SPEEDING UP DATA ACCESS IN SOA

Maheshi Udara Lokumarambage

(088275F)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa Sri Lanka

March 2014

SPEEDING UP DATA ACCESS IN SOA

Maheshi Udara Lokumarambage

(088275F)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Computer Science and Engineering

University of Moratuwa Sri Lanka

March 2014

DECLARATION

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

In addition, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

Signature:

Date:

"The above candidate has carried out research for the Masters/MPhil/PhD thesis/ Dissertation under my supervision."

Signature of the supervisor:

Date:

ABSTRACT

Owing to the edge that IT provides to one's business over potential competition, it is important that IT infrastructure effectively leverage the business processes of an enterprise. Service Oriented Architecture (SOA) is a paradigm that can be used to build such enterprise architectures enabling those with needs (consumers) and those with capabilities (providers) to interact via services across disparate platforms, technologies, and ownership. Services are the cornerstone in service-based architectures where they act between the consumers and the providers.

Enterprise Service Bus (ESB) is the ultimate weapon that makes enterprise application integration a reality. It plays the role of an intermediary that orchestrates the service requests for various applications for optimal service delivery. The intention of utilizing an ESB is to enable smooth operation among the diverse Enterprise Applications, but there is a common complaint of degraded performance when fulfilling the requests, unlike in the standalone silos-like applications.

The promise of agility and scalability of SOA comes at a price; the price of performance hits when an intermediary is operating in between the enterprise applications, performing various processing tasks before the requests being redirected to the actual service end-point. Degradation of performance can occur as the system scales in terms of the number of services and the number of users. The objective of this research is to characterize the performance of Service Oriented Architectures in the presence of an ESB.

Studies have focused on the performance behavior of SOA under increasing concurrent user requests, and using different SOAP payloads with different complexities. A benchmark Web Service has been developed which represent different use case scenarios. These benchmarking Web Services were tested against the different capabilities of the ESB. Those capabilities include direct proxy, content-based routing and caching enabled in the ESB. Another existing Web Service benchmark was then used to represent a case where the processing overhead is negligible in the web server side.

Test results have revealed that before designing an SOA for an enterprise, it is wise to have a thorough understanding of the factors that affect the performance of SOA, and their behavior under varying conditions. This research shows that various factors, like the number of concurrent user requests, the primitive data types used in the payload, cache expiry time configured in the ESB and the number of database fetches, all determine the SOA performance when used with an ESB.

ACKNOWLEDGMENTS

I sincerely thank my mother, my project Supervisor Dr. Chandana Gamage and the project coordinator Dr. Shehan Perera for giving me enormous inspiration, encouragement, assistance and guidance throughout the journey of this research. I am especially grateful to my project supervisor Dr. Chandana Gamage for his valuable advice and for providing me with the opportunity to gather knowledge and make this effort a success.

Secondly, I would like to thank all the academic staff of the Department of Computer Science and Engineering of University of Moratuwa for giving me the academic grounding towards the successful completion of this research. I would also like to thank Ms. Sachini Weerawardhana for proofreading this thesis and for the enormous support given while I was writing this thesis.

I am also grateful to all my colleagues of the M.Sc '08 batch for sharing their ideas and knowledge with me, and for making the period of this research enjoyable.

Finally, I am thankful to everyone else who helped in numerous ways towards the successful completion of this research.

TABLE OF CONTENTS

DECLARATION	i
ABSTRACT	ii
ACKNOWLEDGMENTS	iii
LIST OF FIGURES	vii
LIST OF TABLES	ix
List of Abbreviations	x
1 INTRODUCTION	1
1.1 Enterprise Systems Integration	1
1.2 Enterprise Service Bus (ESB)	3
1.3 Document Outline	7
2 RELATED WORK	8
2.1 Introduction	8
2.2 A Primer on SOA	9
2.3 Key Drivers for SOA	10
2.3.1 Key technical concepts of SOA	12
2.3.2 Related technologies	13
2.4 Infrastructure components for SOA	16
2.4.1 Enterprise Service Bus (ESB)	16
2.4.2 Value added ESB services	18
2.4.3 The structure of the ESB	19
2.5 Performance and SOA	22
2.5.1 SOA performance measurement consideration	26
2.5.2 Performance considerations of Web Services	28
2.5.3 Impact of SOAP on SOA performance	29
2.5.4 Related work	31

	2.6	Approaches of SOA Performance Improvement	36
	2.6.	1 Caching	36
	2.6.	2 SOAP performance optimization	37
	2.6.	3 Load balancing	38
	2.7	Summary	39
3	A P	ERFORMANCE BENCHMARKING SCHEME FOR SOA USING ESB	41
	3.1	Introduction	41
	3.2	Overview of existing Web Services Benchmarks	42
	3.3	Performance Benchmarking Scheme	46
	3.4	Prototype Implementation	49
	3.4.	1 ESB configuration	49
	3	.4.1.1 Connect	50
	3	.4.1.2 Manage	50
	3	.4.1.3 Transform	51
	3.5	Testing strategy for benchmarking Web Services	53
	3.5.	1 Industrial Web Service	53
	3.5.	2 Existing benchmarking scheme testing strategy	54
	3.6	Summary	57
4	EXI	PERIMENTAL DATA AND RESULTS ANALYSIS	58
	4.1	Introduction	58
	4.2	Performance measurement results for developed benchmark suite	58
	4.2.	1 Industrial Web Service test results	59
	4.3	Performance measurement results for SOAP benchmark suite	60
	4.3.	1 echoDoubles()	60
	4.3.	2 echoStrings()	61
	4.3.	3 echoBase64()	62
	4.3.	4 echoVoid()	63
	4.4	SOA Design considerations revealed from results analysis	64
	4.5	Summary	68

5 CONCLUSION	69
REFERENCES	72
APPENDIX A : APACHE SYNAPSE	77

LIST OF FIGURES

2.1	Systems with different ownership departments	11
2.2	Heterogeneity of distributed systems	12
2.3	A SOAP message illustrated conceptually	16
2.4	The Enterprise Service Bus as a physical infrastructure	20
2.5	Hub-and-spoke integration	20
2.6	The ESB as a distributed infrastructure with centralized control	
2.7	The role of the ESB in an SOA	22
2.8	Sequence Diagram of a service call in SOA	23
2.9	End-to-End performance model	27
2.10	End-Point performance model	27
2.11	Different scenarios of the loan application	33
3.1	Web Service host stress infrastructure	43
4.1	Industrial web service throughput for different implementations of the ESB	60
4.2	echoDoubles() throughput for different implementations of ESB	61
4.3	<code>echoStrings()</code> throughput for different implementations of ESB	62
4.4	echoBase64() throughput for different implementations of ESB.	63
4.5	echoVoid() throughput for different implementations of ESB.	64
4.6	Industry Web Service with ESB caching enabled for different cache expiry times	66

- 4.7 echoDoubles()with ESB caching enabled for different cache expiry times 67
- 4.8 echoString() With ESB caching enabled for different cache expiry times

68

LIST OF TABLES

3.1	Test methods in the Doculabs benchmark suite	42
3.2	Summary of the Benchmarking Web Services of the existing	
	Web Services benchmark	45-46

LIST OF ABBREVIATIONS

Abbreviation	Description
IT	Information Technology
SOA	Service Oriented Architecture
ESB	Enterprise Service Bus
WS	Web Service
XML	Extensible Markup Language
DTD	Document Type Definition
UDDI	Universal Description, Discovery, and Integration
WSDL	Web Service Description Language
SOAP	Simple Object Access Protocol
API	Application Programming Interface.
BPEL	Business Process Execution Language
J2EE	Java 2 Platform Enterprise Edition.
WSDP	Web Services Development Pack
JAXP	Java API for XML Processing.
SAX	Simple API for XML Parsing
DOM	Document Object Model
DTD	Document Type Definition.
JAX-RPC	Java API for XML-based RPC
SAAJ	SOAP with Attachments API for Java
JAXR	Java API for XML Registries
JAXB	Java Architecture for XML Binding
MOM	Message Oriented Middleware.
CBR	Content-based Routing
EAI	Enterprise Application Integration
OLTP	Online Transaction Processing