CHARACTERIZATION OF CALCIUM CARBONATE FILLED NATURAL RUBBER- LOW DENSITY POLYETHYLENE BLENDS PREPARED WITH A TITANATE COUPLING AGENT

Wickramage Don Manjula Sampath

138013J

Degree of Master of Philosophy

Department of Chemical & Process Engineering

University of Moratuwa Sri Lanka

March 2019

CHARACTERIZATION OF CALCIUM CARBONATE FILLED NATURAL RUBBER- LOW DENSITY POLYETHYLENE BLENDS PREPARED WITH A TITANATE COUPLING AGENT

Wickramage Don Manjula Sampath

138013J

Thesis submitted in partial fulfillment of the requirements for the degree Master of Philosophy

Department of Chemical & Process Engineering

University of Moratuwa Sri Lanka

March 2019

DECLARATION

I certify that work described in this thesis was carried out by me under supervision of Dr. (Mrs.) S.M. Egodage and Dr. (Mrs.) D.G. Edirisinghe and the thesis has not been submitted to any university for any other degree. I also declare that this thesis does not include any material previously submitted for a degree, published, written or oral communicated by another person without acknowledgement to the best of my knowledge except where due references is made in the text.

.....

Wickagamage Don Manjula Sampath

We certify that the above statement made by the candidate is true & that this thesis is suitable for submission to the university for the purpose of evaluation

Dr. (Mrs.) S.M. EgodageDr. (Mrs.) D.G. Edirisinghe(Supervisor)(Co-supervisor)
HeadSenior LecturerRubber Technology and Development DepartmentDepartment of Chemical and Process EngineeringRubber Research Institute of Sri LankaUniversity of Moratuwa, Sri LankaTelawala Road, Rathmalana, Srilanka

Characterization of Calcium Carbonate Filled Natural Rubber-Low Density Polyethylene Blends Prepared with a Titanate Coupling Agent

ABSTRACT

The aim of this study was to develop reactive blends from natural rubber (NR) and low density polyethylene (LDPE) with acceptable physico-mechanical properties. NR and LDPE blends at different blend ratios were produced in a Brabender Plasticorder by melt mixing at a temperature of 150 °C, and rotor speed of 60 rpm. 20 parts per hundred parts of polymer (pphp) calcium carbonate was added as an inorganic filler. Physico-mechanical and chemical properties of the blends and composites were determined according to international standards. Thermal properties were determined using a differential scanning calorimeter. Morphology and structural characteristics were examined by a scanning electron microscope and fourier transform infrared analyzer, respectively. 50/50 NR/LDPE blends were prepared using three vulcanizing systems: sulphur, peroxide and mixture of sulphur and peroxide. NR/LDPE blend prepared with the mixed vulcanizing system showed the highest physicomechanical, chemical, and ageing properties with a fine morphology. A series of simple blends was formulated by varying the LDPE loading from 10 to 90 pphp at 20 pphp intervals. The tensile strength, tear strength, and hardness increased with the increase of LDPE loading, while elongation at break decreased. The continuous phase of blends changed from NR to LDPE above 30 pphp LDPE loading. The optimum tensile and ageing properties were obtained for the composite prepared with 20 pphp calcium carbonate with or without titanate coupling agent (titanate CA) at 30 pphp LDPE loading. Further, 70/30 NR/LDPE composite prepared with 0.7 pphp titanate CA presented the highest physicomechanical, chemical and ageing properties. Furthermore, the performance of the 70/30 NR/LDPE blends produced with 0.3 pphp peroxide was greater than that of the composites prepared without the peroxide and with a high amount of peroxide. Nevertheless, tensile properties, stress and strain of the 70/30 NR/LDPE composite improved with partial replacement of LDPE with recycled LDPE (rLDPE). The composite with 20 pphp rLDPE indicated the best improvement in all physico-mechanical properties.

Keywords: NR/LDPE blend, titanate coupling agent, peroxide, recycled LDPE, calcium carbonate

ACKNOWLEDGEMENT

It is with a deep sense of gratitude I wish to record here my most sincere thanks to Dr. (Mrs.) S. M. Egodage, Senior Lecturer Department of Chemical and Process Engineering, University of Moratuwa, my supervisor, for the encouragement, personal guidance, assistance and valuable suggestions enabling me to steer my research work efficiently and effectively. Her wide knowledge in the field of polymer technology and engineering and logical approach for research work had been extremely useful for my research work and provided excellent basis for my thesis at the end.

I am very grateful to my co-supervisor, Dr. (Mrs.) D.G Edirisinghe, Head of the Department of Rubber Technology and Development, Rubber Research Institute of Sri Lanka, for her detailed and constructive support extended to me throughout my work.

I wish to thank all the technical staff of Rubber Research Institute of Sri Lanka and University of Moratuwa who gave me their maximum support to complete the research in a great manner. My heartiest gratitude is also offered to my friends who wished and helped me for the success of this research project.

I would like to extend my gratitude to the Chairman and the Board of Directors of Rubber Research Board, Sri Lanka and Director of the Rubber Research Institute of Sri Lanka for granting permission to pursue my higher studies at University of Moratuwa.

Most important my heartfelt sincere thanks should go to my wife and parents who have been instrumental in rising me up to the heights that I am at present with their love, courage and support. I dedicate this thesis to them. My loving thanks should go to my daughter Tharuli and son Virula. My special appreciation and gratitude goes to my brother and sister for their love and kindness.

TABLE OF CONTENTS

Declaration of the Candidate & Supervisor	i
Abstract	ii
Acknowledgements	iii
Table of Content	iv
List of Figures	ix
List of Tables	xiv
List of Abbreviations	XV
List of Symbols	xvii
List of Appendices	xviii
1. INTRODUCTION	
1.1 Polymer Blends	1
1.2 NR/LDPE Reactive blend	4
1.3 Aim and Objectives	5
2. LITERATURE REVIEW	
2.1 Principle of Polymer Blends	6
2.1.1 Classification polymer blends	7
2.1.2 Thermodynamics of miscibility	8
2.2 Types of Polymer Blends	9
2.2.1 Elastomer-elastomer blends	9
2.2.2 Thermoplastic-thermoplastic blends	10
2.2.3 Thermoplastic – elastomer blends	11
2.2.3.1 Thermoplastic elastomer	11
2.2.3.2 Thermoplastic vulcanizates (TPVs)	15
2.3 Polymer Composites	18
2.3.1. Properties of polymer composites	19
2.3.1.1. Thermoplastic polymer composites	19
2.3.1.2. Thermosetting polymer composites	20
2.4 Natural Rubber	20
2.4.1 Vulcanization	21
2.4.2 Vulcanization systems	22
2.4.2.1 Sulphur vulcanization system	22
2.4.2.2 Peroxide vulcanization	23

2.4.2.3 Radiation vulcanization	25
2.4.3 Accelerators	25
2.4.4 Antioxidants	27
2.5 Polyethylene	28
2.5.1 Low-density polyethylene	29
2.5.2 Blend with recycled polyethylene	30
2.6 Simple and Reactive Blends of Natural rubber and Low-Density Polyethylene	31
2.7 Fillers Used in Composites	32
2.7.1 Particulate fillers	33
2.7.2 Calcium carbonate	33
2.7.3 Fillers used for NR/LDPE blends	34
2.8 Compatibilization of Polymer Blends	35
2.8.1 Type of compatibilizer	35
2.8.2 Coupling agents	36
2.8.2.1 Titanate coupling agents	37
2.8.2.2 Functions of titanate coupling agents	39
2.8.2.3 Effects of titanate coupling agents	40
2.8.3.4 Surface modification of fillers with titanate coupling agents	41
3. MATERIALS AND METHODOLOGY	
3.1 Materials	43
3.1.1 Low-density polyethylene (LDPE)	43
3.1.2 Natural rubber (NR)	44
3.1.3 Calcium carbonate	44
3.1.4 Titanate coupling agent	45
3.1.5 Chemicals	45
3.2 Methodology	46
3.2.1 Preparation of blend and composite compounds	46
3.2.1.1 A study on vulcanization system	46
3.2.1.2 Preparation of simple blend compounds	47
3.2.1.3 Preparation of composites with and without titanate CA	47
3.2.1.4 Preparation of composites at different mixing routes	48
3.2.1.5 Preparation of composites at different titanate CA loadings	48

3.2.1.6 Preparation of composites at different DCP loadings	49
3.2.1.7 Preparation of composites with recycled LDPE (rLDPE)	50
3.2.2 Preparation of vulcanizates	51
3.2.3. Determination of Properties	51
3.2.3.1 Tensile stress-strain properties	51
3.2.3.2 Tear strength	52
3.2.3.3 Hardness	52
3.2.3.4 Aging properties	52
3.2.3.5 Degree of swelling	53
3.2.3.6 Gel content	53
3.2.3.7 Water absorption	53
3.2.3.8 Fourier Transform Infrared Spectroscopy (FTIR)	54
3.2.3.9 Analysis of Thermal properties	54
3.2.3.10 Dynamic mechanical (DMA) properties	54
3.2.3.11 Analysis of morphology using scanning electron microscopy	54
3.2.3.12. Optical microscopy (OM)	55
3.3. Statistical Analysis	

4. RESULTS AND DISCUSSION

4.1 Effect of Vulcanizing System on Properties of 50/50 NR/LDPE Blends	56
4.1.1 Physico – mechanical properties	56
4.1.2 Aging properties	61
4.1.3 Degree of swelling and gel content	62
4.1.4 Water absorption	65
4.1.5 Morphology	66
4.2 Effect of Blend ratio on Properties of NR/LDPE unfilled Blends	68
4.2.1 Physico – mechanical properties	67
4.2.2 Glass transition temperature	71
4.3 Effect of Titanate CA on Properties of NR/LDPE/Composites	72
4.3.1 Physico – mechanical properties	72
4.3.2 Formation of Network	76
4.3.3 Morphology of Composites	78
4.3.4 Aging properties	80

4.3.5 Gel content	83	
4.3.6 Water absorption		
4.4 The Effect of Mixing Route on Properties of NR/LDPE Composites		
Prepared with titanate CA	85	
4.4.1 Physico – mechanical properties	85	
4.4.2 Gel content	88	
4.4.3 Water absorption	89	
4.4.4 Morphology	90	
4.5 Effect of CA Loading on Properties of 70/30 NR/LDPE Composites	91	
4.5.1 Physico-mechanical properties of 70/30 NR/LDPE composites	91	
4.5.2 Chemical characteristics	94	
4.5.3 Aging properties	98	
4.5.4 Thermal properties of NR/LDPE composites	98	
4.5.5 Dynamic Mechanical Analysis	99	
4.5.6 Morphological analysis of 70/30/ NR/LDPE/ composites	101	
4.6 Effect of Peroxide (DCP) Loading on Properties of 70/30 NR/LDPE		
composites	103	
4.6.1 Physico- mechanical properties of NR/LDPE composites	103	
4.6.2 Degree of swelling and gel content	107	
4.6.3 FTIR spectroscopic analysis	109	
4.6.4 Aging properties	110	
4.6.5 Thermal properties	111	
4.6.6 Water absorption	112	
4.6.7 Morphological analysis	113	
4.7 Study on Using recycled LDPE (rLDPE) in Composites	114	
4.7.1 Physico – mechanical properties	114	
4.7.2 Aging properties	115	
4.8 Proposed Reaction Mechanism for development of NR/LDPE composites	116	

5. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

5.1 Conclusions	120
5.2 Recommendations for Future Work	121

Reference list		122
Appendix A	FTIR Analysis of NR and LDPE	135
Appendix B	DSC thermograms of NR/LDPE composites at different DCP loadings	136
Appendix C	Statistical analysis of tensile strength	137
Appendix D	List of publications	151

LIST OF FIGURES

		Page
Figure 2.1	Gibbs free energy of mixing for binary mixtures	8
Figure 2.2	Shore A and D hardness scales for thermoset	13
	rubbers, plastics, and thermoplastic elastomers	
Figure 2.3	Classification of TPEs	14
Figure 2.4	TPE structures: (a) segmented block copolymer	14
	(b) hard polymer/elastomer blends	
Figure 2.5	Phase morphologies of TPE blends before and after DV	16
Figure 2.6	Schematic diagram of phase morphology transformation during	17
	the DV process.	
Figure 2.7	Crosslinking of diene rubbers using sulphur system	23
Figure 2.8	Crosslinking of diene rubbers using peroxide systems	24
Figure 2.9	The free radical mediated oxidation/degradation process	27
	in a polymer system	
Figure 2.10	Chain configurations of polyethylene	29
Figure 2.11	Radical polymerization of LDPE	30
Figure 2.12	Classification of Fillers	33
Figure 2.13	Basic chemical structure of a titanate molecule	37
Figure 2.14	Schematic diagram of the monomolecular layer formation by titanate CA	38
Figure 2.15	Basic structure of titanate coupling agent and silane coupling agent	39
Figure 2.16	Dispersion effect of an agglomerated inorganic in an organic phase	41
	(a) without a titanate CA (b) with titanate CA	
Figure 2.17	Schematic diagram of coating of filler by titanates	41
Figure 3.1	Chemical formulation of LDPE	43
Figure 3.2	Chemical structure of NR	44
Figure 3.3	Chemical structure of titanate coupling agent	45
Figure 4.1	Stress-strain curves of 50/50 NR/LDPE blend prepared with different	
	vulcanization systems	56
Figure 4. 2	Tensile strength of 50/50 NR/LDPE blend prepared with different	
	vulcanization systems	57
Figure 4.3	Elongation at break of 50/50 NR/LDPE blends prepared with different	
	vulcanization systems	58

Figure 4.4	Structure of the network formed by different cross-linking system:	
	peroxide (DCP), and sulphur systems	58
Figure 4.5	Hardness of 50/50 NR/LDPE blends prepared with different	
	vulcanization systems	59
Figure 4.6	Phase morphology of dynamically vulcanized 50/50 NR/LDPE blends	60
Figure 4.7	Tear strength of 50/50 NR/LDPE blend prepared with different	
	vulcanization systems	60
Figure 4.8	Stress – strain curves of 50/50 NR/LDPE blends after ageing	62
Figure 4.9	Degree of swelling of 50/50 NR/LDPE blends prepared with different	
	vulcanization systems	63
Figure 4.10	Gel content of 50/50 NR/LDPE blends prepared with different	
	vulcanization systems	64
Figure 4.11	FTIR Spectra of gels of 50/50 NR/LDPE blends prepared with	
	the peroxide and the mixed vulcanization systems	65
Figure 4.12	Water absorption of 50/50 NR/LDPE blends blends prepared with	
	different vulcanization systems	66
Figure 4.13	Scanning electron micrographs of tensile fracture surfaces of 50/50	
	NR/LDPE blends at x1000 magnification (a) Control-1 (b) vulcanized	
	with sulphur (c) vulcanized with DCP (d) vulcanized with the	
	mixed curing system	67
Figure 4.14	Stress-strain curves of NR/LDPE blends at different blend ratios	68
Figure 4.15	Tensile strength of NR/LDPE blends at different blend ratios	69
Figure 4.16	Elongation at break of NR/LDPE blends at different blend ratios	69
Figure 4.17	Tear strength of NR/LDPE blends at different blend ratios	70
Figure 4.18	Hardness of NR/LDPE blends at different blend ratios	71
Figure 4.19	DSC thermograms of NR/LDPE blends at different blend ratios	72
Figure 4.20	Stress/strain curves of NR/LDPE composites with titanate CA at differen	nt
	blend ratios	73
Figure 4.21	Tensile strength of NR/LDPE composites, with and without titanate CA	74
Figure 4.22	Elongation at break of NR/LDPE composites, with and without	
	titanate CA	75
Figure 4.23	Tear strength of NR/LDPE composites, with and without titanate CA	75
Figure 4.24	Hardness of NR/LDPE composites, with and without titanate CA	76

Figure 4.25	Formation of a network with covalent and/or hydrogen bonding	
	between NR and LDPE through CaCO3 and titanate CA	77
Figure 4.26	Stress-strain curves for 70/30 NR/LDPE composites with and without	
	titanate CA	77
Figure 4.27	Optical microscopic images of fracture surfaces of NR/LDPE	
	composites at magnification 400 (a) 30phpp LDPE loading with titanate	
	CA (b) 30phpp LDPE loading without titanate CA (c) 50phpp LDPE	
	loading with titanate CA (d) 50phpp LDPE loading without titanate CA	79
Figure 4.28	Tensile strength of NR/LDPE blends prepared with and without	
	titanate CA, after ageing	81
Figure 4.29	Elongation at break of NR/LDPE blends prepared with and without	
	titanate CA, after ageing	82
Figure 4.30	Tear strength of NR/LDPE blends prepared with and without titanate CA	•
	after ageing	82
Figure 4.31	Gel content of NR/LDPE blends prepared with and without titanate CA	83
Figure 4.32	Water absorption of NR/LDPE blends prepared with and without CA,	
	after ageing	84
Figure 4.33	Stress/strain curves of NR/LDPE (50/50) blends with titanate CA	
	prepared according to different mixing routes	85
Figure 4.34	Tensile strength of NR/LDPE (50/50) blends with titanate CA prepared	
	according to different mixing routes	86
Figure 4.35	Elongation at break of 50/50 NR/LDPE blends with titanate CA	
	prepared according to different mixing routes	86
Figure.4.36	Tear strength of 50/50 NR/LDPE blends with titanate CA prepared	~-
	according to different mixing routes	87
Figure 4.37	Hardness of NR/LDPE (50/50) blends with titanate CA prepared	
	according to different mixing routes	88
Figure 4.38	Gel content of NR/LDPE (50/50) blends with titanate CA Prepared	
	according to different mixing routes	89
Figure 4.39	Water absorption of NR/LDPE (50/50) blends with titanate CA prepared	
	according to different mixing routes	89

Figure 4.40	Optical microscopy images of tensile fracture surfaces of 50/50 NR/LDPE	
	composites with different mixing routes (a) Mixing I	
	(b) Mixing III	90
Figure 4.41	Stress-strain curves of NR/LDPE composites with titanate CA	
	at different loadings	91
Figure 4.42	Variation of tensile strength of NR/LDPE composites with titanate	
	CA loading	92
Figure 4.43	Variation of elongation at break of NR/LDPE composites with titanate	
	CA loading	93
Figure 4.44	Variation of tear strength of NR/LDPE composites with titanate	
	CA loading s	93
Figure 4.45	Variation of hardness of NR/LDPE composites with titanate	
	CA loadings	94
Figure 4.46	Variation of degree of swelling of NR/LDPE composites with	
	titanate CA loadings	95
Figure 4.47	Variation of gel content of NR/LDPE composites with titanate	
	CA loadings	96
Figure 4.48	Variation of hardness of gel of NR/LDPE composites with titanate	
	CA loadings	96
Figure 4.49	Variation of water absorption of NR/LDPE composites with titanate	
	CA loadings	97
Figure 4.50	DSC curves of LDPE and gels of the Control-2 and the composite	
	at CA loading of 0.7 pphp	97
Figure 4.51	Storage modulus, loss modulus and tan δ of the 70/30/ NR/LDPE simple	
	blend, the Control-2 and the 70/30/ NR/LDPE composite	
	at CA loading of 0.7 pphp	101
Figure 4.52	SEM images of tensile fracture surfaces of a) the Control-2	
	b) the composite at CA loading of 0.7 pphp c) the composite at	
	CA loading of 1.2 pphp	102
Figure 4.53	Hardness of NR/LDPE composites at different DCP loadings	104
Figure 4.54	Possible reaction between NR and LDPE through DCP	104
Figure 4.55	Mechanism of crosslink scission via oxidation of sulphur	104
	cross-linked rubber	

Figure 4.56	Stress-strain curves of NR/LDPE composites	
	at different DCP loadings	105
Figure 4.57	Tensile strength of NR/LDPE composites at different DCP loadings	106
Figure 4.58	Elongation at break of NR/LDPE composites at different DCP loadings	106
Figure 4.59	Tear strength of NR/LDPE composites at different DCP loadings	107
Figure 4.60	Degree of swelling of NR/LDPE composites at different DCP loadings	108
Figure 4.61	Gel content of NR/LDPE composites at different DCP loadings	109
Figure 4.62	Hardness of gel content of NR/LDPE composites at different DCP	109
	loadings	
Figure 4.63	FTIR spectra of gels of the composite without peroxide and	
	composites with DCP at different regions a) 400 to 600 cm ⁻¹	
	b) 650 to 850 cm ⁻¹ c) $1550 - 1700$ cm ⁻¹ d) 3000- 3500 cm ⁻¹	111
Figure 4.64	Water absorption of composites at different DCP loadings	113
Figure 4.65	SEM images of tensile fracture surfaces of composites with DCP	
	loading at magnification 10k.x (a) 0 pphp (Control-3)	
	(b) 0.3 pphp (c) 0.9pphp	114
Figure 4.66	Formation of Alkoxy radicals	116
Figure 4.67	Formation of free radicals on NR and LDPE chains and on titanate CA	117
Figure 4.68	Adhesion-type radical combination	117
Figure 4.69	Cohesion-type radical combination	118
Figure 4.70	Formation of sulphur crosslinks in the NR vulcanization system	
	along with adhesion type radical combinations between NR and	
	LDPE phases	118
Figure 4.71	Linkages developed within NR, LDPE and titanate CA	119
Figure 4.72	Covalent bond formation between NR, LDPE crosslinking system	
	and titanate CA	119

LIST OF TABLES

Table 2.1	Accelerators for TPEs	26
Table 2.2	Types of polyethylene	28
Table 2.3	Chemical description and structure of some titanate coupling agents	37
Table 3.1	Physical properties of LDPE	43
Table 3.2	Properties of natural rubber	44
Table 3.3	Chemical composition of CaCO ₃	44
Table 3.4	Physical properties of CaCO ₃	45
Table 3.5	Formulation and mixing cycle of 50:50 NR/LDPE blends	46
Table 3.6	Formulation of NR/LDPE simple blends	47
Table 3.7	Formulation of NR/LDPE composites with titanate CA	47
Table 3.8	Mixing cycle of NR/LDPE composites with titanate CA	48
Table 3.9	Mixing routes of 50/50 NR/LDPE composites with titanate CA	48
Table 3.10	Formulations NR/LDPE composites with different loadings of the	
	titanate CA	49
Table 3.11	Formulations of 70/30 NR/LDPE composites at different DCP loading	50
Table 3.12	Mixing cycle of 70/30 NR/LDPE composites at different DCP loading	50
Table 3.13	The formulations and the mixing cycle of NR/LDPE composites	
	at different LDPE : rLDPE ratios	51
Table 4.1	Retention percentage of mechanical properties of 50/50 NR/LDPE blends	62
Table 4.2	Ash content of NR/LDPE composites	98
Table 4.3	Ageing properties of NR/LDPE composites	98
Table 4.4	Thermal properties of NR/LDPE composites	99
Table 4.5	Ageing properties of NR/LDP composites at different DCP loadings	111
Table 4.6	Thermal properties of NR/LDPE composites at different DCP loadings	112
Table 4.7	Physico-mechanical properties of NR/LDPE/rLDPE composites	115
Table 4.8	Retention properties of NR/LDPE/wLDPE composites	116

LIST OF ABBREVIATIONS

Abbreviation	Description
A/O	Antioxidant
ASTM	American Society for Testing and Materials
BKF	(2, 2'-methylene bis (4-methyl-6-tert butyl phenol))
BR	Polybutadiene rubbber
CA	Coupling agent
CaCO ₃	Calcium carbonate
CR	Polychloroprene rubber
CV	Conventional vulcanization
DCP	Dicumyl peroxide
DV	Dynamic vulcanization
DVs	Dynamic vulcanizates
EB	Electron beam
ENR	Epoxidized natural rubber
EPDM	Ethylene- propylene diene monomer
EPDM-g-MA	Ethylene- propylene- diene monomer-graft-maleic anhydride
EPR	Ethylene-propylene rubber
EV	Efficient vulcanization
EVA	Ethylene vinyl acetate copolymer
FTIR	Fourier transform infrared
GTR	Ground tire rubber
HDPE	High density polyethylene
HNBR	Hydrogenated nitrile butadiene rubber
IRHD	International rubber hardness degree
ISO	International standards organization
LDPE	Low density polyethylene
LLDPE	Linear low density polyethylene
MAH	Maleic anhydride
MDPE	Medium-density polyethylene
MW	Molecule weight
M_1	Masses of before swelling
M ₂	Masses of after swelling

M_i	Masses of the sample before water absorption		
M_{f}	Masses of the sample after water absorption		
m1	Initial weight of the specimen		
m ₂	Weight of the oven dried gel		
NBR	Nitrile rubber		
NR	Natural rubber		
OENR	Oil extended natural rubber		
PA	Phthalic anhydride		
PE	Polyethylene		
PFMs	polyfunctional monomers		
PhHRJ-PE	Phenolic modified polyethylene		
PP	Polypropylene		
PS	Polystyrene		
PVC	Polyvinylchloride		
RH	Rice husk		
rPE	Recycled polyethylene		
RSS	Ribbed smoked sheets		
S	Sulphur		
SEV	Semi-efficient vulcanization		
TBBS	N-tertbutyl1-2-benzothiazole sulfonamide		
TEOs	Thermoplastic polyolefins		
Tg	Glass transition temperature		
TPE	Thermoplastic elastomer		
TPE-A	Thermoplastic polyamide elastomer		
TPE-E	Thermoplastic polyester elastomer		
TPE-O	Thermoplastic polyolefin		
TPE-V	Thermoplastic vulcanizate		
TPNR	Thermoplastic natural rubber		
TPR	Thermoplastic rubber		
wLDPE	Waste low density polyethylene		
ZnO	Zinc oxide		
⊿Gm	Gibbs free energy		
ΔHm	Enthalpy		

LIST OF SYMBOLS

Symbol	Description
ΔG	Gibb's energy
ΔH	Enthalpy
ΔT	Entropy
°C	Degree Celsius
μm	Micrometer
Cm	Centimeter
DC	Degree of crystallinity
E _b	Elongation at break
F	Force
g	Grams
Kg	Kilograms
kGy	Kilo Gray
m	Meter
mA	Miliampere
MeV	Megaelectron volt
mg	Milligram
min	Minutes.
mm	Milimeter
MPa	Mega pascal
MT	Metric Tons
nm	Nanometer
Nm	Newton meter
php	Parts per hundreds plastics
phpp	Part per hundred of polymer
phr	Parts per hundreds rubber
rpm	Revolutions per minute
S	Seconds
Tg	Glass-transition temperature
T _m	Melting point
V	Volt

LIST OF APPENDICES

Appendix A:	FTIR Analysis of NR and LDPE	135
Appendix B:	DSC thermograms of NR/LDPE composites	136
	at different DCP loadings	
Appendix C:	Statistical analysis of tensile strength	137
Appendix D:	List of publications	151