
Analytical Based Model to Measure Software Engineer's

Productivity

Gobikrishnan Thavarajah

(169138G)

Degree of Master of Business Administration in Information Technology

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

June 2018

Analytical Based Model to Measure Software Engineer's

Productivity

Gobikrishnan Thavarajah

(169138G)

The dissertation was submitted to the Department of Computer Science and

Engineering of the University of Moratuwa in partial fulfilment of the requirement for

the Degree of Master of Business Administration in Information Technology.

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

June 2018

i

DECLARATION

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to

reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic

or other medium. I retain the right to use this content in whole or part in future works

(such as articles or books).

………………………………. Date:………………………

Gobikrishnan Thavarajah

The above candidate has carried out research for the Master's thesis under my

supervision.

………………………………. Date ……………………………........

Dr. Amal Shehan Perera

ii

COPYRIGHT STATEMENT

I hereby grant the University of Moratuwa the right to archive and to make available my

thesis or dissertation in whole or part in the University Libraries in all forms of media,

subject to the provisions of the current copyright act of Sri Lanka. I retain all proprietary

rights, such as patent rights. I also retain the right to use in future works (such as articles

or books) all or part of this thesis or dissertation.

……………………………….

Gobikrishnan Thavarajah

iii

ABSTRACT

In the software engineering industry one of the most central business factors is

software developer’s productivity, the understanding of the term productivity in the

context of software development is not clearly defined, however, which cannot be

measured cannot be managed, hence, software engineering companies from startup to

enterprise are trying their level best to measure software developer’s productivity

level.

In order to solve this issue, everyone should have an understanding about software

engineer’s productivity, and also common as well as important factors which could act

as an indicator to software developer productivity should be identified and validated.

Considering the nature of the problem, a single factor cannot be considered as an

indicator of a developer’s productivity. Hence a multifactor model should be

identified, validated and fine-tuned to produce better accuracy.

As part of this research, a survey among software developers was conducted in order

to build a multifactor model which can be used to measure developer’s productivity;

the model was validated with real software development data and calibrate to producer

more accurate result.

iv

ACKNOWLEDGEMENT

It is with immense gratitude that I acknowledge the guidance of my Supervisor, Dr.

Shehan Perera. I am indebted to him for his advice, helpful comments and for the

suggestions offered to me throughout the research study.

I am especially grateful to Dr. Chandana Gamage and Ms. Jeeva Padmini for sparing

valuable time and providing continuous support for the identification of the research

problem, formulating the conceptual model, survey data analysis, and reviewing

research progress which contributed a lot to carry out the research successfully.

My sincere gratitude is also extended to all the academic and non-academic staff of

Department of Computer Science & Engineering, The University of Moratuwa and my

colleagues from the MBA in IT degree program for their support in numerous ways.

My thanks are also due to all my friends in 99X Technology, Tiqri Corporation Pvt

Ltd, Millennium IT, who helped me in the most important and difficult task of

gathering data during the limited period. I would also like to thank all those who

responded to my questionnaire.

Gobikrishnan Thavarajah

(169138G)

v

TABLE OF CONTENTS

DECLARATION .. I

COPYRIGHT STATEMENT .. II

ABSTRACT .. III

ACKNOWLEDGEMENT... IV

TABLE OF CONTENTS .. V

LIST OF FIGURES .. IX

LIST OF TABLES .. X

LIST OF ABBREVIATIONS .. XI

1. INTRODUCTION .. 1

1.1. Background ... 1

1.1.1. Motivation .. 3

1.1.2. Research Scope .. 3

1.2. Problem Statement .. 4

1.2.1. Research Objectives ... 5

1.2.2. Research significance ... 5

1.2.3. Outline .. 6

2. LITERATURE REVIEW ... 7

2.1 The Definition of Productivity ... 7

2.1.1. The productivity of a developer ... 9

2.2. Factors Indicating the Quality and Quantity ... 10

2.2.1. Lines of code .. 11

2.2.2. Code quality ... 11

2.2.3. Code complexity .. 12

2.2.4. Function points ... 13

2.2.5. Defects.. 13

2.2.6. Effort estimation... 14

2.3. Challenges in Measuring the Productivity .. 15

2.3.1. Performance measurements of value creation are missing 16

2.3.2. No productivity measurements on an r&d level are found 16

2.3.3. Performance measurement process is missing 17

2.4. Agile Software Development Methodology .. 17

vi

2.4.1. Scrum framework ... 18

2.4.2. Existing performance metric and KPIs .. 20

2.5. Summary ... 22

3. RESEARCH METHODOLOGY .. 23

3.1. Research Problem .. 23

3.1.1. Research method .. 24

3.1.2. Conceptual framework of the research .. 26

3.2. Development of Hypotheses.. 28

3.3. Operationalization ... 28

3.3.1. Population and sample selection .. 30

3.3.2. The process of data collection .. 32

3.4. Summary ... 33

4. DATA ANALYSIS ... 34

4.1. Introduction ... 34

4.2. Data Gathered from Software Development Activity 34

4.3. Descriptive Statistics for Development Activity Data 35

4.3.1. Development activity data by age .. 35

4.3.2. Sample of software engineers categorized by experience level 36

4.3.3. Sample date of software engineers categorized by gender 37

4.4. Extraction and transformation of development activity data 37

4.4.1. Code quantity ... 37

4.4.2. Code quality ... 38

4.4.3. Code complexity .. 40

4.4.4. Work effort ... 41

4.4.5. Productivity .. 41

4.5. Testing Hypothesis - Pearson’s Correlation Analysis 41

4.5.1. The correlation between code quality and productivity 42

4.5.2. The correlation between code quantity and productivity 43

4.5.3. The correlation between code complexity and productivity 43

4.5.4. The correlation between actual hours worked and productivity of a

software developer .. 44

4.5.5. The logarithm value of correlation between code quality and

productivity ... 45

vii

4.5.6. The logarithm value of correlation between code quantity and

productivity ... 46

4.5.7. The logarithm value of correlation between code complexity and

productivity ... 47

4.5.8. The logarithm value of correlation between actual hours worked and

productivity of a software developer .. 48

4.6. Linear Regression Analysis ... 49

4.7. Reliability of Survey Data ... 50

4.8. Descriptive Statistics for Survey Demographic Data 51

4.8.1. Sample of software engineers grouped by age 51

4.8.2. Sample of software engineers categorized by gender 52

4.8.3. Sample of software engineers categorized by experience level 53

4.9. Presentation of Variable Related Sections Information 53

4.9.1. Quality and software productivity .. 53

4.9.2. Quantity and software productivity .. 54

4.9.3. Code complexity for software productivity ... 55

4.9.4. Work effort for software productivity .. 56

4.10. Testing Hypothesis - Pearson’s Correlation Analysis 57

4.10.1. The correlation between code quality and productivity of a software

developer 58

4.10.2. The correlation between code quantity and productivity of a software

developer 59

4.10.3. The correlation between code complexity and productivity of a

software developer .. 60

4.10.4. The correlation between minimal work effort and productivity of a

software developer .. 61

4.11. Summary .. 61

5. RECOMMENDATIONS AND CONCLUSION .. 63

5.1. Introduction ... 63

5.1.1. Research conclusion one .. 63

5.1.2. Research conclusion two .. 63

5.1.3. Research conclusion three .. 64

5.1.4. Research conclusion four ... 64

5.2. Research Assumptions and Limitations .. 64

5.3. Recommendation ... 65

viii

5.4. Suggestion for Further Research ... 65

REFERENCES ... 67

APPENDIX A: TITLE ... 71

APPENDIX B: TITLE ... 76

ix

LIST OF FIGURES

Figure 1 Preliminary steps of Research ... 8

Figure 2 Research method .. 25

Figure 3 Overall IT workforce by job category ... 31

Figure 4 Process of data collection .. 33

Figure 5 – Software development team sample grouped by age 35

Figure 6 - A sample of software engineers categorised by experience level 36

Figure 7 - A Sample Date of Software Engineers Categorized by Gender 37

Figure 8 - The correlation between Code quality and productivity 42

Figure 9 - The correlation between Code quantity and productivity 43

Figure 10 - Correlation between code complexity and productivity.......................... 44

Figure 11 -Correlation between minimal work effort and productivity 44

Figure 12 -The correlation between Code quality and productivity 45

Figure 13 - The correlation between Code quantity and productivity 46

Figure 14 - Correlation between code complexity and productivity.......................... 47

Figure 15 - Correlation between minimal work effort and productivity 48

Figure 16 - Non-Liner Regression Analysis .. 49

Figure 17 Model Summary .. 50

Figure 18 Sample of software engineers grouped by age .. 51

Figure 19 Sample of software engineers categorized by gender 52

Figure 20 Sample of software engineers categorized by experience level 53

Figure 21 Quality and software productivity ... 54

Figure 22 Quantity and software productivity ... 55

Figure 23 Code complexity for software productivity ... 56

Figure 24 Work effort for software productivity ... 57

Figure 25 Survey Questions part 1 ... 71

Figure 26 Survey Questions part 2 .. 72

Figure 27 Survey Questions part 3 .. 73

Figure 28 Survey Questions part 4 .. 74

Figure 29 Survey Questions part 5 .. 75

x

LIST OF TABLES

Table 1 Factors in the conceptual framework .. 26

Table 2 Research hypotheses ... 28

Table 3 Operationalization ... 28

Table 4 Reliability of surveys data... 50

Table 5 The correlation between Code quality and productivity 58

Table 6 The correlation between Code quantity and productivity 59

Table 7 Correlation between code complexity and productivity 60

Table 8 Correlation between minimal work effort and productivity 61

Table 9 Correlation Values .. 63

xi

LIST OF ABBREVIATIONS

Abbreviation Description

ICT : Information and Communication Technology

LOC : Lines of Code

IT : Information Technology

SLOC : Source Lines of Code

CNN : Cyclometric Complexity Number

R&D : Research and development

MTBF : Mean Time Between Failures

CAC : Cronbach’s Alpha Coefficient

SQA : Software Quality Assurance

1

1. INTRODUCTION

1.1. Background

Productivity measurements related to the efficiency and effectiveness of an individual

or a team has received a lot of research attention and are generally considered to be an

important part of any high performing organisation. Although many organisations are

successful in developing, selling, and delivering products, we also observe that a

substantial part of the software product development projects fails. Failure can be in

delivering late, or with insufficient quality, or not delivering at all. To improve the

success rate of software product development projects, the connection between

success/failure and the performance of the organisation needs to be understood and

used for decisions. (Goparaju Purna Sudhakara, Ayesha Farooq .b and Sanghamitra

Patnaik .c, 2012)

In a volatile marketplace, the organisations should be prepared to handle and respond

to the changeable and complex customer requirements, personnel, cost, and schedule.

Constant schedule pressure, simultaneous work in many projects, chasing deadlines,

customers changing requirements, and demand for new skills and knowledge,

continuous code inspections, and sudden offshore assignments keep the developers

under continuous stress. In the meantime, they are expected to be proactive, flexible,

adaptable, share knowledge, and follow professional practices. Despite undergoing

stress and increasing expectation, developers having the inner aptitude and behavioural

traits can increase their performance. Researchers assert that developer’s performance

and project successes depend on their commitment, initiative, leadership, personality,

and intrinsic motivation. (Chris Peck, Dale W. Callahan, 2002)

Over the period, through the evolution of software development process Agile

methodologies been introduced. The flexibility provided by incorporating agile

software development approaches in software development processes. Operating agile

means should be able to rapidly and inherently create, respond and embrace change in

business as well as technical context, Agile approaches encourage the developers to

2

learn from experience and add to customer values by reducing cost, improving quality

and maintaining simplicity while deemphasising long-term planning in favour of short-

term adaptiveness.

Management layer is always keen to know and monitor the productivity from the micro

level in their organisations. The more productive the employees, more work can be

completed in a short period which brings more money and high customer success.

Maximizing the team’s productivity is one of the highest responsibility of a scrum

master or project manager. In fact, there is a common phrase, "you cannot plan if you

cannot measure”. Usually, software development organisations evaluate the

productivity of a software developer considering their contribution at different levels.

Few reasons why organisations tend to measure software developer’s productivity at

an organisational level? (Inga Podjavo, Solvita Berzisa,2017)

• Assess competitiveness with other organisations

• Track and evaluate progress over time

• Support performance evaluation of software executives

• Support bonus allocation among software executives

• Decide allocation of resources to onshore/offshore/outsourced

Few reasons why organisations tend to measure software developer’s productivity at

the team level? (Inga Podjavo, Solvita Berzisa,2017)

• Compare teams to identify performance gaps

• Provide support performance evaluations

• To decide the bonus allocations

Few reasons why organisation tend to measure software developer’s productivity at

the individual level? (Inga Podjavo, Solvita Berzisa,2017)

• Support allocation of resources across the teams

• Contribute to individual performance review process

• Support allocation of bonuses among individual contributors

3

1.1.1. Motivation

In the current computer-driven world, there are many software engineering companies

producing software products as well as providing services to other organisation to

support digitalisation. The competition among the software engineering organisation

is usually higher compared to other industries. To face this competition every

organisation around the world seeking all the possibilities to improve them self and

position themselves on the top of the completion.

To become the best of the best, it is necessary to measure the current strength and

weakness. The backbone of each software engineering organisation is the

organisation’s employees, especially the software engineering professionals who

produce the code which software will function on. Since it is necessary to measure and

keep track of the effectiveness and productivity of software engineers, based on the

different organisation’s culture and nature, evaluating and measuring the productivity

of software engineers differs. (Chris Peck, Dale W. Callahan, 2002)

The motivation of this research is to find out the factors which can be used as an

indicator to measure the productivity of a software developer, identify most important

factors and create a standard model which can be used in an agile scrum environment

to measure the software developer’s productivity.

1.1.2. Research Scope

The scope of this research is to find out

• What productivity means for software engineering professionals.

• Identify some of the effective matrices available today to measure productivity

in an agile environment.

• Propose a suitable model to measure software engineer’s productivity in an

agile environment.

4

1.2. Problem Statement

Today’s globalisation world many software engineering companies, especially

independent software vendors are more interested to have distributed development

teams since keep tracking of productivity becomes a vital part for the management. By

measuring the productivity, the management is trying to achieve the following

advantages. (Goparaju Purna Sudhakara, Ayesha Farooq .b and Sanghamitra Patnaik

.c, 2012)

• Reduce the software development cost.

• Diversified (international) experience and expertise.

• More efficient workflow.

• Hire the best talent.

When it comes to the distributed team, monitoring the team and managing the project,

needs the correct approach. The most crucial question which project sponsors have is;

how to measure software developer’s productivity? What are the common and

important factors which can be used as an indicator to measure the productivity of a

software developer?

The management team has to answer all of these questions to choose the right approach

to manage software developers and improve their performance to gain the maximum

output.

However, programming is not like other professions. We cannot measure it as we

would measure some manufacturing process, where we could we count the number of

correctly-made items rolling off the assembly line.

To measure the developers’ productivity, it is vital to identify the factors which can be

used to understand the quality and quantity of the software engineers’ delivery.

5

1.2.1. Research Objectives

• To explore what productivity means for software engineers working in scrum-

based agile methodology.

• To explore factors which can be considered as an indicator for the productivity

of software engineers.

• To explore the necessary actions which can be taken to improve the

productivity based on the measurement outputs.

1.2.2. Research significance

There are several well-known statements related to performance measurements in the

literature. “What gets measured gets done” and “You are what you measure” are two

classical examples of quotations related to the use of performance measurements. The

paramount importance of evaluating the software developer’s productivity is generally

acknowledged both in the literature and in practice.

The purpose of this research thesis is to fill the gap and remove the misconception

when it comes to measuring the productivity of a software developer in the scrum-

based agile environment by providing a common model which can be used to measure

the software engineer’s productivity. (H.C. Shiva Prasad Damodar Suar, 2010)

The main focus of the performance measurement system is to provide managers with

the needed information to be able to make conclusions about what actions to take to

improve the performance of the organisation.

By identifying the productivity level of software engineers, the organization tends to

achieve the following advantages.

• To identify the best suitable project development methodology which suits the

team to produce a better result.

• To find the most cost-effective tools and techniques.

• To optimum the developer’s productivity by removing the impediments.

• To compare the internal team with industry competitors.

6

1.2.3. Outline

Chapter one contains an introduction to the research study. It initially explores the

background of productivity within the scope of software developers; this chapter also

contains details of motivation, scope, objective and significance of this research.

Chapter two focuses on the existing literature regarding the approaches of measuring

the productivity of software engineers, Qualitative and quantitative factors which can

be used to study about software developer productivity. In this chapter details about

Agile methodology and scrum framework also been discussed as a software

development methodology.

Chapter three details about methodology using which the research has been done. This

chapter also details about data which was gathered through the survey and interviews,

details about population and sample selection, information about the process which

was followed to collect the data.

Chapter four discusses insight created using the data gathered from the survey and

code analysis. Furthermore, this chapter details the relationship between factors which

can be used to measure the software developer’s productivity.

Finally, Chapter five provides details about the consolation which was taken as the

result of this research thesis. Furthermore, this chapter elaborates on the

recommendation about how organisations can improve the software developer’s

productivity.

7

2. LITERATURE REVIEW

This chapter contains the literature survey which was used to identify the variables

which could be an indicator of a software developer’s productivity to develop the

conceptual model at a later stage.

The Chapter is dedicated to capturing the literature available about productivity in the

context of software developer, factors indicating the quality and quantity, challenges

in measuring the productivity as well as the agile software development environment.

2.1 The Definition of Productivity

First, it is important to introduce the main concept of productivity. The origins of the

term “productivity” traced back to the eighteen century, and was introduced by

Quesnay; however, until the middle of the past century, the definitions were blurred.

Traditionally, productivity has been defined as the ratio of outputs produced per unit

of input. This definition fits well in manufacturing paradigms hence it is based on

quantities of standardised and identified units of measurement.

Productivity should be identified as a component of performance, not a synonym for

it (Sink, Tuttle, & DeVries, 1984). This claim is argued from the concept of

comparative productivity performance and not as a result unit; namely productivity

measures should be used for comparison over time, while performance represents a

timely measure. In this direction, the value of productivity measurement lies in the

capability to manage and monitor, to reach a more efficient resources use. Also, as

Nachum (1999) argued, the main objective of measuring productivity is to perform

productivity enhancement. Moreover, productivity improvements should be reflected

in ROI improvements. Therefore, productivity is inversely proportional to the costs

incurred

As Anselmo and Ledgard (2003) pointed following Lord Kelvin’s affirmation1,

software productivity enhancement cannot be expected without productivity

measurement. An appropriate productivity measure provides a tool as for how to

8

achieve productivity (Nachum, 1999). Furthermore, following Gummesson (1992)

recommendation, before measuring productivity in the service industry, identification

of what is to be captured is required. Thus, considering these contributions, to create a

software engineering productivity measurement, distinguishment of factors, inputs and

outputs susceptible to be measured is required.

The roadmap for this process may follow the flowchart of Figure 1. In this roadmap,

there are some steps which could be carried out with quantitative research

methodologies such as conducting the survey.

Figure 1 Preliminary steps of Research

9

2.1.1. The productivity of a developer

"You cannot plan if you cannot measure." This is a concept still taught in business

school; it is a mantra of many managers, It assumes everything a developer does is

objectively and consistently measurable. As discussed above, there is no reliable,

objective metric to measure developers’ productivity.

It is obvious that some people are better than others. Better developers can be

identified, but currently, there is no better number or rational ranking system available

at the moment, objectively based on output, that consistently and reliably ranks

developers.

The software development industry to a large extent is an open system where

stakeholders, clients and the end users influence inputs and outputs, which produces a

contribution to both the internal and external efficiency, and therefore the productivity

measurement for software engineers needs a unique approach. (Machek Ondrej, Hnilica

Jiri, and Hejda, 2012)

Inputs and outputs measurement should consider both quantity and quality aspects. This

concept is reflected in the premises that Grönroos and Ojasalo established: “The better the

perceived quality that is produced using a given amount of inputs (service provider’s

inputs and customers’ inputs), the better the external efficiency is, resulting in improved

service productivity” and “The more efficiently the service organization uses its resources

as input into the processes and the better the organization can educate and guide customers

to give process-supporting inputs to produce a given amount of output, the better the

internal”

Most research in software engineering defines productivity along similar lines; here

are some examples:

• number of modification requests and added lines of code per year,

• number of tasks per month,

• number of function points per month,

• number of source lines of code per developer hour,

10

• number of lines of code per person-month of coding effort,

• amount of tasks completed per reported hour of effort for each technology,

• the ratio of produced logical code lines and spent effort,

• average number of logical source statements output per month over the product

development cycle,

• total equivalent lines of code per person-month,

• resolution time defined as the time, it took to resolve a particular modification

request, and

• a number of editing events to a number of selection and navigation events

needed to find where to edit code.

As Cambridge dictionary defines, productivity is the rate at which a company or

country makes goods; this phrase can be translated as the following equation:

Productivity =
Output

Input

Considering the above question as a base, and when considering the output of the

survey, the following equation can be proposed as a common and basic model which

can indicate a developer’s productivity. Following factors are considered as an output:

• Quantity

• Quality

• Complexity

Actual hours worked is considered as a factor for the input category. (Chris Peck, Dale

W. Callahan, 2002)

2.2. Factors Indicating the Quality and Quantity

Measuring the software engineering productivity is a complex task. However, there

are some straight forwards factors which can be used as an indicator to understand the

work produced by the software developers.

11

As a result of many studies, it was proven that individually considering these factors

to measure the productivity will not give a good and accurate result.

2.2.1. Lines of code

Source lines of code, also known as lines of code, which is a software metric used to

calculate the size of a computer program by considering the number of source lines in

the software source code. Source line of code is typically used to predict the amount

of work effort which requires to develop software, as well as to estimate programming

productivity or maintainability once the software is produced.

Logical SLOC is trying to measure the number of executable "statements", but their

specific definitions are tied to very specific programming languages (one simple

logical SLOC measure for C-like programming languages is the number of statement-

terminating semicolons). It is easier to create tools that can measure physical SLOC,

and physical SLOC definitions are easier to explain. However, physical SLOC

measures are sensitive to logically irrelevant formatting and style conventions, while

logical SLOC is less sensitive to formatting and style conventions. However, SLOC

measures are often stated without giving their definition, and logical SLOC can often

be significantly different from physical SLOC. (Peck, C., & Callahan, D.) 2002.

2.2.2. Code quality

A vital part of a good product is an efficient code; an inefficient code can make the

end users frustrated, which will make a significant impact to the business, because of

this risk there are many approaches to make sure the code which software engineers

produce are efficient and follow the best practices. Some methods which are used to

analyse the code quality are:

• Pear code Review

• Automated code quality measurement tools such as SonarQube

While doing the code quality check various aspect are verified to make sure the code

is in good quality, some of the example such aspect includes

• Unit test coverage

12

• Duplication lines

• Architecture & Design

• Complexity

• Maintainability rating

• Reliability rating

• Potential Bugs

• Security rating

2.2.3. Code complexity

Code complexity is a very important and vital factor which is the most commonly used

unit of measurement calculated through cyclomatic complexity and commonly

referred to known as cyclomatic complexity number or CNN. Traditionally,

cyclomatic complexity is known as “McCabe”, since it was originally invented by the

mastermind Tom McCabe in the year of 1976. The CNN is the number of all possible

count of execution paths of a function written as the code. A function with only a single

path which means a function without if statement or loops has one as a CNN count.

CNN count increases if there many if statements, looping construction or any other

decision points, deciding which code should be executed.

Mostly, its recommended to have CNN count below ten. Most of the tools available

today in the market to measure the CNN count will not produce an accurate result if

the CNN count goes above twenty. Functions which contains CNN value more than

20 are hard to test, and at the same time it is hard to maintain the code as well. Usually,

functions which are hard to test and maintain tend to have more bugs.

An organization which test the code quality using tools checks every check-in for CNN

values if the value is higher than the system will not allow the developer to merge the

code into the repository (Peck, C., & Callahan, D.) 2002.

13

2.2.4. Function points

A function point is a measurement which expresses the business functionality of the

system. Function points are considered to calculate a functional size measurement of

software.

Function point analyze was introduce in the year of 1979 in “Measuring Application

Development Productivity” by Allan Albrecht. While requirement elicitation, business

needs are converted into functional requirements, then each functional requirement is

categorized into five types. (Chris Peck, Dale W. Callahan, 2002)

1. Outputs

2. Inquiries

3. Input

4. Internal files

5. External interface

After identifying the category, then the task will be assessed for its complexity, and it

will be assigned a number of function points. Each of this functional requirement maps

to business needs, for an example of data input, data query etc.

2.2.5. Defects

After development is completed, the code will be a move to quality assurance. Quality

assurance team will be testing the functionality using various testing methods. During

the testing bugs which are identified will be listed with the appropriate severity types.

(Scrum Alliance, 2016)

Bugs can be categorized into four severity levels:

• Critical: This defect indicates complete shut-down of the process, nothing can

proceed further

• Major: It is a highly severe defect in the system. moreover, certain parts of the

system remain functional

• Medium: It causes some undesirable behaviour, but the system is still

functional

14

• Low: It will not cause any major break-down of the system

Bugs can be categorized into three priority type:

• Low: The Defect is an irritant, but repair can be done once the more serious

Defect has been completed.

• Medium: defect can be fixed during the normal course of the development.

• High: The defect must be resolved urgently as it affects the system.

2.2.6. Effort estimation

Estimating the effort required and calculating the cost for that are a vital part of project

management. The team cannot perform the planning if they do not do these

estimations. As per today’s dynamic software development trend, software developers

tend to use external components such as already developed and freely available

framework, modules, rather than building all the components from scratch. This trend

has led to a new kind of estimation methods for development effort. Typically,

estimation moved away from volume or size-based estimation to factional and

component-based estimation.

In the industry, there are many estimation methods currently available, such as expert

estimation: through this method, the estimation is made using export judgmental

process. Formal estimation model: this method is based on the mechanical process

such as using a formula which is created using the historical data. Combination-based

estimation: this method is based on the combination of both expert estimation as well

as formal estimation model. (Scrum Alliance, 2016)

However, estimating the work required for a project or even single task is not an easy

job to do, there are challenges in providing an accurate estimation, some of the

challenges in providing estimations are:

• Having grey areas in the requirement: most of the agile team faces this

challenge. In agile customers are not clear about their requirements, this

becomes the most significant issue since the requirement of having lots of

uncertainty.

15

• Epic level requirements: having a large requirement in one story often create

difficulty when it comes to estimation. To produce more accurate estimation,

it is vital to create subtask and divide the requirement in a meaningful way.

• Optimistic estimation: commonly the estimations are provided considering the

ideal and optimistic situations, however in real life, there will be frequent

requirement changes, unavailability of some resources, version mismatch can

happen, because of this, the estimation provided can become wrong.

• Estimated by a single person: estimation should be provided considering all the

members in the team since there will be different levels of experience people

working in a project, an estimation provided be a senior person can be very

small when the task comes to junior level person for development. In agile,

poker card is a solution to overcome this kind of situations.

• Not considering buffer and dependencies: sometime developer provides tough

estimation to prove them self, or because of the pressure they received from

the project manager or product owner. Normally having a 15 to 20% buffer is

a smart way to avoid a situation such as having an internal or external

dependency, requirement changes etc.

Some solutions to mitigate the issues

• Ask clarification questions to clarify more requirements:

• Create many stories as much as possible from an epic:

• Estimation as a team:

• Having a proper buffer:

2.3. Challenges in Measuring the Productivity

According to Scacchi (1995), development team productivity is to be calculated to

reduce the software development costs, to improve the quality of deliverables that been

produced, and to increase the rate at which software is to be developed. According to

him, the software productivity is to be measured to recognize the top performers to

reward and identify the bottom performers to provide the training.

16

The major productivity improvements can result in a substantial amount of savings in

development costs (Scacchi, 1995). Measuring productivity helps in identifying

underutilized resources (Nwelih & Amadin, 2008). The study of software productivity

is important because higher productivity leads to lower costs (Bouchaib &

Charboneau, 2005).

Bouchaib and Charboneau (2005) have studied the comparison of productivity of in-

house developed projects and productivity of outsourced projects to a third party with

a sample of 1085 projects implemented worldwide.Krishnan, Kriebel, Kekre and

Mukhopadhyay (1999) have studied the software life cycle and productivity, which

includes both maintenance and development costs and drivers of software team

productivity and quality such as personnel capability, product size, usage of tools and

software process factors. According to Banker and Kauffman (1991), software

products can be found from the following formula.

2.3.1. Performance measurements of value creation are missing

No measurements of value created or value to be created were identified. When asked

about value creation a typical response was that it is difficult to demonstrate the value

of a new product that is the incremental development and replacement of a product

already in the market. Even if the interviewees indicate that a value perspective is

needed and valuable, it is very difficult to define the metrics to capture the value of the

development effort. Still, all of the five case companies have a structured process to

develop a clear business case to initiate a development project. This information is

used to gather internal funding for the project. The same regards to post-project

evaluations; these evaluations focus on evaluating project execution proficiency

regarding time, cost and quality, and not in terms of value created. (Michael A.

Cusumano, Chris F. Kemerer,1990)

2.3.2. No productivity measurements on an r&d level are found

The concept of productivity as input divided by output is not measured on an R&D

level. Instead, the focus of the performance measurement system is mainly on the cost

and time perspective, i.e. the denominator not on the numerator of productivity. The

17

resource consumption part is prioritized while the gain or the result of the effort is

missing in the measurements. A typical response, when asked about productivity, is

that it would be interesting to have, to balance the perspective of cost, time, and quality,

with the value created. (Michael A. Cusumano, Chris F. Kemerer,1990)

2.3.3. Performance measurement process is missing

Many companies do not have a defined process for managing software developer’s

performance measurements. This case company was using a process based on the

ISO/IEC standard, a software engineering and software measurement process.

Organizations use an ad hoc process, very much dependent on the individual manager.

As some managers expressed it, we have improved our measurements a lot during the

last five years; we measure things like mean time between failures (MTBF), delays,

time adherence, project cost, product quality, etc. They are fairly good measurements,

but the difficult thing is what to do with the information. (Michael A. Cusumano, Chris

F. Kemerer,1990)

2.4. Agile Software Development Methodology

Agile software development methodology has taken the software development

industry by storm and rapidly cemented its place as “the gold standard.” Agile

methodologies are started based on four core principles as mentioned in the Agile

Manifesto.

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

These development methodologies are very much rooted in adaptive planning, early

delivery as well as continuous improvement, all about respond to change quickly and

easily. As a result, it is no wonder that 88% of responses in VersionOne’s 2017 was

mentioned that “ability to adapt to change” as the number one benefit of embracing

Agile. (Agilemethodology.org, 2016)

18

2.4.1. Scrum framework

Scrum is an iterative and incremental based software development method driven by

the Product Backlog, which contains all active product requirements. The Product

Backlog is managed by Product Owner, who is the only person authorized to change

priorities of the requirements. (Scrum Alliance, 2016)

Scrum structures product development in cycles of work called Sprints, iterations of

work which are typically 1- 4 weeks in length. Each Sprint is initiated with a Sprint

planning meeting, where the Sprint Backlog is formed. Sprint Backlog is considered

as a subset of Product Backlog requirements that defines the function which needs to

be developed in the current Sprint. Every requirement can be further broken into tasks.

Functionality is developed by the software development team, i.e. a group of software

developers that are together responsible for the success of each iteration, and of the

project as a whole. Teams are self-managing, self-organizing, and cross-functional,

and they are responsible for figuring out how to turn Product Backlog into an

increment of functionality within the Sprint. (Scrum Alliance, 2016)

The ScrumMaster is responsible for conducting the Scrum process in the company so

that it fits within an organization's culture and still delivers the expected benefits, and

for ensuring that everyone follows Scrum rules and practices. The ScrumMaster

facilitates a 15-minute daily Scrum meeting where every team member answers the

three questions: "What they have done on this project since the last daily Scrum

meeting?", "What they will do before the next meeting?" and "Do they have any

obstacles?" The ScrumMaster is also responsible for resolving impediments

encountered during the Sprint to assure the running smooth process flow.

At the end of each sprint, a sprint review meeting is held at which the team presents

results produced in the sprint to the Product Owner. After the Sprint review and before

the next Sprint planning meeting, the ScrumMaster also holds a Sprint retrospective

meeting to ensure continuous improvement. (Scrum Alliance, 2016)

19

2.4.1.1. Sprint

A Sprint is a period when a team is focusing on meeting the Sprint commitments.

During this period the team is supposed to have full authority over its own actions and

no external influence by Product Owner, or anybody else is allowed. (Scrum Alliance,

2016)

Each Sprint has two elements, the Sprint goal and the Sprint Backlog. The Sprint goal

is a relatively high-level description of a high priority item of the Product Backlog. It

is an objective that will be met through the implementation of the Product Backlog.

After establishing the overall Sprint goal, the team works with the Product Owner to

determine the work required to reach the goal. Generally, a Sprint lasts for thirty

calendar days. (Agilemethodology.org, 2016)

2.4.1.2. Story point estimation

A story point is a unit to measure the effort of a User Story or a feature. A point is

assigned to each an every user story. These Points are relative in nature, i.e. a story

that is assigned with a two-point value is considered to take twice the effort compared

to the story that is assigned with a single point value. A Story Point is assigned based

on the effort needed, the complexity and the inherent risk in developing a feature.

To estimate a user story, it requires some previous experience performing estimating,

to have access to old historical data and have the freedom to use a trial based estimation

approach if required.

To aid estimation, an expert may be asked about how long it will take to achieve the

desired goal. The expert may rely on his/her intuition or previous experience. The

benefit of using expert opinion is that it is not time-consuming. However, this method

is not beneficial in an agile environment as here estimates are assigned to user-valued

functionality which requires domain knowledge of different members working in the

team. This makes it difficult to find suitable subject matter experts in different

disciplines to evaluate the work effort. Alternatively, the user stories can be estimated

20

against already estimated user stories. There is no need to compare all the stories

against a single baseline or common reference. (Scrum Alliance, 2016)

A Story can be disaggregated into smaller, easier to estimate blocks. However, there

is no safety check when disaggregating a user story. The likelihood of missing out a

story increases with disaggregation. Summing up estimates of a number of minor tasks

may further cause different issues. (Agilemethodology.org, 2016)

2.4.2. Existing performance metric and KPIs

This chapter contains a description of some of the available Matrices or KPIs which

can be used to track or measure the productivity of the software development process

in the agile environment.

2.4.2.1. Burn down charts

A burndown chart shows the team’s progress toward the completion of all of the story

points they agreed to complete in a sprint. This chart starts with the total points the

team has to deliver on the sprint, and tracks on a day-to-day basis for how many of

those points have been completed and are ready for the sprint demo. (Scrum Alliance,

2016)

The burndown charts are usually maintained by the scrum master and may be updated

on a daily basis, perhaps after the daily stand up, or on a continuous basis if it is

generated automatically by the tools which were used to maintain in the scrum board.

The primary audience for a burndown chart is the team itself, although there may be

story points on a burndown chart that could be relevant to people outside the scrum

team.

A typical burndown chart starts with a straight diagonal line from the top left to the

bottom right, showing an “ideal” burn down rates of the sprint. In general, the points

are not to match with ideal points, but rather to keep in mind that how much of the

sprint is left at any point of time, and how much effort that the team expects to be able

to put toward the development of the product on any day of the sprint.

21

Lines or columns on the burndown chart may be used to represent the number of points

(effort) remaining in the sprint. Starts with the number of points the team has

committed to the planning. As work is completed, these columns should become lower

until they touch the point zero.

Few teams have the approach to track the daily work completed, either in story points

format or individual tasks toward sprint goal. This can be completed with a line or

stacked columns, tracking these daily metrics towards the burndown chart so they can

create more visibility of the performance.

There are few legitimate reasons for a column to be higher on one day than it was on

the previous day. If a bug is identified before the end of the sprint, and a story that was

marked as complete or ready to perform demo needs to be revisited on again, columns

may increase in size over the days. New stories pushed into the sprint after the sprint

has started may also become a reason as one day’s column to be higher than the

previous day’s value. A pattern of rising columns on a burndown chart may indicate

that the scope of the work is exceeding the originally agreed sprint backlog, which is

an anti-pattern in the scrum. (Scrum Alliance, 2016)

2.4.2.2. Velocity graph

Velocity is how a scrum team measures the amount of work they should be able to

complete in a typical sprint. Velocity is measured historically, from one sprint to the

other. By tracking the story points the team should be able to finish according to their

definition of done, they can build up to a level of reliable and predictable sense of how

much of effort it will take the team to finish the new user stories based on their relative

points. (Scrum Alliance, 2016)

Keeping track of velocity is the duty of the teams' scrum master. At the end of the

sprint demo, the scrum master should be able to calculate the story points which were

estimated for the user stories that were considered as completed during that sprint. This

number should be added as an input data point on the velocity chart for that sprint.

22

Velocity chart tends to start out poping around from high numbers to low numbers, as

the team learns how much effort they completed in one sprint, and how to estimate

user stories. When a team works together, they became better to estimate stories

relative to each other. This skill leads to a better sense of how many stories, and how

many points, the team can accomplish in a single sprint.

Over time passes, if the composition of the team stays as consistent, the velocity chart

that started as very erratic will start to find itself averaging toward a consistent value.

Not like many charts in a business environment, the point of the velocity chart is not

to see a continuous increment, but indicate the values is intersected around a consistent

horizontal line. That line represents the amount of work effort the team can realistically

and sustainably accomplish in a single sprint. (Scrum Alliance, 2016)

2.5. Summary

This chapter reviewed the current literature available in related to productivity

measurement of the software developer in an agile-based scrum environment. The

definition of the term productivity in the context of software developer was discussed,

challenges in measuring the productivity were identified, current KPIs and indicators

about the productivity in the agile base scrum environment were discussed. In the next

chapter research methodology, measures and measurements are described.

23

3. RESEARCH METHODOLOGY

This Chapter presents the research methodology; it discusses the mix method approach

to identify the factor which can be used to measure the software developer’s

productivity. Moreover, the process used to conduct the survey and the interviews.

Section 3.1 elaborates the research problem and the purpose of this research, section

3.1.1 contains details about the research method used for this research, section 3.1.2

contains information about the data collected through the initial survey as well as the

interview conducted among the information technology professionals, section 3.1.3

details about the population and sample sections of the data which was collected for

the purpose of this research, section 3.1.4 explains about the process which was

followed to collect the data from the targeted group.

3.1. Research Problem

In the modern world, the computer has a vital part to play; modern technology keeps

improving human life day by day to a better position. Software development is getting

complex and at the same time organization are expecting faster deliveries from

developers.

From small medium level organization to large enterprise level organization are

looking for the best talents, developers who can produce best outputs within a short

period.

Based on the organization culture, different organizations have different methods to

evaluate the software engineer’s productivity. However, the main objective of this

research thesis is to find out a most suitable and common model to measure the

productivity of the software engineers in the scrum-based agile environment.

Purpose of this research is to get a better understanding regarding the following areas

• Initially, the purpose of this research is to understand the team Productivity

when it comes to software development.

24

• Identify the factors which can be considered to measure the productivity of

software developers.

• Identify the opportunities for improvement based on the measurement output.

3.1.1. Research method

Figure 2 elaborates the research mythology used for this research thesis. The research

is conducted in quantitative methodology which involves in collecting, analyzing and

integrating data through quantitative approaches such as a survey and data analysis.

The research problem was identified based on the literature review as well as analysis

of local agile projects.

Initially, based on the literature review most important factor which can indicate

productivity was identified, in order to identify the relationship among the factors,

software development activity related data was gathered from different team and data

was analysed.

Finally, a survey questionnaire was created based on the literature review as well as

data gathered from development activity to validate the understanding. Software

engineering professionals were involved to provide the answers for the questionnaires.

Later the result of the survey was analysed and evaluated.

25

Figure 2 Research method

26

3.1.2. Conceptual framework of the research

The literature survey provides the basis and the foundation to develop a Conceptual

Framework to explore the research problem in a more useful manner. Chapter III was

dedicated to present the problem in an abstract form suggesting the hypothetical

relationship between the main problem and the related variables.

The Operationalization is useful to empirically express the problem in the form of

variables, indicators and measurements. The Conceptual Framework is thus the

working model based on which the testable hypothesis would be generated.

The Table below represents the most contributing factors with their references which

can be referred to measure the productivity of the software developer.

Table 1 represents the most common indicating factor in their references which can be

used to understand the productivity of a software developer.

Table 1 Factors in the conceptual framework

Factors Reference

Code Quality G. P. Sudhakar (2012)

Dana T. Edberg & Brent J. Bowman

(1996)

Code Complexity Amel Ben Hadj Salem Mhamdia (2013)

Simonetta Balsamo (2014)

Code Quantity H.C. Shiva Prasad Damodar Suar (2010)

Adam Trendowicz (2009)

Work Effort Chris Peck (2002)

Dale W. Callahan (2002)

Software developer productivity Adrián Hernández-López (2015)

Inga Podjavo (2017)

27

The section below is dedicated to providing definitions of the key concepts depicted

in the Conceptual Framework.

Code Quality: A software developer can take many different approaches to develop

a single feature. Some developers may try to finish the work using a shortcut and others

sometimes unnecessary frameworks or workaround to complete the work. However,

there should be a predefined or benchmarked coding standard which all the team

members should follow to increase the maintainability and security and performance

of the software product. Therefore, the purpose of this variable is to represent

employee willingness to accept code quality as a software productivity measurement

factor.

Code Complexity: A smart or experienced developers can produce complex code and

complete a task without creating many classes and lengthy code. Therefore, the

purpose of this variable is to represent employee willingness to accept code complexity

as a software productivity measurement factor.

Code Quantity: An average software engineer can produce remarkably more LOC

per unit time than is possible, Therefore, the purpose of this variable is to represent

employee willingness to accept code quantity as a software productivity measurement

factor.

Work Effort: In information technology industry completing the project on time is

very essential, produce a high-quality product within a given time work is a challenge

where most of the software engineering professional facing. Therefore, the purpose of

this variable is to represent employee willingness to accept Work effort measurement

as a software productivity measurement factor.

Software Developer Productivity: The purpose of this variable to identify the

productivity score of a software engineer for a sprint.

28

3.2. Development of Hypotheses

Table 2 represents the list of Hypotheses which were developed based on the Literature

review in Chapter 2 and the Conceptual model depicted in Section 4 of Chapter 5.

Table 2 Research hypotheses

Alternative Hypothesis Null Hypothesis

H1a: There is a positive correlation

between code quality and the

productivity of a software developers

H1o: There is no positive correlation

between code quality and the

productivity of a software developers

H2a: There is a positive correlation

between code complexity and the

productivity of a software developers

H2o: There is no positive correlation

between code complexity and the

productivity of a software developers

H3a: There is a positive correlation

between code Quantity and the

productivity of software developers.

H3o: There is no positive correlation

between code Quantity and the

productivity of a software developers

H4a: There is a positive correlation

between minimum work effort and

productivity of software developers.

H4o: There is no positive correlation

between minimum work effort and

productivity of software developers.

3.3. Operationalization

The key variables, indicators and measures used in the research study are indicated on

the operationalisation Table 3.

Table 3 Operationalization

Variable Indicator Measurement (5

Points Likert

Scale)

KPI

Code Quality The low number of

bugs

Questionnaire Q1

29

Adherence to pre-

defined code

standards

Questionnaire Q2

High score in code

maintainability

Questionnaire Q3

Successful code

reviews

Questionnaire Q4

Code Complexity Lines of code in a

class

Questionnaire Q6

Average lines of

code in a function

Questionnaire Q7

Code Quantity High cyclomatic

complexity within

the threshold

Questionnaire Q9

High module

design complexity

within the

threshold

Questionnaire Q10

Work effort Total hours

required to

complete the task

Questionnaire Q12

Story points Questionnaire Q13

 Impact of Code

quality

Questionnaire Q5

Impact of code

Complexity

Questionnaire Q8

Impact of code

Quantity

Questionnaire Q11

Impact of work

effort

Questionnaire Q14

30

Definition of 5 points Likert scale

• Strongly Agree - 5

• Agree - 4

• Neutral - 3

• Disagree - 2

• Strongly Disagree – 1

3.3.1. Population and sample selection

Five different team’s two sprint development activity related data is gathered for the

purpose to form a model to measure the productivity.

According to the National ICT Workforce Survey 2010, there are about 11013

employees working as software development professionals in software engineering

organizations.

Figure 3 depicts the categorization and the count of each categorization of the ICT

workforce in Sri Lanka.

31

Figure 3 Overall IT workforce by job category

Following numbers were obtained from the “National ICT Workforce Survey 2010”

by SLASSCOM.

𝑋 = 𝑍 (
𝐶

100
)2 𝑟 (100 − 𝑟)

𝑛 =
𝑁 𝑥

((𝑁 − 1)𝐸2 + 𝑥)

𝐸 = √
(𝑁 − 𝑛)𝑥

𝑛(𝑁 − 1)

• The margin of error is 5%

• The confidence level is 70%

• Population Size is 11013

• n Sample Size

• N is the population size

• r is the fraction of responses

32

• Z(c/100) is considered as the critical value for the confidence level c

Hence, the recommended sample size for this research survey is: 107 software

developers

3.3.2. The process of data collection

A quantitative approach is followed in conducting the research. Initially Development

activity related data was gathered from the project management tool such as JIRA and

Confluence.

Secondly, a survey is conducted to gather information from the targeted group of

software developers. The survey was conducted using Google form to gather

information, as a survey results total of 109 responses were recorded.

The main variables which will be used to test the Hypothesis are:

• Code Quality

• Code Complexity

• Code Quantity

• Work Effort

Minitab and SPSS are used to discover a correlation between variables. Microsoft

Excel is used to present data collected under demographic and general information

section of the questionnaires where the data is divided into categories such as age,

gender, experience etc. Furthermore, a different type of charts such as pie charts and

bar charts are used to represent the gathered data.

Figure 4 depicts the Process of data collection followed during this research thesis.

33

Figure 4 Process of data collection

3.4. Summary

This chapter presented the research methodology used in the study. Four most essential

indicators were found out through literature review, and those are tested in this study.

Baseline values defined by the company and industry standards are used to measure

the IT service quality. As a second phase, six different software development data such

as sprint data, bugs reported, story point estimation, actual hours taken to complete the

stories, bugs etc. were collected for the purpose to validate and fine-tune the model.

34

4. DATA ANALYSIS

4.1. Introduction

This chapter presents an analysis of the data gathered for the research study through

the project management tools such as JIRA, software source code version controlling

tool such as Git and as well as through a questionnaire. The analysis of the data consists

validation of research data and instrument. Furthermore, the analysis of data also

consists description of data transformation to derive further data which needed to

formulate the analytic model to measure the productivity of the software engineers.

4.2. Data Gathered from Software Development Activity

Software project related data was gathered from JIRA which is a software project

management, Git which is a version control tools for software source code.

Five different software development projects from a well-established software

engineering company is selected for the data gathering; there is around 140 employees

are working in 26 different scrum-based agile projects in the particular organisation.

From the project management tool following information was exported for the analysis

purposes.

1. Bugs recorded

a. Type of bug

b. The effort took to fix the bug

c. Associated story

2. Stories allocated for the sprint

a. Sprint that the story is allocated to

b. Effort estimated for the story

c. Effort spent on the story

d. Bugs associated with the story

e. Source code commit id in Git

Following information exported from the source code version controlling tool

1. Code Committed

a. Lines of code

35

b. Code complexity

c. Class and function created

4.3. Descriptive Statistics for Development Activity Data

A descriptive analysis was done for the demographic data to analyze the data gathered

regarding their age category, gender and experience of the software engineers.

4.3.1. Development activity data by age

Below figure depicts the breakdown by age group of the software engineers in the

sample data gathered from the software development teams.

Figure 5 – Software development team sample grouped by age

Approximately 41. % of the software engineers were between the age of 25 and 34,

23% of the software engineers were between the age of 21 and 24, both groups of 35

to 44 and 45 to 54 have each has 18% value in the sample data.

36

4.3.2. Sample of software engineers categorized by experience level

Below figure depicts the breakdown by the experience level of the software engineers

in the sample data gathered from the software development teams.

Figure 6 - A sample of software engineers categorised by experience level

Approximately 47% of software engineers were having 3 -5 years of experience, 35 %

have 5 - 8 years of experience, 12 % is having 1 -2 years of experience and Nearly 6

% of the software engineers are having more than eight years of working experience.

37

4.3.3. Sample date of software engineers categorized by gender

Below figure depicts the breakdown by gender who responded to the survey

questionnaire regarding their age category.

Figure 7 - A Sample Date of Software Engineers Categorized by Gender

Approximately 65% of the software engineers were Males whereas 35% of the

software engineers were Females.

4.4. Extraction and transformation of development activity data

Development activity related data was gathered from a project management tools such

as JIRA and confluences then transformed to required data format using a suitable

formula.

Below mentioned formulas are used to extract code quality, code complexity, code

quantity and actual work effort related data from development activity information.

4.4.1. Code quantity

Quantity is a most straightforward and fundamental factor which falls under the

developer’s output category Since the metric for code quantity is simply a count of

lines of code in a function, class or program.

38

By analyzing the code commits of different developers, there are scenarios where the

developer has committed which are not the same programming language as a result of

their development work. Since counting the line of code as a measurement of quantity

will not give the best result as an output. This is due to the difference in high and low-

level languages. While a function in a high-level language may take five lines, the

same function in a lower level language may take fifteen lines to complete.

As a solution language consideration must be factored in when using a line of code

measure across multiple languages. It is possible to adjust for language differences by

dividing a Lines of Code by a language adjuster such as average lines of code per

function. For our purposes, the quantity factor of the programmer productivity

equation will be calculated at the class level and adjusted for language. Lines of code

will be calculated excluding comments and blank lines. This exclusion will render a

standard for comparison regardless of commenting and spacing style. The lines of code

metric will then be divided by the average lines per function for the code language.

The result of this equation is a language-weighted quantity measure roughly equal to

the number of functions (Peck, C., & Callahan, D.) 2008.

Quantity =
LOC

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑖𝑛𝑒𝑠 𝑝𝑒𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑑𝑒

4.4.2. Code quality

Producing quality software is part of the responsibility of a software programmer. By

nature of this responsibility, there is an implied prorating of output based upon quality.

A poor-quality piece of code should not be considered the same as a high-quality piece

of similar size. This is reflected in the quality component of the Productivity equation.

The following are metrics that will contribute to our calculation of software quality.

Defects per lines of code is a standard way to measure software quality. This metric

describes the rate at which errors inside code have been uncovered. Again, language

plays an important part in interpreting Defects per Lines of Code. A high-level

language is more likely to have a higher defect per line rate than a lower level language.

39

 This is simply due to the number of lines that it takes to perform a function. It is

possible to adjust for language differences by dividing Defects per Lines of Code by a

language adjuster such as average lines of code per function. The result is a defect rate,

adjusted for language. Finding and dealing with defects is dependent upon the

methodology of each organization. The proposed study is dependent upon several

methodology practices that are present at the test site.

 The two most important in reference to quality measures are code reviews and the

Software Quality Assurance process. Before a program is submitted to SQA, the code

is submitted for a peer review. Defects uncovered during this peer review are reported,

tracked in a central repository and fixed before submission to the SQA department.

Below formula can be used to identify the code quality of a story (Peck, C., &

Callahan, D.) 2002.

𝐶𝑜𝑑𝑒 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 1 − ((
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑏𝑢𝑔𝑠

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐿𝑖𝑛𝑒𝑠 𝑜𝑓 𝐶𝑜𝑑𝑒
) ∗ 𝐹𝑎𝑡𝑎𝑙 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑊𝑒𝑖𝑔ℎ𝑡)

+ ((
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑎𝑗𝑜𝑟 𝑏𝑢𝑔𝑠

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐿𝑖𝑛𝑒𝑠 𝑜𝑓 𝐶𝑜𝑑𝑒
) ∗ 𝑀𝑎𝑗𝑜𝑟 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑊𝑒𝑖𝑔ℎ𝑡)

+ ((
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑛𝑜𝑟 𝑏𝑢𝑔𝑠

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐿𝑖𝑛𝑒𝑠 𝑜𝑓 𝐶𝑜𝑑𝑒
) ∗ 𝑀𝑖𝑛𝑜𝑟 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑊𝑒𝑖𝑔ℎ𝑡)

Following weight was considered as severity weight for following types of bugs

1. Critical bug weight = 5

2. Major bugs weight = 3

3. Minor bugs weight = 2

40

4.4.3. Code complexity

The proper calculation of complexity factor will be determined through multiple

comparisons of individual programmer's work within a close time frame. By keeping

the time frame close, a programmer's productivity should not change drastically.

Therefore, different completed and tested classes made by a programmer can be

compared to determine if the complexity factor is reflecting and predicting

productivity.

McCabe metrics were used to measure the structural complexity of the code. The

measurement is based on the complexity of the logical path within a function, to reduce

the complexity following two McCabe metrics were used to determine the complexity

of each function within the code.

Cyclomatic Complexity – Number of linearly independent paths within a function.

Automated tools can be used to calculate the complexity considering above matrices;

the matrices will then be used to formulate a complexity factor for the code produced.

The matrices above will deliver the complexity at a functional level since it is vital to

creating the average complexity at the class level.

Following a weighted average complexity, the metric could be used to calculate the

weight average class metric complexity (Peck, C., & Callahan, D.) 2002.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑎𝑠𝑠 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑀𝑒𝑡𝑟𝑖𝑐

=
(𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛1 𝑀𝑒𝑡𝑟𝑖𝑐) ∗ (𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛1 𝐿𝑂𝐶)

𝑇𝑜𝑡𝑎𝑙 𝐿𝑂𝐶

+
(𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛2 𝑀𝑒𝑡𝑟𝑖𝑐) ∗ (𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛2 𝐿𝑂𝐶)

𝑇𝑜𝑡𝑎𝑙 𝐿𝑂𝐶
+ ⋯

+
(𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑁 𝑀𝑒𝑡𝑟𝑖𝑐) ∗ (𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑁 𝐿𝑂𝐶)

𝑇𝑜𝑡𝑎𝑙 𝐿𝑂𝐶

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑀𝑒𝑡𝑟𝑖𝑐 =

(𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑎𝑠𝑠 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑀𝑒𝑡𝑟𝑖𝑐 1 +
 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑎𝑠𝑠 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑀𝑒𝑡𝑟𝑖𝑐 2 +

… + 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑎𝑠𝑠 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑀𝑒𝑡𝑟𝑖𝑐 𝑁)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑡𝑜𝑟𝑦

41

Through this equation, average complexity is calculated, the entire complexity of the

class should be able to determine.

4.4.4. Work effort

Actual hours taken to complete all the stories allocated for the particular developer is

considered as the work effort for the sprint.

4.4.5. Productivity

The productivity of a software developer who is working in the scrum-based agile

environment is calculated by using following formula.

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑊𝑜𝑟𝑘 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟

′𝑠 𝑎𝑐𝑡𝑢𝑎𝑙 𝑊𝑜𝑟𝑘 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

While performing capacity planning following formula is used to calculate the work

allocation for a developer.

𝑊𝑜𝑟𝑘 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑝𝑟𝑖𝑛𝑡 ∗ 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦

∗ 𝐹𝑜𝑐𝑢𝑠 𝑓𝑎𝑐𝑡𝑜𝑟

Focus Factor is a developer’s ability to remained focused on the sprint goal without

getting distracted. As a norm following values are considered as focus factor

1. An average developer who is already working in the team more than average

= 0.8

2. Newly joined developer = 0.4

4.5. Testing Hypothesis - Pearson’s Correlation Analysis

According to the obtained development activity data, correlation analysis is used to

identify the strength of the relationship between the variables. The following output is

obtained using SPSS. To determine the connection between variables, correlation

analysis was done. Standard averaging had been used for each variable to analyze the

42

significance, by using Pearson Correlation Matrix. Correlation value “r” was defined

as follows:

• 0.80 or higher - Very strong relationship

• 0.60 to 0.79 - Strong relationship

• 0.40 to 0.59 - Moderate relationship

• 0.20 to 0.39 - Weak relationship

• to 0.19 – Very weak relationship

Significant value denotes the probability of correlation occurrence and a significant

value less than 0.01 (1%) was considered as significant.

4.5.1. The correlation between code quality and productivity

Below figure presents the two-tailed person correlation result for code quality vs the

productivity of software developers. The value of the Pearson Correlation Coefficient

at 0.731 which is significant at the 0.01 level indicates that there is a strong positive

relationship between the two variables.

Figure 8 - The correlation between Code quality and productivity

It is indicating that code quality is an important factor which should be considered to

get an idea about the software developer’s productivity. Based on the Pearson

correlation value the alternative hypothesis H1a is justified, and therefore the null

hypothesis H1o is rejected.

43

4.5.2. The correlation between code quantity and productivity

Below figure presents the two-tailed person correlation result for code quality vs the

productivity of software developers. The value of the Pearson Correlation Coefficient

at 0.714 which is significant at the 0.01 level indicates that there is a strong positive

relationship between the two variables.

Figure 9 - The correlation between Code quantity and productivity

It is indicating that code Quantity is an important factor which should be considered

to get an idea about the software developer’s productivity. Based on the Pearson

correlation value the alternative hypothesis H2a is justified, and therefore the null

hypothesis H2o is rejected.

4.5.3. The correlation between code complexity and productivity

Below figure presents the two-tailed person correlation result for code complexity vs

productivity of software developers. The value of the Pearson Correlation Coefficient

at 0.693 which is significant at the 0.01 level indicates that there is a positive

relationship between the two variables.

44

Figure 10 - Correlation between code complexity and productivity

It is indicating that code Complexity is an important factor which should be considered

to get an idea about the software developer’s productivity. Based on the Pearson

correlation value the alternative hypothesis H3a is justified, and therefore the null

hypothesis H3o is rejected.

4.5.4. The correlation between actual hours worked and productivity of a

software developer

Below figure presents the two-tailed person correlation result for minimal work effort

vs productivity of software developers. The value of the Pearson Correlation

Coefficient at -0.747 which is significant at the 0.01 level indicates that there is a

strong negative relationship between the two variables.

Figure 11 -Correlation between minimal work effort and productivity

45

It is indicating that code quality is an important factor which should be considered to

get an idea about the software developer’s productivity. Based on the Pearson

correlation value the alternative hypothesis H4a is justified, and therefore the null

hypothesis H4o is rejected.

4.5.5. The logarithm value of correlation between code quality and

productivity

Below figure presents the two-tailed person correlation result for code quality vs the

productivity of software developers. The value of the Pearson Correlation Coefficient

at 0.745 which is significant at the 0.01 level indicates that there is a strong positive

relationship between the two variables.

Figure 12 -The correlation between Code quality and productivity

It is indicating that code quality is an essential factor which should be considered to

get an idea about the software developer’s productivity. Based on the Pearson

correlation value the alternative hypothesis H1a is justified, and therefore the null

hypothesis H1o is rejected.

As the result of the above test, the following model can be driven

Developer’s Productivity = Code Quality

Value for “a” should be able to drive from a regression analysis.

46

4.5.6. The logarithm value of correlation between code quantity and

productivity

Below figure presents the two-tailed person correlation result for code quality vs the

productivity of software developers. The value of the Pearson Correlation Coefficient

at 0.716 which is significant at the 0.01 level indicates that there is a strong positive

relationship between the two variables.

Figure 13 - The correlation between Code quantity and productivity

It is indicating that code Quantity is an important factor which should be considered

to get an idea about the software developer’s productivity. Based on the Pearson

correlation value the alternative hypothesis H2a is justified, and therefore the null

hypothesis H2o is rejected.

As the result of the above two correlation tests, the following model can be driven.

Developer’s Productivity = Code Quality𝑎 * Code Quantity𝑏

Value for “b” should be able to drive from a regression analysis.

47

4.5.7. The logarithm value of correlation between code complexity and

productivity

Below figure presents the two-tailed person correlation result for code complexity vs

productivity of software developers. The value of the Pearson Correlation Coefficient

at 0.705 which is significant at the 0.01 level indicates that there is a positive

relationship between the two variables.

Figure 14 - Correlation between code complexity and productivity

It is indicating that code Complexity is an important factor which should be considered

to get an idea about the software developer’s productivity. Based on the Pearson

correlation value the alternative hypothesis H3a is justified, and therefore the null

hypothesis H3o is rejected.

As the result of the above three correlation tests, the following model can be driven.

Developer’s Productivity = Code Quality𝑎 ∗ Code Quantity𝑏 ∗

Code Complexity𝑑

Value for “d” should be able to drive from a regression analysis.

48

4.5.8. The logarithm value of correlation between actual hours worked and

productivity of a software developer

Below figure presents the two-tailed person correlation result for minimal work effort

vs productivity of software developers. The value of the Pearson Correlation

Coefficient at - 0.752 which is significant at the 0.01 level indicates that there is a

strong negative relationship between the two variables.

Figure 15 - Correlation between minimal work effort and productivity

It is indicating that code quality is an important factor which should be considered to

get an idea about the software developer’s productivity. Based on the Pearson

correlation value the alternative hypothesis H4a is justified, and therefore the null

hypothesis H4o is rejected.

As the result of the above four correlation tests, the following model can be driven.

Developer’s Productivity

=
 Code Quantity ∗ Code Quality ∗ Code Complexity𝑐

𝐴𝑐𝑡𝑢𝑎𝑙 𝐻𝑜𝑢𝑟𝑠 𝑊𝑜𝑟𝑘𝑒𝑑

Value for “d” should be able to drive from a regression analysis.

49

4.6. Linear Regression Analysis

Initially, the data is explored to identify the linear relationship that might exist

between the productivity and independent variables. Secondly, the data is also

explored to identify the non- linear relationship that might exist between the

productivity and independent variables.

As the result logarithm-based correlation values are higher comparing to non-

logarithm-based correlation values, it is clear that the relationship between the

productivity and the independent variable is a non- linear relationship.

As a next step, to identify the coefficients it is required to perform a regression

analysis since the input variables/data is in the form of the logarithm, linear

regression analysis is performed to analyze the coefficient.

The regression coefficient for the association between productivity and Quality,

Quantity, Complexity and actual hours worked are shown below. The constant

(intercept) is avoided as the constant value which is 0.085 was not meeting the

significant requirement since the significant value is 0.05.

Figure 16 - Non-Liner Regression Analysis

50

End of the above test productivity model can be formulated as below since value for

the “a”, “b”, “c” and “d” was identified.

Developer’s Productivity

=
 Code Quantity0.690 ∗ Code Quality0.13 ∗ Code Complexity0.17

𝐴𝑐𝑡𝑢𝑎𝑙 𝐻𝑜𝑢𝑟𝑠 𝑊𝑜𝑟𝑘𝑒𝑑0.183

Figure 17 Model Summary

Since approximately 75% of the variation in the response is explained by the model, it

confirms the validity of the model.

4.7. Reliability of Survey Data

The reliability of the questionnaire used to collect the survey dataset was tested using

Cronbach’s Alpha Coefficient (CAC). According to the analysis of CAC, internal

consistency of question sets for each of the factors identified and used in the theoretical

framework was found to be in the acceptable value range and are listed in table 4.

Table 4 Reliability of surveys data

Factor Category Cronbach's Alpha (α)

Quality 0.7672

Quantity 0.6948

51

Code Complexity 0.6568

Work Effort 0.6409

The success rate of the Performance

Appraisal System

0.6868

4.8. Descriptive Statistics for Survey Demographic Data

A descriptive analysis was done for the demographic data to analyze the respondents

regarding their age category, gender and experience.

4.8.1. Sample of software engineers grouped by age

Below figure depicts the breakdown by age group who responded to the survey

questionnaire regarding their age category.

Figure 18 Sample of software engineers grouped by age

Approximately 10.2% of the respondents were between the age of 20 and 24, 71.3%

of the respondents were between the age of 25 and 34, 9.63% of the respondents were

between the age of 35 to 44. The percentage of respondents who were greater than 44

years of age was 9.3% of the overall sample. There are very young professionals

working in the IT industry, and this fact was evident from the sample as well.

52

4.8.2. Sample of software engineers categorized by gender

Below figure depicts the breakdown by gender who responded to the survey

questionnaire regarding their age category.

Figure 19 Sample of software engineers categorized by gender

Approximately 70.4% of the respondents were Males whereas 29.6% of the

respondents were Females.

53

4.8.3. Sample of software engineers categorized by experience level

Below figure depicts the breakdown by experience level who responded to the

survey questionnaire regarding their age category.

Figure 20 Sample of software engineers categorized by experience level

Approximately 10.2% of respondents are having 1-2 years of experience, 71.3%

having 3-5 years of experience, 9.3% is having 5-8 years of experience, and Nearly

9.3% of the respondents are having more than eight years of working experience.

4.9. Presentation of Variable Related Sections Information

A descriptive analysis was done for the variable related data, and analysis results are

summarized in this section.

4.9.1. Quality and software productivity

Below figure depicts the responses received under code quality category from the

survey respondents.

.

54

Figure 21 Quality and software productivity

Above per the above graph, nearly 55% of the respondents strongly agreed that having

a high-quality code will eventually reduce the bug rate of the system, nearly 53% of

the respondents agreed that every project should be equipped with automated code

quality scanners such as sonar to continually monitors the coding standards and

quality. Nearly 56 % of the respondents strongly agreed that every code commits

should be evaluated for maintainability of the code before it gets merged with the

production code. Nearly 61% of the despondence agreed that code review among peers

should happen to improve the code quality of the product.

4.9.2. Quantity and software productivity

Below figure depicts the responses received under the code quantity category from the

survey respondents.

55

Figure 22 Quantity and software productivity

Above per the above graph, nearly 49 % of respondents believe that complex business

problems usually requires and contains more LOC in the solution, nearly 55% of the

respondents agreed that complex functionality usually contains more LOC in the

associated function. Nearly 55% of respondents agreed that variable definition could

be used to manipulate LOC, nearly 51% of respondents agreed that code quantity as

an indicator of developer productivity.

4.9.3. Code complexity for software productivity

Below figure depicts the responses received under code complexity category from the

survey respondents.

56

Figure 23 Code complexity for software productivity

Above per the above graph, nearly 55% of the respondents agreed that, when the

complexity of the code gets higher then cyclometric complexity value will get

increased, 52 % of the respondents agreed that when the complexity of the code gets

higher then module design complexity value will get increased, Technically

challenging and complex tasks such as developing an algorithm requires complex code

structure as a solution.

4.9.4. Work effort for software productivity

Below figure depicts the responses received under work effort category from the

survey respondents.

57

Figure 24 Work effort for software productivity

Above per the above graph, more than 50 % of the respondents agreed that proper

planning regarding the solution before coding will helps to complete the tasks quicker

than unplanned work. 53% of the respondents agreed that most experienced and

talented software developers usually complete the task quicker than the average

developers. Nearly 51% of the respondents agreed that accurate story point or work

hours required estimation is a key factor in software development activities.

4.10. Testing Hypothesis - Pearson’s Correlation Analysis

According to the obtained rating correlation analysis is used to identify the strength of

the relationship between the variables. The following output is obtained using SPSS.

To determine the connection between variables, correlation analysis was done.

Standard averaging had been used for each variable to analyse the significance, by

using Pearson Correlation Matrix. The correlation value “r” was defined as follows:

• .80 or higher - Very strong relationship

• .60 to .79 - Strong relationship

• .40 to .59 - Moderate relationship

• .20 to .39 - Weak relationship

• .00 to .19 – Very weak relationship

58

Significant value denotes the probability of correlation occurrence and a significant

value less than 0.05 (5%) was considered significant.

4.10.1. The correlation between code quality and productivity of a software

developer

Below table presents the two-tailed person correlation result for code quality vs the

productivity of software developers. The value of the Pearson Correlation Coefficient

at 0.755 which is significant at the 0.01 level indicates that there is a strong positive

relationship between the two variables.

Table 5 The correlation between Code quality and productivity

Correlations

 Quality Productivity

Quality Pearson Correlation 1 .755**

Sig. (2-tailed) .000

Sum of Squares and Cross-

products

107.000 80.732

Covariance 1.000 .755

N 108 108

Productivity Pearson Correlation .755** 1

Sig. (2-tailed) .000

Sum of Squares and Cross-

products

80.732 107.000

Covariance .755 1.000

N 108 108

**. Correlation is significant at the 0.01 level (2-tailed).

It is indicating that code quality is an important factor which should be considered to

get an idea about the software developer’s productivity. Based on the Pearson

correlation value the alternative hypothesis H1a is justified, and therefore the null

hypothesis H1o is rejected.

59

4.10.2. The correlation between code quantity and productivity of a software

developer

Below table presents the two-tailed person correlation result for code quality vs the

productivity of software developers. The value of the Pearson Correlation Coefficient

at 0.555 which is significant at the 0.01 level indicates that there is a moderately

strong positive relationship between the two variables.

Table 6 The correlation between Code quantity and productivity

Correlations

 Quantity Productivity

Quantity Pearson Correlation 1 .555**

Sig. (2-tailed) .000

Sum of Squares and Cross-

products

107.000 59.419

Covariance 1.000 .555

N 108 108

Productivity Pearson Correlation .555** 1

Sig. (2-tailed) .000

Sum of Squares and Cross-

products

59.419 107.000

Covariance .555 1.000

N 108 108

**. Correlation is significant at the 0.01 level (2-tailed).

It is indicating that code Quantity is an important factor which should be considered

to get an idea about the software developer’s productivity. Based on the Pearson

correlation value the alternative hypothesis H2a is justified, and therefore the null

hypothesis H2o is rejected.

60

4.10.3. The correlation between code complexity and productivity of a software

developer

Below table presents the two-tailed person correlation result for code complexity vs

productivity of software developers. The value of the Pearson Correlation Coefficient

at 0.693 which is significant at the 0.01 level indicates that there is a strong positive

relationship between the two variables.

Table 7 Correlation between code complexity and productivity

Correlations

 Code Complexity Productivity

Code Complexity Pearson Correlation 1 .693**

Sig. (2-tailed) .000

Sum of Squares and Cross-

products

107.000 74.110

Covariance 1.000 .693

N 108 108

Productivity Pearson Correlation .693** 1

Sig. (2-tailed) .000

Sum of Squares and Cross-

products

74.110 107.000

Covariance .693 1.000

N 108 108

**. Correlation is significant at the 0.01 level (2-tailed).

It is indicating that code Complexity is an important factor which should be considered

to get an idea about the software developer’s productivity. Based on the Pearson

correlation value the alternative hypothesis H3a is justified, and therefore the null

hypothesis H3o is rejected.

61

4.10.4. The correlation between minimal work effort and productivity of a

software developer

Below table presents the two-tailed person correlation result for minimal work effort

vs productivity of software developers. The value of the Pearson Correlation

Coefficient at 0.878 which is significant at the 0.01 level indicates that there is a

moderately strong positive relationship between the two variables.

Table 8 Correlation between minimal work effort and productivity

Correlations

 Minimal Work

effort Productivity

Minimal Work Effort Pearson Correlation 1 .878**

Sig. (2-tailed) .000

Sum of Squares and Cross-

products

107.000 93.904

Covariance 1.000 .878

N 108 108

Productivity Pearson Correlation .878** 1

Sig. (2-tailed) .000

Sum of Squares and Cross-

products

93.904 107.000

Covariance .878 1.000

N 108 108

**. Correlation is significant at the 0.01 level (2-tailed).

It is indicating that code quality is an important factor which should be considered to

get an idea about the software developer’s productivity. Based on the Pearson

correlation value the alternative hypothesis H4a is justified, and therefore the null

hypothesis H4o is rejected.

4.11. Summary

This chapter reviewed the data analysis conducted and the insight created from the

survey responses received from the software developers. Subsection discussed the

62

validity of the data collected, correlations between the identified factors and hypothesis

validation to form the model, furthermore, this chapter also discussed the about the

adjustment and fine-tuned incorporated in the module to get the more accurate result.

63

5. RECOMMENDATIONS AND CONCLUSION

5.1. Introduction

This chapter discusses the recommendation and conclusion based on the research

findings and outputs. Section 5.2 details about the research conclusion after analysing

the survey and interview outcomes.

Section 5.3 provides details about the limitation of this research. Finally, Section 5.4

describes the recommendation which can be taken to improve the software engineer’s

productivity in an organisation.

5.1.1. Research conclusion one

Results of the correlation done by using the development activity data and the

logarithm value correlation result and survey data correction result indicate there is a

positive correlation between productivity and Quantity, Quality and complexity. At

the same time, there is a strong negative correlation between productivity and actual

hours worked to complete the story.

5.1.2. Research conclusion two

When comparing the correlation result of the development activity data, logarithm

based values have higher correlation comparing to the non-logarithm based values,

which provides powerful evidence that there is an existence of the non-linear

relationship. Between productivity and Quantity, Quality, complexity and actual hours

worked.

Table 9 Correlation Values

Relationship Correlation value The logarithm based

correlation value

Productivity vs Code

Quality

0.731 0.745

Productivity vs Code

Quantity

0.714 0.716

64

Productivity vs Code

Complexity

0.687 0.705

Productivity was actual

work effort

-0.747 -0.752

5.1.3. Research conclusion three

As both the development activity data and survey data gathered from software

developers are indicating the same result, hence, the model validity result is positive.

5.1.4. Research conclusion four

Based on the regression analysis done using logarithm based values, as the constant

(intercept) was not significant and based on the regression coefficient, the following

formula can be driven.

Developer’s Productivity

=
 Code Quantity0.690 ∗ Code Quality0.13 ∗ Code Complexity0.17

𝐴𝑐𝑡𝑢𝑎𝑙 𝐻𝑜𝑢𝑟𝑠 𝑊𝑜𝑟𝑘𝑒𝑑0.183

Considering the complexity of each factor represented in the equation, especially the

code complexity and code Quantity, the equation should be used at a functional level

within a class and then aggregated to the class level finally weighted average should

be taken to the story.

5.2. Research Assumptions and Limitations

Code complexity value will be driven considering the class level because of the current

limitations of available tools since it is assumed that each developer will be responsible

for creating an entire class for the required feature.

Developers involvement in requirement gathering and understanding, creating the

architectural and database related modification, cannot be considered to measure the

productivity under the proposed model.

65

Developers involvement in requirement gathering and understanding, creating the

architectural and database related modification, cannot be considered to measure the

productivity under the proposed model.

5.3. Recommendation

To understand the individual productivity of a software developer following model

can be used

Developer’s Productivity

=
 Code Quantity0.690 ∗ Code Quality0.13 ∗ Code Complexity0.17

𝐴𝑐𝑡𝑢𝑎𝑙 𝐻𝑜𝑢𝑟𝑠 𝑊𝑜𝑟𝑘𝑒𝑑0.183

Form the survey responses its was identified that the following actions could improve

the quality of the work produced by the developer.

• Defining clear requirements in user stories.

• Defining and following a coding standard in the project

• Utilizing automated tools to scan for quality and maintainability of the code.

• Having regular code reviews.

Form the survey responses its was identified following actions could decrease the

effort to complete a task

• Having a proper estimation before starting the development.

• Having proper planning before starting the development activities.

• Reduce the distractions such as meeting which won’t add values etc.

5.4. Suggestion for Further Research

The research study was conducted only focusing on the productivity indicating factors

which can be quantified; the model can be further validated and fine-tuned with various

software development data from different software development methodologies.

66

Furthermore, there can be a more complexed model identified including other

productivity indicating factors such as developer’s initiatives, knowledge transfers,

leadership etc.

67

REFERENCES

Anselmo, D., & Ledgard, H. (2003). Measuring productivity in the software industry.

Communications of the ACM, 46(11), 121-125. doi:10.1145/948383.948391

Lopez-Martin, C., Chavoya, A., & Meda-Campana, M. E. (2014). A machine learning

technique for predicting the productivity of practitioners from individually developed

software projects. 15th IEEE/ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

(SNPD). doi:10.1109/snpd.2014.6888690.

Peck, C., & Callahan, D. (n.d.). A proposal for measuring software productivity in a

working environment. Proceedings of the Thirty-Fourth Southeastern Symposium on

System Theory (Cat. No.02EX540). doi:10.1109/ssst.2002.1027063

Cusumano, M. A., & Kemerer, C. F. (1990). A Quantitative Analysis of U.S. and

Japanese Practice and Performance in Software Development. Management Science,

36(11), 1384-1406. doi:10.1287/mnsc.36.11.1384

Ondrej, M., Jiri, H., & Jan, H. (2012). Estimating Productivity of Software

Development Using the Total Factor Productivity Approach. International Journal of

Engineering Business Management, 4, 34. doi:10.5772/52797

Cedergren, S., & Larsson, S. (2014). Evaluating performance in the development of

software-intensive products. Information and Software Technology, 56(5), 516-526.

doi:10.1016/j.infsof.2013.11.006

Trendowicz, A., & Münch, J. (2009). Chapter 6 Factors Influencing Software

Development Productivity—State‐of‐the‐Art and Industrial Experiences. Advances in

Computers, 185-241. doi:10.1016/s0065-2458(09)01206-6

68

Sudhakar, P., Farooq, A., & Patnaik, S. (2012). Measuring productivity of software

development teams. Serbian Journal of Management, 7(1), 65-75.

doi:10.5937/sjm1201065s

Balsamo, S., Marco, A. D., Inverardi, P., & Simeoni, M. (2004). Model-based

performance prediction in software development: A survey. IEEE Transactions on

Software Engineering, 30(5), 295-310. doi:10.1109/tse.2004.9

Carley, K. M. (2008). Socio-Technical Congruence: A Framework for Assessing the

Impact of Technical and Work Dependencies on Software Development. SSRN

Electronic Journal. doi:10.2139/ssrn.2724745

Podjavo, I., & Berzisa, S. (2017). Performance Evaluation Of Software Development

Project Team. Environment. Technology. Resources. Proceedings of the International

Scientific and Practical Conference, 2, 118. doi:10.17770/etr2017vol2.2543

Sudhakar, G. P., Farooq, A., & Patnaik, S. (2011). Soft factors were affecting the

performance of software development teams. Team Performance Management: An

International Journal, 17(3/4), 187-205. doi:10.1108/13527591111143718

Hernández-López, A., Colomo-Palacios, R., García-Crespo, Á, & Cabezas-Isla, F.

(2011). Software Engineering Productivity. International Journal of Information

Technology Project Management, 2(1), 37-47. doi:10.4018/jitpm.2011010103

Flitman, A. (2003). Towards meaningful benchmarking of software development team

productivity. Benchmarking: An International Journal, 10(4), 382-399.

doi:10.1108/146357703104484999

Edberg, D. T., & Bowman, B. J. (1996). User-Developed Applications: An Empirical

Study of Application Quality and Developer Productivity. Journal of Management

Information Systems, 13(1), 167-185. doi:10.1080/07421222.1996.11518117

69

H.C. Shiva Prasad Damodar Suar, (2010),"Performance assessment of Indian software

professionals", Journal of Advances in Management Research, Vol. 7 Iss 2 pp. 176 –

193

Amel Ben Hadj Salem Mhamdia , (2013),"Performance measurement practices in

software ecosystem", International Journal of Productivity and Performance

Management, Vol. 62 Iss 5 pp. 514 – 533

Ahmed, N. U., Ma, C. S., & Montagno, R. V. (1991). Measuring White‐Collar

Productivity. American Journal of Business, 6(1), 27-34.

doi:10.1108/19355181199100005

Gustafsson, J. (2011). Model of Agile Software Measurement: A Case Study. Master

of Science Thesis in the Programme Software engineering, Chalmers

Meyer, A. N., Zimmermann, T., & Fritz, T. (2017). Characterizing Software

Developers by Perceptions of Productivity. 2017 ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM).

doi:10.1109/esem.2017.17

Oberscheven, F. M. (2013). Software Quality Assessment in an Agile

Environment. Faculty of Science of Radboud University in Nijmegen.

Germaine H. Saad, (2001),"Strategic performance evaluation: descriptive and

prescriptive analysis", Industrial Management & Data Systems, Vol. 101 Iss 8 pp. 390

– 399

Agilemethodology.org. (2016). The Agile Movement. [online] Available at:

http://agilemethodology.org [Accessed 13 Nov. 2016].

Scrum Alliance. (2016). Learn About Scrum. [online] Available at:

https://www.scrumalliance.org/why-scrum [Accessed 12 Nov. 2016].

70

Graziotin, D. (2016). Towards a Theory of Affect and Software Developers'

Performance. arXiv preprint arXiv:1601.05330.

Baggelaar, H., & Klint, P. (2008). Evaluating Programmer Performance. Amsterdam:

sn.

Peck, C., & Callahan, D. (n.d.). A proposal for measuring software productivity in a

working environment. Proceedings of the Thirty-Fourth Southeastern Symposium on

System Theory (Cat. No.02EX540). doi:10.1109/ssst.2002.1027063

71

APPENDIX A: TITLE

Distributed questionnaire can be found under following URL :

https://docs.google.com/forms/d/e/1FAIpQLSfEAO1huwHbZ0L2OQoY7nydlJc7pK

cUbgmFlV8Tm4u62Vq5Ow/viewform

Figure 25 Survey Questions part 1

https://docs.google.com/forms/d/e/1FAIpQLSfEAO1huwHbZ0L2OQoY7nydlJc7pKcUbgmFlV8Tm4u62Vq5Ow/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEAO1huwHbZ0L2OQoY7nydlJc7pKcUbgmFlV8Tm4u62Vq5Ow/viewform

72

Figure 26 Survey Questions part 2

73

Figure 27 Survey Questions part 3

74

Figure 28 Survey Questions part 4

75

Figure 29 Survey Questions part 5

