Green ICT practices	10	
2.3 Barriers for implementing Green ICT	12	
2.4 How Organizations have tried to overcome barriers	14	
2.5 Summary	19	
3. METHODOLOGY	21	
3.1 Preliminary study	22	
3.2 Research Method	23	
3.3 Data collection	23	

3	.4	Data Sample	23
3	.5	Data Analysis	23
4.	AN	ALYSIS OF THE DATA	25
4	.1	Validity and reliability test	26
4	.2	Responsibility level of the responded IT professionals	26
4	.3	Other responsible designations for ICT	27
4	.4	The organizations' operating hours per day	28
4	.5	The companies which have Datacenters in the premises	28
4	.6	Number of Servers in the Datacenter and separate power supply for DC	30
4	.7	Monthly average cost of electricity for Datacenters	31
4	.8	Measuring Electricity utilization	32
4	.9	Desktop computers usage	33
4	.10	Energy star compliance concern for ICT equipment	34
4	.11	Computers operating for 24 hours	35
4	.12	Laptop computers usage	36
4	.13	Green ICT practices implementation	37
4	.14	The Practices that have been identified as significant for reducing electrici	ity
c	onsu	mption for ICT	38
4	.15	The Practices that have been implemented	39
4	.16	Barriers faced while implementing Green ICT practices	40
4	.17	Techniques used to overcome barriers	42
4	.18	Electricity saving by implementing Green ICT	43
4	.19	Other Green ICT practices which have been implemented	44
4	.20	Barriers identified by Green ICT unimplemented organizations	45
4	.21	Techniques identified by Green ICT unimplemented organizations	46
	.22 1e. or	Relationship test between Green ICT unimplemented organizations agains	
5.		NCLUSION AND RECOMMENDATIONS	
	.1	Discussion	
5	.1		
	- · ·	ICT 48	
	5.1.	2 The Green ICT Practices that have been implemented	49

5	.1.3	Barriers for implementing Green ICT practices	49
5	.1.4	Techniques used to overcome barriers	50
5	.1.5	Monthly electricity saving by Green ICT	52
5	.1.6	Validity and Reliability of the results	52
5.2	Re	commendations	53
5.3	Lir	nitations of the Research	54
5.4	Fu	ture Research	55
5.5	Co	nclusion	55
6. R	REFER	ENCES	56
7. L	ist of .	Appendices	61
Gre	en IC	Γ Project – Questionnaire	61

LIST OF FIGURES

Figure 2.1:	RMIT Green ICT framework	12
Figure 2.2:	Illustration of how PUE would be calculated in a data center	18
Figure 3.1:	Research methodology	21
Figure 4.1:	Number of Desktop & Laptop usage	25
Figure 4.2:	Level of IT responsibility in the organization	27
Figure 4.3:	Other responsible ICT professionals	27
Figure 4.4:	Organizations' operating hours per day	28
Figure 4.5:	Datacenters in the premises	29
Figure 4.6:	The location of the datacenters if not in the premises	30
Figure 4.7:	Number of servers in DC	31
Figure 4.8:	Separate power supply for DC	31
Figure 4.9:	Monthly average cost of electricity for DC	32
Figure 4.10:	Measuring electricity utilization for DC	33
Figure 4.11	Usage of desktop computers	33
Figure 4.12:	Concern on Energy star compliance	34
Figure 4.13:	Energy star compliance computers	35
Figure 4.14:	Computers operate for 24 hours	36
Figure 4.15:	Laptop computers usage	37
Figure 4.16:	Significant practices for reducing electricity consumption for ICT	39
Figure 4.17:	Practices which have been implemented	40
Figure 4.18:	Barriers faced while implementing Green ICT practices	41
Figure 4.19:	Techniques used to overcome barriers	43
Figure 4.20:	Monthly electricity saving	44
Figure 4.21:	Other Green ICT practices implemented	45
Figure 4.22:	Barriers identified by Green ICT unimplemented organizations	46
Figure 4.23:	Techniques identified by Green ICT unimplemented organizations	47

LIST OF TABLES

Table 1.1: Monthly energy utilization for ICT	4
Table 2.1: Three level approach to PUE measurement	18
Table 3.1: Monthly energy utilization for ICT	22
Table 5.1: Validity and Reliability	52

LIST OF ABBREVIATIONS

Abbreviation Description

AEEMA	Australian Electrical and Electronic Manufacturers' Association
AELA	Australian Environmental Labeling Association
AVE	Average Variance Extracted
CBSL	Central Bank of Sri Lanka
CD	Compact Disc
CEPIS	Council of European Public Professional Informatics Societies
CIO	Chief Information Officer
CR	Composite Reliability
CSI	Corporate Sustainability Index
DC	Datacenter
GAP	Global Action Plan
GM	General Manager
IT	Information Technology
ICT	Information and Communication Technology
ICTA	Information and Communication Technology Agency
IMS	Intelligent Manufacturing Systems
MWh	Megawatt Hour
PC	Personal Computer
PUCSL	Public Utilities Commission of Sri Lanka
PUE	Power Usage Effectiveness

- RMIT Royal Melbourne Institute of Technology
- TRB Technology Business Research
- TWh Terawatt Hour
- UK United Kingdom
- USA United States of America