

ACCELERATED SMPP DECODER

IMPLEMENTATION BASED ON GPU

Prabath Sanjeewa Abeygunawardana Weerasinghe

Registration Number : 148244C

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

December 2017

1

Declaration

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any other

University or institute of higher learning and to the best of my knowledge and belief it does

not contain any material previously published or written by another person except where the

acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and

distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the

right to use this content in whole or part in future works.

Candidate

....................................

Prabath Sanjeewa Abeygunawardana Weerasinghe Date

I certify that the declaration above by the candidate is true to the best of my knowledge and he

has carried out research for the Masters Dissertation under my supervision.

......................................

Prof. Sanath Jayasena Date

ii

Acknowledgment

This project would not have been possible without the support of many people.

A special thank goes to my supervisor, Prof. Sanath Jayasena for his valuable guidance and

immense support. Many thanks to our MSc research project coordinators, Dr. Shehan Perera

and Dr. Malaka Walpola, for their dedication and support. Thanks to all the lecturers at the

Faculty of Computer Science and Engineering, University of Moratuwa, for their valuable

advices.

iii

Abstract

Graphic processing unit (GPU) provides a low-cost but powerful hardware platform for

implementing massively parallel high performance systems. The capabilities of GPUs have

been used to provide fast and low cost solutions in areas such as machine learning, complex

simulations such as global warming and genetic engineering and network traffic processing.

Our research is focused on using GPUs to accelerate the decoding process of the Short

Message Peer to Peer (SMPP) protocol. SMPP protocol is used to exchange Short Messages

between Short Message Service Centers (SMSCs) and TCP/IP based applications. From the

point of view of a user, a SMS taking few seconds is acceptable and therefore a SMSC is

mostly focused on achieving a higher throughput than a low per packet latency.

We have developed a SMPP decoder library in C with GPU support. It supports both CPU

based and GPU based decoding. The library also includes two primary APIs. The first API is

for general usage by any C based application and the second API could be used by Java

Native Interface (JNI) based application.

We have evaluated the performance of the library in both CPU and GPU modes and

compared it with a SMPP server based on Cloudhopper, a Java implementation of SMPP

protocol. The evaluation shows around five times throughput gain in GPU mode over both

Java and C based CPU modes.

iv

Contents

Declaration --- i

Acknowledgment -- ii

Abstract -- iii

Contents -- iv

List of Figures -- vi

List of Abbreviations --- viii

1 Introduction --- 1

 Background --- 1 1.1

 Problem Statement -- 1 1.2

 Objectives --- 2 1.3

 Overview of the Thesis --- 2 1.4

2 Literature Survey -- 3

 Introduction to SMPP Protocol--- 3 2.1

 Cloudhopper SMPP Library -- 4 2.2

2.2.1 SMPP Decoding Process -- 4

2.2.2 Netty Library Architecture -- 5

 Graphic Processing Units (GPUs) --- 5 2.3

2.3.1 Heterogeneous Computing -- 6

2.3.2 Nvidia GPU Hardware Architecture -- 7

2.3.3 Streaming Multiprocessor --- 9

2.3.4 CUDA Programming Model -- 12

 GPU Based Network Packet Processing -- 15 2.4

2.4.1 Packet Capturing -- 16

2.4.2 Packet Classification and Pre-Processing -- 16

2.4.3 Transferring Packets Between GPU and CPU --- 18

2.4.4 Processing Packets in the GPU --- 22

2.4.4.1 GPU Concurrent Kernel Execution Patterns --- 22

2.4.4.2 Thread Allocation in GPU -- 31

2.4.4.3 Dynamic Parallelism --- 32

3 Implementation --- 35

 Introduction -- 35 3.1

 Cloudhopper Changes --- 35 3.2

 SMPP Decoder Library --- 36 3.3

v

3.3.1 JNI Interface --- 37

3.3.2 SMPP Decoder Library Interface -- 39

3.3.3 The Decoder Implementation --- 41

3.3.4 Utility methods for reading a Byte stream --- 44

4 Evaluation -- 45

 Workload Generation -- 45 4.1

 Experiment Setup --- 46 4.2

 Analysis --- 46 4.3

4.3.1 Maximum Throughput Analysis for Different Batch Sizes --------------------------- 46

4.3.2 Throughput Analysis of Dynamic Parallelism GPU Mode --------------------------- 48

4.3.3 Throughput Analysis of Normal GPU Mode -- 49

4.3.4 Effect of Block and Grid Sizes on Performance -- 50

5 Conclusion and Future Work -- 52

 Conclusion --- 52 5.1

 Future Work --- 52 5.2

6 References --- 54

vi

List of Figures

Figure 2-1 : SMPP frequently used message flow ... 3

Figure 2-2 : SMPP PDU structure ... 4

Figure 2-3 : Netty Inbound and Outbound Message Handling Architecture [6] 5

Figure 2-4 : GPU streaming Processor Core Block Diagram [11] ... 7

Figure 2-5 : AMD CPU Processor Core Block Diagram ... 8

Figure 2-6 : Nvidia Fermi Architecture - streaming Multiprocessor Block Diagram [11] 10

Figure 2-7 : Dual Warp Scheduler in Fermi Architecture [11] .. 11

Figure 2-8 : CUDA Grid and Block Structure ... 14

Figure 2-9 : Basic CUDA data flow .. 15

Figure 2-10 : Three options for pre-processing and classifying packets. Option A shows

classification in the CPU and option B shows classification in the GPU and option C shows

both classification and pre-processing in the GPU. ... 17

Figure 2-11 : Normal data flow from CPU to GPU ... 20

Figure 2-12 : Data flow from the CPU to the GPU when data stored in a pinned memory .. 20

Figure 2-13 : Timeline diagram of synchronized decoding cycles .. 21

Figure 2-14 : Timeline diagram for using non-blocking execution cycles with multiple

streams ... 22

Figure 2-15 : Sequential execution pattern with one copy engine and one execution engine 24

Figure 2-16 : Execution pattern B with one copy engine and one execution engine. The

number of streams is two. .. 24

Figure 2-17 : Execution pattern C with one copy engine and one execution engine. The

number of streams is two. .. 24

Figure 2-18 : Sequential execution pattern with two copy engines and one execution engine.

The number of streams is two. ... 25

Figure 2-19 : Execution pattern B with two copy engines and one execution engine. The

number of streams is two. .. 25

Figure 2-20 : Execution pattern C with two copy engines and one execution engine. The

number of streams is two. .. 26

Figure 2-21 : Timeline diagram for the execution order for H2Da-1, H2Db-1, K-1, D2H-1,

D2H-2 for two streams... 27

Figure 2-22 : Timeline diagram for the execution order for D2H-2, H2Da-1, H2Db-1, K-1,

D2H-1 for two streams... 27

Figure 2-23 : Timeline diagram for the kernel execution order Ka-1, Kb-1, Ka-2, Kb-2 with

two streams. ... 28

Figure 2-24 : Timeline diagram for the kernel execution order Ka-1, Ka-2, Kb-1, Kb-2 with

two streams. ... 28

Figure 2-25 : Timeline diagram of the kernel execution order Kb-1, Ka-1, Kc-2, Kd-2. Kernel

Kb and Kd have twice the execution time of Ka or Kc. .. 29

Figure 2-26 : Timeline diagram of the kernel execution order Kb-1, Kc-2, Ka-1, Kd-2. Kernel

Kb and Kd have twice the execution time of Ka or Kc. .. 29

Figure 2-27 : Timeline diagram of the kernel execution order Kb-1, Kc-2, Kd-2, Ka-1. Kernel

Kb and Kd have twice the execution time of Ka or Kc. .. 30

file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779535
file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779536
file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779536

vii

Figure 2-28 : Timeline diagram of the kernel execution order Kb-1, Kc-2, Kd-2, Ka-1. Kernel

Kb and Kd consumes 2/3 of the GPU resources while kernel Ka and Kc consumes 1/3 of the

GPU resources. .. 30

Figure 2-29 : Timeline diagram of the kernel execution order Ka-1, Kb-2, Ka-2, Kb-1. Kernel

Kb and Kd consumes 2/3 of the GPU resources while kernel Ka and Kc consumes 1/3 of the

GPU resources. .. 30

Figure 2-30 : The SMPP PDU decoding process flow diagram .. 32

Figure 2-31 : Dynamic Parallelism parent kernel and child kernel execution model 34

Figure 3-1 : Primary components in the SMPP decoder library .. 35

Figure 3-2 : Structure of the decodable element accepted by the API 39

Figure 3-3 : Dynamic Parallelism based SMPP decoding flow ... 42

Figure 3-4 : SMPP decoding flow with CPU based pre-processing and GPU based decoding

 ... 43

Figure 3-5 : Cloudhopper SMPP PDU original decoding flow ... 35

Figure 3-6 : The altered design with SMPP decoder library integration 36

Figure 4-1: Max throughput analysis for four decoding modes and four batch sizes 46

Figure 4-2 : Throughput analysis for different thread configurations - Dynamic parallelism

mode... 48

Figure 4-3:Throughput analysis for different thread configurations - Normal GPU mode ... 49

Figure 4-4 : Performance for different Block and Grid sizes. The batch is 10,000 elements. X

axis format is (Block Size * Grid Size).. 50

Figure 5-1 : Updating decoded fields with delimiters .. 53

file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779552
file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779553
file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779554
file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779556
file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779557
file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779557
file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779558
file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779559
file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779560
file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779561
file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779561
file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779562
file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779563
file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779563
file:///D:/MSC/thesis/smpp-decoder-paper-latest-4.docx%23_Toc501779564

viii

List of Abbreviations

GPU Graphics Processing Unit

SMPP Short Message Peer to Peer

CPU Central Processing Unit

SMS Short Message System

SMSC Short Message Service Center

ESME External Short Message Entity

PDU Protocol Data Unit

TLV Tag Length Value

CUDA Compute Unified Device Architecture

SM Streaming Multiprocessor

SP Streaming Processor

UMA Unified Memory Access

1

1 Introduction

Background 1.1

Short Message Service (SMS) [1] is a popular value added service provided by

telecommunication service providers and uses existing signaling networks for

communication. Telecommunication infrastructures for signaling networks are expensive and

setting up a test environment is rather costly.

The Short Message Peer to Peer (SMPP) [2], a TCP/IP based protocol, was created initially as

a low cost solution for testing SMSC (Short Message Service Center) functionalities. Later

SMS based value added services such as personalized applications (for example: thought of

the day, jokes, and match making applications) gained popularity and SMPP was revamped as

the standard communication protocol in the IP network for SMS. Well-known SMPP protocol

implementations (Cloudhopper [3], OpenSMPP [4]) perform protocol data unit decoding and

encoding using only the CPU.

Graphics Processing Units (GPU) [5] opened up a new paradigm in parallel computing. GPUs

with their processing cores (streaming cores), are specifically engineered to run data

independent (data parallelizable) operations efficiently. This generalized use of GPUs for

operations other than graphics processing is known as General Purpose GPU (GPGPU)

programming. Overtime GPU vendors have come up with much simpler programming

models and APIs for utilizing GPGPUs.

In this research we have focused on developing a SMPP decoder library which offloads the

decoding process to a GPU.

Problem Statement 1.2

There exists SMPP protocol implementations such as Cloudhopper [3] and OpenSMPP [4]

etc. Cloudhopper [3] from Twitter is the most popular SMPP framework and is written in

Java. It uses the Java I/O library Netty [6] for low level network traffic management.

Cloudhopper [3] supports CPU based multi-threading through Java threads. But it is more

focused on parallelizing SMPP sessions rather than packet encoding and decoding and that

leaves room for improvement.

In this research, we wish to investigate whether the SMPP decoding throughput could be

improved by utilizing parallel computing specifically with regard to GPUs. SMSCs usually

2

act as SMPP servers which act on received SMPP messages. Therefore our research has

focused on improving SMPP decoding performance only.

Objectives 1.3

The objectives of our research are as follows.

1. Implementing a SMPP decoder based on a multi-core CPU.

2. Implementing a SMPP decoder which utilizes a GPU.

3. Evaluating the performance of both implementations against an existing implementation.

Overview of the Thesis 1.4

Chapter 2 contains the literature survey. The literature survey starts with an introduction to

SMPP protocol and the SMPP decoding algorithm. Next we introduce Cloudhopper as a Java

based SMPP framework and provide a brief description of the internal logic and architecture.

Next we start looking into heterogeneous computing and GPU programming models. Then

under related works we discuss network packet processing in relation with GPUs. The

discussion is focused on four main aspects of network packet processing.

Chapter 3 discusses implementation details. It starts with a discussion of the architecture of

our SMPP decoding library and provides brief introductions of two main APIs in the library.

Chapter 4 encapsulates evaluation details including the setup of the experiment and the

analysis of the results. Chapter 5 contains the conclusion and chapter 6 presents potential

future improvements for the system.

3

2 Literature Survey

Introduction to SMPP Protocol 2.1

The SMPP protocol, though the name says peer to peer, actually uses a client-server model.

The client side components are commonly known as External Short Message Entity (ESME).

An ESME is basically a SMPP client that receives and sends short messages. The server side

is a SMSC [2].

SMPP protocol defines mainly 12 types of Protocol Date Units (PDUs) and all but one

(ALERT_SM) have response PDUs as well. The most frequently used PDUs are the

SUBMIT_SM and the DELIVER_SM. Both types have their restrictions on the direction.

Figure 2-1 depicts the basic message configuration for SMPP protocol.

Figure 2-1 : SMPP frequently used message flow

SMPP PDU Structure

A SMPP packet consists of three main sections as shown in the Figure 2-2. The first section

is the header. The header contains information needed to identify the type of the packet and

the status of the request or the response (success or failure reason). The mandatory and

optional parameter sections are part of the PDU body.

Mandatory parameters are well defined for their length and value types. The type and number

of mandatory parameters in a PDU vary with the type of the PDU.

Optional parameters are defined as Tag Length Value (TLV) fields. The type and number of

optional parameters are dependent on the PDU type as well.

For our work we mainly focus on DELIVER_SM and SUBMIT_SM and their responses as

they are the mostly used PDUs in SMPP communication.

SMSC

ESME

SUBMIT_SM_RESPONSE

DELIVER_SM_RESPONSE

SUBMIT_SM

DELIVER_SM

4

Figure 2-2 : SMPP PDU structure

Cloudhopper SMPP Library 2.2

Cloudhopper is a SMPP protocol framework written in Java by Twitter. In addition to

decoding and encoding SMPP PDUs, Cloudhopper provides a set of convenient interfaces to

manage network connections in terms of creating TCP connections, managing request and

response timeouts, managing connection failures and managing SMPP sessions.

Cloudhopper implementation depends heavily on the popular Java NIO library Netty [7] [8].

It offers two basic operation modes, server and client. An implementation can create an SMPP

server that accepts and process SMPP requests or an SMPP client which may initiate an

SMPP session. The following subsections will look into the implementation of each mode.

2.2.1 SMPP Decoding Process

Cloudhopper uses one thread per PDU for decoding. SMPP uses TCP as the transport layer

protocol. Therefore the data for a particular PDU might not be in a single TCP segment and

Cloudhopper waits for the complete SMPP PDU.

After receiving all the data for the PDU, the framework first reads the PDU header and

figures out the PDU type and total length. Then based on the PDU type, it first decodes the

mandatory parameters. Lastly the framework decodes optional parameters. Decoding optional

 Header

Mandatory

Parameters

Optional

Parameters

5

parameters is not straight forward as decoding mandatory parameters. Optional parameters are

encoded in TLV format as we have mentioned before. Therefore decoding optional parameters

need to be done sequentially.

2.2.2 Netty Library Architecture

Netty uses the term channel to identify an entity which wraps components capable of doing

I/O such as network sockets. When it comes to network I/O, a channel may use a TCP, UDP

or SCTP socket.

A channel always has a pipeline associated with it. Pipeline acts as the carrier for sending

(outbound) and receiving (inbound) data. A pipeline can have a set of handlers for processing

the aforementioned outbound and inbound data. Handles carry the logic for processing

inbound and outbound data.

For an example, a Netty based HTTP library implementation may have several handlers. One

of the handlers has the logic for encoding and decoding data. Another handler would manage

connections and so on. In a nutshell, handlers encapsulate the domain specific logic in a Netty

based application. Figure 2-3 shows the relationship between channels, pipelines and

handlers.

Figure 2-3 : Netty Inbound and Outbound Message Handling Architecture [6]

Graphic Processing Units (GPUs) 2.3

I/O Thread Pool

Channel

Outbound Handler - 1 Inbound Handler - N

Outbound Handler - 2

Outbound Handler - 3

Outbound Handler - 4

Inbound Handler - N

Inbound Handler - N

Inbound Handler - N

6

In 1999, Nvidia introduced GPU to the world of personal computers. At the time, a GPU is

essentially a collection of graphic related processing units. The technical definition of a GPU

coined by Nvidia is as follows. “A GPU is a single chip processor with integrated transform,

lighting, triangle setup/clipping, and rendering engines that is capable of processing a

minimum of 10 million polygons per second” [9] .

One of the unique traits of graphic processing is that most of the operations are data

independent. In other words in general, graphic processing operations are data parallelizable.

GPUs have been designed specifically to optimize the data parallelizable operations and that

opened up a new platform for developing and executing low cost and high performance

applications. The term General Purpose GPU (GPGPU) is used to identify the use of GPUs

for computations normally done by the Central Processing Unit (CPU).

In early days, writing applications for GPUs was cumbersome. One of the main reasons was

the complexity associated with the APIs. Programmers had to master the inner working of a

GPU before developing an application. As GPGPUs gained popularity, manufactures

introduced APIs with less coupling to the underlying hardware layer. The two most popular

such APIs are Open Computing Language (OpenCL) and Compute Unified Device

Architecture (CUDA). OpenCL framework is more of a generic heterogeneous programming

standard and apart from programming GPUs it can be used to program a wide array of devices

including Field Programmable Gate Arrays (FPGAs) and Digital Signal Processors (DSPs).

CUDA was developed not as a generic framework but as a platform and a framework to work

with Nvidia GPUs. CUDA provides a much simpler API implementation than OpenCL and

also has a rich echo system of libraries and tool sets.

For the project we focus on CUDA [10] parallel computing platform implemented in C/C++.

2.3.1 Heterogeneous Computing

Heterogeneous computing model uses different types of computing cores. It is different from

homogeneous computing model where the latter uses a single type of computing core. For an

example the original Cloudhopper framework follows a homogenous computing model where

it uses only the CPU. In contrast, the SMPP decoder framework that we wish to develop uses

the CPU as well as the GPU. In general GPGPU applications follow the heterogeneous model

in which a part of the application tasks gets offloaded to the GPU.

7

2.3.2 Nvidia GPU Hardware Architecture

Usually a single GPU has a large number of cores compared to a modern multi-core CPU. For

an example, a GTX 750 Ti GPU has around 600 cores. How a CPU core is different from a

GPU core is fundamental to understand the way a GPU works as GPU and CPU cores are

optimized for different purposes. Nvidia uses the term streaming Processor (SP) for a GPU

core.

GPUs focus on data parallelism while CPUs are more generic and support both data and task

parallelism. To achieve a high data parallelism, GPUs relies on a simple but a large number of

cores. In order to reduce the cost, the power consumption and the size, a single GPU core has

a limited set of functionalities as well as limited in computational power. Figure 2-4 shows an

Nvidia Fermi architecture GPU core block diagram.

Figure 2-4 : GPU streaming Processor Core Block Diagram [11]

Figure 2-5 shows an AMD processor block diagram.

CUDA CORE

Dispatch Port

Operand Collector

FP Unit INT Unit

Result Queue

8

Figure 2-5 : AMD CPU Processor Core Block Diagram [12]

Here we have listed the differences between a CPU Core and a GPU Core.

1. A GPU core cannot fetch, decode or dispatch instructions. It relies on instruction

schedulers of streaming Multiprocessors (SM) to do so. For now we may consider a SM

as a controller of a set of GPU cores and a GPU would have multiple SMs. A normal

CPU core has its own program counter and fetch, decode and execute units. Also a CPU

core has a much larger number of pipeline stages, sometimes in the range of 20 parallel

stages.

2. A CPU core supports branch predictions. GPU cores do not support branch prediction and

it is highly advised to not use extensive number of branching instructions in a GPU

program.

9

3. A GPU core does not have individual caches and registers and a CPU core has much large

caches and registers. GPU cores use a set of shared registers and caches. A GPU core gets

allocated a set of registers by the relevant SM.

4. A GPU core cannot handle interruptions, cannot handle I/O read/write where as a normal

CPU core is well capable of handling I/O and interruptions.

As a summary, a CPU core is a more self-sustaining unit designed to execute a single

instruction as fast as possible with a low latency. To achieve the low latency in instruction

execution, a CPU core has more additional units of functionalities and that increase the

amount of transistors used and the power consumption.

A GPU core on the other hand is not a self-sustaining computational unit. It relies on a

common controller to fetch decode and schedule instructions. Apart from the aforementioned

shortcomings, a GPU core has well designed floating point and integer ALU units. These

floating point and integer ALUs make up most of the GPU core. In essence a GPU core is

really a container of floating point and integer ALUs. Some GPU architectures have one

floating point and one integer ALU per core as with the Fermi architecture and another set of

GPUs have more than one ALU per core.

2.3.3 Streaming Multiprocessor

Nvidia GPUs have been evolving with several generations of microarchitectures such as Tesla

[12], Fermi [11], Kepler [13], Maxwell [14] and Pascal [15]. For our discussion we have

focused on Fermi microarchitecture. The reason for considering Fermi is that it has all the

important elements of successor microarchitectures such as Kepler and only lacks in the

number of streaming processors and streaming multiprocessors. Older microarchitectures

such as Tesla lack multiple warp schedulers per streaming multiprocessor and store and load

units.

10

Figure 2-6 : Nvidia Fermi Architecture - streaming Multiprocessor Block Diagram [11]

Figure 2-6 shows an Nvidia Fermi architecture streaming multiprocessor micro-architecture

block diagram [14]. Streaming multiprocessor is a term used by NVIDIA to identify a unit

that controls a group of streaming Processors (SP). As shown in the figure 2-6, a SM has

several key components.

1. GPU Cores (streaming processors)

Fermi architecture puts 32 cores in a single SM. As explained previously, we may

think of a single core as a container for a Floating Point and an Integer ALU and each

of these cores can be utilized concurrently.

2. Warp Scheduler

GPUs confirming to Fermi architecture have two warp schedulers as seen in the

figure 2-6. Before understanding warp schedulers, it is important to understand what a

warp is. A SM schedules N number (The number depends on the GPU architecture)

of parallel threads at once to carry out an instruction. A group of such scheduled

11

threads are called a warp. Please note that warps are not a set of streaming processors

but a set of threads and these threads can be scheduled on a given set of streaming

processors. Usually the warp size is 32 threads for Fermi architecture. It means that

when an SM has a set of instructions and needs to run them on N number of threads,

the SM schedules the instructions in batches of 32 threads. But we have mentioned

previously that in Fermi architecture, a SM has only 32 streaming processors. So why

does a Fermi SM have two warp schedulers?

The answer is with the clock speed at which the warp schedulers work and the clock

speed at which the streaming processors work. A SP works at about twice the rate of

a warp scheduler. It is called the Hot Clock. So this allows each warp scheduler to

schedule selected warps on just 16 SPs. As CUDA cores run at twice the scheduler’s

clock rate, by the time of the next instruction, the set of 16 cores would run 32 cores

worth of operations. This allows the GPU to attain a higher level of hardware

utilization. Figure 2-7 is a sample of how warp scheduling is managed with two warp

schedulers.

 Figure 2-7 : Dual Warp Scheduler in Fermi Architecture [11]

12

3. Store and Load Units

Warp schedulers use Store and Load units to store/load data to/from the global

memory, shared memory and cache. Fermi architecture has 16 Load and Store units

and they operate at the warp scheduler’s clock speed. Therefore only a maximum of

16 threads can be served per clock cycle.

4. Special Function Units

Special function units are for carrying out instructions such as sin, cosine, reciprocal

or square root. Fermi architecture has four special function units. With that a

complete warp takes about 8 cycles to execute a special function. Special function

units have a decoupled pipeline from the instruction dispatcher of a scheduler. What it

means is that the dispatchers can issue instructions to other units concurrently.

5. Registers, Cache and Shared Memory

Cache and registers are shared within a thread and the shared memory is used for

sharing and coordinating among threads in a block. We will discuss more about

blocks and shared memory in later sections.

2.3.4 CUDA Programming Model

In previous sections we discussed the main components of a GPU and the basics of the Nvidia

GPU architecture. We discussed the architecture mainly in reference with the Fermi

architecture. As the architecture evolves the key components evolve too such as the number

of streaming Processors per SM, the number of warp schedulers per SM, warp size, clock

speed, Store/Load and Special Function Units etc.

For the idea of using GPUs for general operations to be viable, it is essential to decouple

development API from the underlying GPU architectures. Therefore Nvidia CUDA

framework wraps the underlying device specific architectural details and provides an abstract

API for the application developers. Doing so allows application developers to focus on the

business logic instead of every underlying hardware and driver detail. In following we will

look into the CUDA programming model and the API. First we will discuss few key concepts

in CUDA programming model.

13

1. Device and Host and kernel

Device and host are two of the main abstractions in CUDA. The term device

means the GPU and host means the CPU. Every CUDA application has a part that

runs on the CPU and another part that runs on the GPU. The GPU bound

execution units are called kernels. Though usually a kernel has to be launched by

the host, there are advance ways to launch kernels by another kernel.

2. Blocks and Grids

Blocks and grids are CUDA abstractions that for configuring threads. When

scheduling a kernel, the application needs to provide the number of threads the

kernel to be executed on. Instead of just configuring the number of threads for a

kernel, block and grid provides a more flexible model of defining threads.

A block is a collection of threads. The number of threads for a block can be given

as a single or two or three dimensional array. For an example if the block size is

N threads, it could be represented as <N> or <N/2, N/2> or <N/3, N/3, N/3>.

A grid is a collection of blocks. Same as a block, the number of blocks for a grid

can be given as a single or two or three dimensional array. Following example

shows the thread configuration for a kernel that runs on 120 threads.

 It has 10 blocks per grid and 12 threads per block.

kernel_1<<<10, 12>>>()

CUDA API provides C structures for defining grid and block dimensions more

conveniently. Blocks and grids have few unique execution behaviors too.

First is that the threads of a block always get scheduled on the same SM. For an

example, if the number of threads for a block is 1024 and the number of

streaming processors in a SM is 32, then all 1024 threads would be scheduled on

those 32 SPs regardless of the availability of other SMs. Therefore developers

may need to pay some attention to hardware configurations.

Second is utilizing shared memory. Threads in a block share the SM’s shared

memory. In fact the developer may define the size of the shared memory

dynamically for a block too. But keep in mind that memory access is not volatile

in the sense that changes made to the shared memory by threads in a block might

not be visible to other threads in the same block immediately.

14

Third is barrier support. The developer may use thread barriers for threads of a

block. It is useful in certain scenarios such as loading data to the shared memory

from the global memory. Figure 2-8 shows the relationship between grids and

blocks.

Figure 2-8 : CUDA Grid and Block Structure

Executing a kernel usually involves the following steps.

1. Allocating global memory in the GPU (device).

2. Copying data to be processed to the allocated memory.

3. Scheduling the kernel and thus processing the data.

4. Copying the result back from the GPU (device) to CPU (host).

Depending on the application, some of the steps can be skipped like copying data back to host

memory. But at the end, these four steps or several of the steps would be followed by every

CUDA based application. Figure 2-9 depicts three of the aforementioned four steps

(allocating memory in GPU is not shown).

GRID

Block

(0,0)

Block

(1,0)

Block

(0,1)

Block

(0,2)

Block

(1,1)

Block

(1,2)

Block

Thread

(0,0)

Thread

(0,1)

Thread

(0,2)

Thread

(1,0)

Thread

(1,1)

Thread

(1,2)

15

Figure 2-9 : Basic CUDA data flow

GPU Based Network Packet Processing 2.4

Research has been done on various types of GPU based network packet processing systems

such as Intrusion Detection Systems [15] [16], Routers [17] [18] [19] [20] and TPC/IP packet

decoders [21] [22]. Though these systems have different functionalities and algorithms,

generally they all use a common set of activities as shown below.

1. Packet capturing.

2. Packet classification and pre-processing.

3. Transferring packets between the GPU and the CPU.

4. Processing packets in the GPU.

Let us take a more comprehensive look into each activity. Please note that the aforementioned

activities are not listed in any particular execution order. For an example, packet classification

and pre-processing could be done either in the CPU or the GPU. Therefore packets might

need to be transferred to the GPU before carrying out classification or pre-processing.

GPU

Global Memory

SM - 1 SM - 2

2. Process
CPU

1. Host to

Device

3. Back to

Host

16

2.4.1 Packet Capturing

A network packet processor, irrespective of the type, operates on a specific layer of the OSI

network stack. For an example, a GPU based router might need only to decode the OSI Layer

3 data and a GPU based switch might need to decode the OSI Layer 2 data. An

implementation like the SMPP decoder handles a specific application layer protocol such as

SMPP.

Most of the network packet processors run on general purpose operating systems (Windows,

Ubuntu, Fedora, FreeBSD). These operating systems may not handle network traffic in an

optimized way. For an example, Linux network driver uses two types of buffers, data and

metadata. The driver allocates and de-allocates these buffers for each packet. The allocation

and de-allocation overhead could be considerable at a higher receiving and transmission rate.

Because of that some GPU based packet applications have changed the network driver to

avert the aforementioned overhead.

A solution for this has been proposed in PacketShader [17] in which the operating system

allocates a large data and metadata buffers initially to minimize the allocation and de-

allocation overhead.

2.4.2 Packet Classification and Pre-Processing

Packet classification is a key aspect of a network packet processor. Classification extracts

useful information from the packet prior to the decoding stage. The specific nature of the

information depends on the application. For an example, an application might need to ensure

the availability of the complete TCP based packet prior to start the decoding process. Thus the

classification stage might need to check the length of the available data based on the protocol

specification.

Another example would be to identify the type of the packet. In order to do that, the

classification module might use pattern matching on a byte stream. When it comes to GPU

based network packet processors, one might choose to do the classification in the GPU or in

the CPU [21]. For the GPU to be utilized properly, the classification mechanism should be

complex and parallelizable enough to justify the time taken for transferring data from the

CPU to the GPU.

For an example, a simple TCP segment check, to make sure the availability of the complete

packet might not be efficient enough to be done in the GPU. Even if the logic is complex and

17

parallelizable enough to run on the GPU, the application needs to decide on the size of the

batch size and block and grid sizes etc. based on performance metrics such as the throughput

and the latency.

Figure 2-10 : Three options for pre-processing and classifying packets. Option A shows classification and

pre-processing in the CPU, option B shows classification in the CPU and pre-processing in the GPU, option

C shows both classification and pre-processing in the GPU.

Packet pre-processing changes the original packet by adding some meta-data or altering the

original content. For an example, pre-processing stage might update a packet with the local

timestamp or a session identifier. Like classification, pre-processing can also be done either in

the CPU or the GPU. For an example, CPU or GPU pre-processing could be used for marking

packet boundaries or updating packets with metadata. Figure 2-10 shows the three options

available for executing packet classification and pre-processing. Please note that packet

classification and pre-processing might be done in several stages. For an example an initial

classification may identify packet types and a later classification which runs in the GPU,

might extract useful information such as packet boundaries.

CPU GPU Capture Packets

Classifying

Packets

Pre-Processing

Packets

A

CPU GPU Capture Packets

Classifying

Packets

Pre-Processing

Packets

B

CPU GPU

Capture Packets

Classifying

Packets

Pre-Processing

Packets

C

18

2.4.3 Transferring Packets Between GPU and CPU

The fundamental question when it comes to transferring data between the CPU and the GPU

is the size of the data set and the frequency of transferring data. Throughout this section, we

will discuss the available options for finding the correct data set size and the frequency of data

transfer.

The first option is transferring data as they arrive [21] without buffering and the second

option is transferring data in batches [23]. Both options have their own pros and cons.

Transferring data to the GPU as they arrive without buffering has the following concerns.

1. Identifying whether all the data for a packet is available

As stated in section 2.4.2, an application or a framework may decide to let the GPU

does the packet boundary identification or have it done in the CPU. If the

identification of a specific PDU boundary is a responsibility of the GPU, then we may

transfer each packet to the GPU. If the packet is found to be incomplete, then the

GPU kernel would notify the CPU to wait for the complete packet. But transferring

each packet to the GPU incurs a considerable CPU to GPU data transfer overhead.

If the boundary identification is done in the CPU, then we may transfer the complete

packet to the GPU. Though this has a lower transfer overhead than transferring

incomplete packets, it still incurs in a considerable transferring overhead.

2. The complexity of the decoding algorithm

Let us assume that the algorithm supports data parallelism. With that if the per packet

decoding time is roughly the same as the time taken to transfer a packet from the CPU

to the GPU, one may try to justify the transferring of packets as they arrive. But the

argument can only be made in terms of per packet decoding latency. Decoding one

packet at a time would underutilize the GPU and the throughput would be degraded

severely.

Second option is batch transferring. In batch transferring, packets are put into a buffer of fixed

size as they arrive. Then either after the buffer is full or a timeout period, the complete batch

gets transferred to the GPU to be decoded.

The most trivial advantage of batch transferring is the high throughput. Batch transferring

achieves a high throughput by several means.

19

1. Increased GPU utilization by using more GPU cores for decoding than the option

of transferring packets to the GPU as they arrive.

2. When having multiple packets decoded concurrently, it enables the GPU to

manage memory more efficiently with techniques like memory coalescing.

3. Reduces the number of GPU kernel launches. kernel launches have a scheduling

overhead.

As it has been mentioned before, the data transfer from the CPU to the GPU could also be

triggered by a timeout. The reason for that is the inconsistent nature of the network traffic. If

the application only transfers data upon reaching the maximum batch size, then at a low

traffic time, it might take a long time to fill up the buffer. Thus the timeout is a safeguard to

assure the quality of service of the decoder in terms of the throughput.

Another important aspect of transferring data is the use of pinned memory. To understand the

importance of the pinned memory, it is essential to understand the mechanics behind the data

transfer. When a CPU to GPU memory copy is issued on a non-pinned or pagable memory

block, the CPU first copies the data from the pageable memory to a pinned memory and the

DMA (Direct memory access) then takes over and copies the data to the GPU from the pinned

memory. The CPU copies data from pageable to pinned memory to avoid paginations during

the actual data transfer process. If a pinned memory is used in the first place, then the extra

memory copying by the CPU from non-pinned to pinned memory could be avoided.

On the same note, allocation and de-allocation cost of pinned memory is high, so it is

advisable to allocate a large pinned memory buffer beforehand and reuse it. That way we can

avoid frequent pinned memory allocations and de-allocations. If the size of the buffer found

to be not enough, then we may increase the size of it. Figure 2-11 shows the normal process

of using non-pinned or pageable memory.

20

Figure 2-11 : Normal data flow from CPU to GPU

Figure 2-12 shows the use of pinned memory directly.

Figure 2-12 : Data flow from the CPU to the GPU when data stored in pinned memory

Pageable
Memory

Pinned Memory

GPU
Memory

Pinned Memory

GPU
Memory

21

Use of Asynchronous Memory Transfer

A GPU based application has three main steps as discussed in section 2.3. Copying data from

the CPU to the GPU (H2D or Host to Device), executing the kernel (K) in the GPU and lastly

copying the results back to the CPU from the GPU (D2H or Device to Host). Some steps are

optional though, like copying data from and to the CPU/GPU.

Though it might not be evident in a simple GPU based application, every aforementioned

operation belongs to something called a stream. Please note that these streams are different

from byte or data streams. A stream could be thought of as a sequence of operations that

executes in the issued order.

Within a single stream, there could be multiple H2D, D2H and kernel executions and one of

the main characteristics of a stream is that all operations issued within a stream are carried out

in the insertion order. In other words operations inside a stream are synchronized.

If an operation does not have a stream assigned, then CUDA places it within the default

stream. The default stream is a unique stream as it synchronizes other streams in the device.

The default stream waits until all the operations issued before within other streams complete.

All the CPU side operations issued after the default stream have to wait till default stream

finishes execution.

Usually to get a performance gain through multiple streams, the framework needs to comply

with at least one of the two scenarios below.

1. The most apparent one is the support for asynchronous batch execution. What it

means is that the application should not block CPU threads till previous kernel

cycles finish. Let us take an example. Think of a system with a kernel that

processes PDUs in batches of 1000 elements. If the application does not support

non-blocking kernels, then successive batch execution requests have to wait for

previous executions to finish.

Figure 2-13 shows the timeline diagram for the aforementioned scenario.

 Time

H2D kernel-1 D2H

H2D kernel-2 D2H

Figure 2-13 : Timeline diagram of synchronized decoding cycles

22

As we can see in the figure 2-13, each Host to Device data transfer and kernel

cycle has to wait till the previous cycle finishes. This would be acceptable if each

of the cycle utilizes all GPU resources. For an example if the kernel logic

consumes all the cores for a batch of 1000 records, then executing kernel cycles

sequentially would be acceptable. But most of the time, the kernel does not utilize

much of the GPU resources and therefore decreases the efficiency. By using

multiple streams, the application can issue kernel execution requests

concurrently. The number of streams could be decided based on the resource

availability.

2. The second scenario does not require non-blocking kernel execution. But it looks

at the transfer delays of raw data to the GPU and processed data from the GPU to

the CPU. If we assume a near linear or better relationship between the number of

packets and the overall processing time, then by using two streams we could

significantly reduce the overall processing time. The figure 2-14 shows how this

works.

 Time

2.4.4 Processing Packets in the GPU

2.4.4.1 GPU Concurrent Kernel Execution Patterns

In this section we will discuss several ways of using asynchronous memory transferring and

streams and their effectiveness [24] .

A typical GPU contains two types of functional units, the execution and the copy engines.

Each GPU contains one or more of each of the engine types. The most important aspect of

T1

H2D kernel D2H

H2

D
kernel-1 D2

H

H2

D

kernel-2 D2

H

T2

Figure 2-14 : Timeline diagram for using non-blocking execution cycles with multiple

streams

23

knowing the number of engines in a GPU is that the information is critical in deciding the

execution pattern of streams.

Most of the GPUs today have either one of following engine configurations. One execution

engine and two copy engines or one execution engine and one copy engine. Let us first

discuss general execution patterns for each type. The first pattern is obviously to execute all

sequentially.

Pattern – A

Pattern A uses only one stream and first it copies the data to the GPU from the CPU. Then it

issues the kernel execution command and lastly copies the processed data back to the CPU

from the CPU.

Pattern - B

For i <= number_of_streams :

 Copy_to_device (stream[i]);

 Issue_kernel_execution(stream[i]);

 Copy_from_device(steam[i]);

The execution pattern B issues all the operations for a given stream sequentially one after

another.

Now the third execution pattern and we may call it the execution pattern C.

Pattern - C

For i <= number_of_streams :

 Copy_to_device (stream[i]);

For i <= number_of_streams :

 Issue_kernel_execution(stream[i]);

For i <= number_of_streams :

 Copy_from_device(steam[i]);

Pattern C issues Host to Device copy instructions for each stream first and then issues kernel

executions for each stream and lastly issues Device to Host copy instructions for each stream.

Both patterns B and C have pros and cons based on the number of copy and execution engines

available. First let us see how a GPU with one execution engine and one copy engine works

with the three patterns. For the example we may think of a two stream configuration.

24

Pattern comparison with single copy engine and single execution engine

Pattern A

Copy

Engine
Host to Device Device to Host

Execution

Engine
 kernel Execution

Time

Figure 2-15 : Sequential execution pattern with one copy engine and one execution engine

Figure 2-15 illustrates the sequential execution of copying raw data to the GPU (host to

device) and the execution of the kernel and lastly copying the processed data back to the CPU

from the GPU (device to host). Following figure 2-16 and figure 2-17 illustrate the effect of

using two streams on the overall processing time. The raw data has been divided equally

between the two streams.

Pattern B

Copy

Engine
H2D-1 D2H-1 H2D-2 D2H-2

Execution

Engine
 K-1 K-2

Time

Figure 2-16 : Execution pattern B with one copy engine and one execution engine. The number of streams is

two.

Figure 2-16 shows the effect on the overall execution time when we use two streams and

follow the pattern B. As we may clearly see in the figure 2-16, the overall execution time has

not improved compared to the pattern A (sequential execution).

Pattern C

Copy

Engine
H2D-1 H2D-2 D2H-1 D2H-2

Execution

Engine
 K-1 K-2

Time

Figure 2-17 : Execution pattern C with one copy engine and one execution engine. The number of streams is

two.

Figure 2-17 shows the effect on the overall execution time when we use two streams and

follow the pattern B. Looking at the figure 2-17 and then figures 2-15 and 2-16, it is evident

that for a GPU with only one copy engine and one execution engine the best option is to use

the pattern C execution model.

25

Now we have seen how pattern A, B and C performs in a GPU with only one copy engine and

one execution engine, next we will check how a GPU with two copy engines and one

execution engine performs with each pattern. The two copy engines would be responsible for

host to device and device to host data transferring respectively.

Pattern comparison with two (H2D and D2H) copy engines and one execution engine

Pattern A

Copy

Engine -

H2D

Host to Device

Execution

Engine
 kernel Execution

Copy

Engine -

D2H

 Device to Host

Time

Figure 2-18 : Sequential execution pattern with two copy engines and one execution engine. The number of

streams is two.

Figure 2-18 illustrates the sequential execution of copying raw data to the GPU (host to

device) and the execution of the kernel and lastly copying the processed data back to the CPU

from the GPU (device to host).

Pattern B

Copy

Engine -

H2D

H2D-1 H2D-2

Execution

Engine
 K-1 K-2

Copy

Engine -

D2H

 D2H-1 D2H-2

Time

Figure 2-19 : Execution pattern B with two copy engines and one execution engine. The number of streams

is two.

Figure 2-19 shows the effect of dividing data into two streams while utilizing two copy

engines and one execution engine on the overall execution time. As it is shown in the figure

2-19, pattern B is more efficient than the pattern A in terms of the total execution time and the

reason for that is the overlapping kernel executions and data transfers between the two

streams.

26

Pattern C

Copy

Engine -

H2D

H2D-1 H2D-2

Execution

Engine
 K-1 K-2

Copy

Engine -

D2H

 D2H-1 D2H-2

Time

Figure 2-20 : Execution pattern C with two copy engines and one execution engine. The number of streams

is two.

Looking at figures 2-18, 2-19 and 2-20, a GPU with two copy engines and one execution

engine is better off using the pattern B. In the figure 2-20, it might look a bit strange that the

D2H copy engines waits till the end of all kernel executions to start D2H transferring in

pattern C. The reason for the delay is due to the behavior of the execution engine queue. We

will discuss the reason after looking into the behavior of queues in copy and execution

engines.

Now that we have discussed the behavior of three GPU execution patterns used in a multi-

stream CUDA application, next we will discuss the behavior of execution and copy engines

queues. Every copy and execution engine has a queue in which it stores copy and execution

requests and dispatches them in the sequence they were issued. Thus the order of copy and

execution requests matters.

Throughout the section we will discuss the impact of the copy and execution request order on

the overall system performance. For the discussion we may consider a two stream

configuration. Throughout the rest of the chapter we may use the following notation.

1. H2D{identifier}-{stream number} – Identifies a host to device data transfer.

2. D2H{identifier}-{stream number} – Identifies a device to host data transfer.

3. K{identifier}-{stream number} – Identifies a kernel execution.

The first stream configuration is as follows.

Stream-1 : H2Da-1, H2Db-1, K-1, D2H-1

Stream-2 : D2H-2

Figure 2-21 shows the execution order of each stream against a timeline. The order of the

execution requests issued is as follows.

27

H2Da-1, H2Db-1, K-1, D2H-1, D2H-2

Copy

Engine -

H2D

H2Da-1 H2Db-1

Execution

Engine
 K-1

Copy

Engine -

D2H

 D2H-1 D2H-2

Time

Figure 2-21 : Timeline diagram for the execution order for H2Da-1, H2Db-1, K-1, D2H-1, D2H-2 for two

streams.

As it is shown in the figure 2-21, the Device to Host transfer of the second stream has to wait

till the device to host transfer of the first stream finishes. The reason is that the device to host

copy engine has its own queue and it only dispatches copy request in the insertion order.

But if we issue the device to host request of the second stream before start issuing requests of

the first stream, then the second streams device to host request would be dispatched first. The

resulted execution pattern is shown in the figure 2-22.

D2H-2, H2Da-1, H2Db-1, K-1, D2H-1

Copy

Engine -

H2D

H2Da-1 H2Db-1

Execution

Engine
 K-1

Copy

Engine -

D2H

D2H-2 D2H-1

Time

Figure 2-22 : Timeline diagram for the execution order for D2H-2, H2Da-1, H2Db-1, K-1, D2H-1 for two

streams.

Figure 2-22 shows the effect of blocked queues. In the example, when issuing stream 1

requests, the D2H engine queue gets blocked until the H2D and kernel execution operations

of the stream 1 finish. The reason is that though engines can dispatch requests concurrently,

requests of a single stream get dispatched sequentially. Thus it is imperative to check the

order of the dispatch requests.

In multi-stream GPU applications there will be situations in which we may have to use

multiple kernels instead of using a single kernel. For an example a network packet processor

may first run the classification kernel and then run the decoding kernel. Provided that multiple

28

kernels are used by an application, then the kernel dispatching order has a significant impact

on the performance as well. For the next example we will consider two streams and two

kernels. Each kernel would take up only half of the GPU resources thus enabling them to

execute concurrently. The first dispatch order is as follows.

Stream-1 : Kernel-1 (Ka-1), Kernel-2 (Kb-1)

Stream-2 : Kernel-1 (Ka-2), Kernel-2 (Kb-2)

Kernel Dispatch Order : Ka-1, Kb-1, Ka-2, Kb-2

Note that the execution order of a given stream is sequential regardless of the resource

availability.

stream-1

Execution
Ka-1 Kb-1

stream-2

Execution
 Ka-2 Kb-2

Time

Figure 2-23 : Timeline diagram for the kernel execution order Ka-1, Kb-1, Ka-2, Kb-2 with two streams.

When looking at the figure 2-23, it is evident that during the Ka-1 execution the GPU has not

been fully utilized. We may increase the GPU utilization by changing the order of kernel

dispatch requests as shown in the figure 2-24.

Kernel Dispatch Order: Ka-1, Ka-2, Kb-1, Kb-2

stream-1

Execution
Ka-1 Kb-1

stream-2

Execution
Ka-2 Kb-2

Time

Figure 2-24 : Timeline diagram for the kernel execution order Ka-1, Ka-2, Kb-1, Kb-2 with two streams.

As shown in the figure 2-24, just by changing the order of execution we could cut the

execution time by 1/3 and utilize the GPU 100% all the time.

But what if kernels are different in sizes in terms of the execution time? Let us consider 4

kernels of different sizes. Kernel Ka and Kc have the same execution time and kernel Kb and

Kd have twice the execution time of Ka or Kc. Let us discuss four kernel execution patterns

and their overall execution time. For our discussion we assume that the four kernels can run

29

independently of one another and every kernel irrespective of the execution time takes half of

the GPU resources.

Kernel Dispatch Order: Kb-1, Ka-1, Kc-2, Kd-2

stream-1

Execution
Kb-1 Ka-1

stream-2

Execution
 Kc-2 Kd-2

Time

Figure 2-25 : Timeline diagram of the kernel execution order Kb-1, Ka-1, Kc-2, Kd-2. Kernel Kb and Kd

have twice the execution time of Ka or Kc.

Figure 2-25 shows that though the GPU has enough resources to run Kc of the second stream,

the execution engines waits till it dispatches both kernels of the first stream. The reason is that

the execution engine queue always honors the insertion order and therefore Ka-1 has to be

dispatched before dispatching the Kc-2. The reason for not running both Ka and Kb

concurrently is that within the same stream, operations are carried out sequentially.

The overall execution time for this pattern is about 5 time units.

Kernel Dispatch Order: Kb-1, Kc-2, Ka-1, Kd-2

stream-1

Execution
Kb-1 Ka-1

stream-2

Execution
Kc-2 Kd-2

Time

Figure 2-26 : Timeline diagram of the kernel execution order Kb-1, Kc-2, Ka-1, Kd-2. Kernel Kb and Kd

have twice the execution time of Ka or Kc.

The execution pattern shown in the 2-26 shows the effect of blocking the execution queue by

a stream on other streams. By the end of the execution of Kc, the GPU has enough resources

to schedule Kd. But Ka issued on stream one is blocked from been dispatched till Kb ends

running and thus blocks Kd from been executed. The overall execution time for this pattern is

about 4 time units.

Kernel Dispatch Order: Kb-1, Kc-2, Kd-2, Ka-1

stream-1

Execution
Kb-1 Ka-1

stream-2

Execution
Kc-2 Ka-2

Time

30

Figure 2-27 : Timeline diagram of the kernel execution order Kb-1, Kc-2, Kd-2, Ka-1. Kernel Kb and Kd

have twice the execution time of Ka or Kc.

The pattern shown in figure 2-27 has significantly improved the execution time from 5 time

units in figure 2-25 to 3 time units. The reason for the increased performance is that none of

the streams are blocking potential kernel executions of other streams.

Figure 2-25, 2-26 and 2-27 illustrate the importance of the kernel dispatching order on overall

performance when each kernel has different execution times. Next we will see how the

dispatching order of kernels with different resource consumptions affects the overall

execution time. For that the following kernel configuration would be used. Kernel Ka, Kb, Kc

and Kd have the same execution time. Ka and Kc use 1/3 of the GPU resources and Kb and

Kd use 2/3 of the resources. We will start with the pattern shown in the figure 2-27.

Kernel Dispatch Order: Kb-1, Kc-2, Kd-2, Ka-1

stream-1

Execution
Kb-1 Ka-1

stream-2

Execution
Kc-2 Kd-2

Time

Figure 2-28 : Timeline diagram of the kernel execution order Kb-1, Kc-2, Kd-2, Ka-1. Kernel Kb and Kd

consumes 2/3 of the GPU resources while kernel Ka and Kc consumes 1/3 of the GPU resources.

Looking at the figure 2-28 it is evident that the order of kernel dispatch has no major effect on

the overall execution time provided that low resource consuming operations are interleaved

with high resource consuming operations.

Next we will go a step further and see the performance impact of kernels with different

execution times and resource consumptions. The execution time and resource consumption of

each kernel would be as follows. Kernel Ka and Kc have the same execution time and kernel

Kb and Kd have twice the execution time of Ka or Kc. In addition to that Ka and Kc consume

1/3 of the GPU resources and Kb and Kd consume 2/3 of the GPU resources. Let us start with

the kernel dispatching order shown in the figure 2-27.

Kernel Dispatch Order: Kb-1, Kc-2, Kd-2, Ka-1

stream-1

Execution
Kb-1 Ka-1

stream-2

Execution
Kc-2 Kd-2

Time

Figure 2-29 : Timeline diagram of the kernel execution order Ka-1, Kb-2, Ka-2, Kb-1. Kernel Kb and Kd

consumes 2/3 of the GPU resources while kernel Ka and Kc consumes 1/3 of the GPU resources.

31

The figure 2-29 shows that the kernel dispatch sequence which yielded the best performance

of 3 time units shown in the figure 2-27, now takes 4 time units to run. The reason is that Kb

takes 2/3 of the GPU resources and thus even though stream one is not blocking stream two,

Kd cannot start until Kb finishes.

Each execution pattern from the figure 2-23 to figure 2-29 illustrate the effect of kernel

dispatching order on the overall performance. The patterns we discussed can be put into three

categories.

First category is kernels having the same execution time and same resource consumption.

Second category is kernels having the same resource consumption but different execution

times. Third category is kernels having different resource consumptions as well as different

execution times. Throughout all three categories, to gain the best performance, we have make

sure that streams do not block each other from dispatching kernels and kernel dispatches from

different streams are interleaved.

Now that we have discussed several important aspects of copy and execution engine queues,

we may clarify the behavior seen with the execution pattern C with multiple streams. The

behavior was that even though the kernel has finished execution for the stream-1, the GPU

waits till all kernels are dispatched to start the D2H transfer for the stream-1. We may explain

it in two steps. The GPU inserts a signal into the queues after each dispatch request to

dispatch the next operation in the same stream. But when the execution engine is sequentially

loaded with kernel dispatching requests, the signal gets delayed till the end of dispatching all

kernels. This delay of issuing the signal causes D2H copy engine queue to block.

2.4.4.2 Thread Allocation in GPU

In sections 2.4.3 and 2.4.4.1 we discussed different kernel launch and memory transferring

patterns and compared their efficiencies. The next question is how to organize and allocate

threads in a GPU in an efficient manner. For the discussion we will consider a network packet

processing application. We have two options to allocate threads. First is using one thread per

packet and the second is using multiple threads per packet.

When using the first option which is one thread per packet, all threads in a block first load

respective packets from the global memory to the shared memory of the block and then

proceed with the actual data processing. The main concern with this method is the per packet

processing latency. GPU cores are not designed to efficiently handle complex instructions

32

such as branching and looping. Therefore a fairly complex kernel logic would take a longer

time to process a single packet than a CPU core and thus increases the per packet latency [25].

The advantage of this option is that if the application processes a large number of packets in

parallel, the throughput will be higher. But for achieving the high throughput, we need to

make sure to utilize GPU cores at a higher percentage.

When using the second option which is multiple threads per packet, the content of a packet

would be separated into different sections and each section would be processed by a separate

thread in a block. For an example, one thread would be processing from the 0
th
 byte to 100

th

byte and another thread would be processing from 100
th
 byte to 200

th
 byte. This option is

viable only if the packet itself is data parallelizable. Another concern is that the number of

packets get processed by a block is lower compared to the one thread per packet option.

Therefore it lowers the throughput but because of using multiple threads to process a single

packet, it also lowers the per packet latency. As a summarization, the first option is better for

applications aiming for high throughput and the second option is better for low latency

focused applications.

Another point to remember is that with GPUs, it is best advised to not use complex data

structures. The reason is that complex data structures are not localized in memory and result

in un-coalesced memory access patterns. In GPUs, localization of data is important to gain

performance.

2.4.4.3 Dynamic Parallelism

The data processing flow of an application can be broken down into one or more logical steps.

For an example, the packet processing flow of a network packet processing application can be

broken into two logical steps. First step is finding and marking boundaries of each packet and

the second step is processing the packets based on marked boundaries. The Logic is shown in

the figure 2-30.

Byte stream

Find and Mark

Boundaries

Process Packets Using

Marked Boundaries

 Figure 2-30 : The SMPP PDU decoding process flow diagram

33

These steps can be either fully executed in the CPU or can be splitted between the GPU and

the CPU. When breaking down and allocating steps to either the CPU or the GPU, we need to

take two points into consideration.

1. Steps running on the GPU need to be data parallelizable to take advantage of the GPU

architecture.

2. The execution order of steps and their inter dependencies.

The first point is obvious with what we have discussed so far in chapter 2.4. Without been

data parallelizable, it is hard to achieve any performance gain by using the GPU. To explain

the second point, let us consider a data processor with three steps. Throughout the section

2.4.4.3 we will discuss two data flow patterns.

The first data flow that we will discuss is as follows. Step-1 and step-3 are massively data

parallelizable and step-2 is not data parallelizable.

Step-1(Parallelizable) -> Step-2(Not Parallelizable) -> Step-3(Parallelizable)

Now let us see how we may efficiently allocate each one of these steps to either the CPU or

the GPU. The obvious solution is offloading step-1 and step-3 to a GPU as they are data

parallelizable. But doing so does not always yield a performance gain and we have to take

few factors into consideration. First factor is the data transferring delays associated with

crossing the CPU/GPU boundary. We have to cross the CPU/GPU boundary four times

(copying to the GPU from the CPU and copying from the GPU to the CPU) if we choose to

use the GPU for step-1 and step-3. Therefore when we are presented with data flows in which

parallelizable and non-parallelizable steps are interleaved, first a performance evaluation

should be done for each step. Based on the performance evaluation we may then decide on

which step to be offloaded to the GPU.

The second data flow pattern is as follows. Step 1 is non-parallelizable and step-2 and step-3

are parallelizable.

Step-1(Not Parallelizable) -> Step-2(Parallelizable) -> Step-3(Parallelizable)

With the second data flow pattern, the second and third steps both are massively

parallelizable. Therefore if we run them both in the GPU and follow the conventional GPU

execution model, CPU and GPU boundary would be crossed four times. First two times, the

boundary would be crossed to transfer data for the step-2 and last two times to transfer data

for the step-3. As both second and third step are executed in the GPU, what if we can

schedule the third step from the GPU without involving the CPU.

34

With dynamic parallelism [26] [27] [28] we may reduce the number of CPU/GPU boundary

crossings from four to two. By using dynamic parallelism a kernel launched by the CPU can

launch child kernels from the GPU. The concept of dynamic parallelism is as follows.

A CUDA kernel can launch other kernels from the GPU. Once a secondary (child) kernel is

launched, the CUDA runtime implicitly synchronizes the parent kernel execution with the

secondary kernel execution. Simply putting it, the CUDA runtime ensures that the parent

kernel waits till the secondary kernel finishes executing. Figure 2-31 illustrates the

relationship between parent and child kernels.

Apart from reducing the overhead of having to transfer data back and forth between the CPU

and the GPU, dynamic parallelism has few other advantages over normal execution patterns.

1. The device algorithm (Algorithm that runs on the GPU) can be written without

having to fit it into a flat single level structure. Dynamic parallelism enables

recursions and simplifies the designing process.

2. Enables managing GPU resources at a more granular level. For an example, a single

level processing of an image enhancement would allocate the same level of resources

throughout the image grid. Whereas with dynamic parallelism, resources could be

allocated based on the intensity of different parts of the image.

CPU launches the parent

kernel

Parent kernel launches

the child kernel Grid

Parent kernel execution

is synchronized with the

child grid.

CPU-Thread

Parent kernel

threads

Child kernel

threads

Figure 2-31 : Dynamic Parallelism parent kernel and child kernel execution model

35

3 Implementation

Introduction 3.1

The implementation consists of four primary components. First component is the SMPP

decoder library written in C language. Second component is the integration with the Java

based SMPP framework Cloudhopper. Third component is the SMPP traffic simulator written

in Java. The fourth component is a performance tuner written in C. Following figure 3-1

illustrates how these components are related.

 JNI - Interface

Cloudhopper Changes 3.2

We have used the Cloudhopper SMPP framework for managing TCP connections and SMPP

sessions. The framework does not support GPU based decoding and therefore we did few

design modifications. Figure 3-5 shows the original design for decoding SMPP packets.

SMPP-Decoder-Library
Cloudhopper-

SMPP-Framework

SMPP-Simulator Tuner

Figure 3-1 : Primary components in the SMPP decoder library

Collect all TCP frames

for a complete SMPP

PDU

Read the header of the

SMPP PDU

Identifies the SMPP

packet type.

Decodes the packet and

send the decoded details

to the session

Figure 3-2 : Cloudhopper SMPP PDU original decoding flow

36

Figure 3-6 shows the altered Cloudhopper decoding flow integrated with the SMPP decoder

library.

Figure 3-6 illustrates the changes made to the Cloudhopper original decoding flow. Step-1,

step-2, step-3 and step-4 are packet classification stages (section 2.4.2) whereas the step-5

represents a packet pre-processing stage (section 2.4.2). The main alterations are the

introduction of a batch of packets and updating each packet with session information and

boundary markers and lastly invoking the SMPP decoder library through JNI.

SMPP Decoder Library 3.3

The SMPP Decoder library provides following key features through an API.

1. GPU based SMPP decoding using dynamic parallelism.

2. GPU based SMPP decoding without using dynamic parallelism.

3. CPU based SMPP decoding.

4. Performance tuner.

The library implementation can be separated into five components.

1. A JNI interface to communicate with the Cloudhopper framework.

2. An interface with methods to either tune or perform normal SMPP decoding. The

interface supports both GPU or CPU based decoding.

3. The GPU based decoder implementation in CUDA.

4. The CPU based decoder implementation.

5. A set of utility methods to manipulate a stream of bytes.

Throughout the sub-sections we would discuss each step in detail.

Step-1 : Collect all TCP

frames for a complete

SMPP PDU

Step-2 : Read the header

of the SMPP PDU

Step-3 : Identifies the

SMPP packet type

Step-4 : Decides whether to be decoded

by the SMPP decoder library or

internally

Step-5 : Prepend the byte stream for

the PDU with session information

and a unique identifier

Step-6 : If batch size has reached

invoke the SMPP decoder library

decoding function through JNI

Step-7 : Once received the decoded data,

send them to the relevant SMPP session

Figure 3-3 : The altered design with SMPP decoder library integration

37

3.3.1 JNI Interface

As it has been mentioned before, the SMPP decoder library is written in C language

And the Cloudhopper SMPP framework is written in Java. The Java based Cloudhopper runs

on a JVM (Java Virtual Machine) and the data structures and language semantics are different

from C. Thus, for the Cloudhopper services to access the SMPP decoder functionalities, we

need an adapter between the two platforms. Java comes with a standard implementation to

communicate with native implementations called JNI (Java Native Interface).

JNI offers a set of primitive data types to match Java primitive data types. Apart from the

primitive data types, JNI defines jobject, jclass, jstring, jthrowable, jarray data structures

synonymous with Java counterparts. A native function accepts data as arguments of

aforementioned data types and also returns results in one of the aforementioned data types.

When a Java application needs to invoke native methods such as SMPP decoder

functionalities, it first has to generate a header file with required methods with arguments and

return types. Here follows the three functions generated for the SMPP decoder JNI interface

and their descriptions.

JNIEXPORT void JNICALL _initialize (

 JNIEnv *env, jobject thisObj, jstring configurationFilePath)

The first function is to initialize the library. Calling native functions through JNI is a heavy

task. Creating new objects or calling a method of a Java object or accessing attributes of a

Java object requires accessing the JVM from the native code. For an example to call a method

of a Java object, the native code should first acquire the equivalent JNI structure for the

method which is called jmethod. It is same for Java classes and attributes as well. This process

takes time and it is advised to cache those frequently used JNI data structures. The initialize

method caches jmethods, jclasses and jfields. Apart from caching, the method configures the

core decoder implementations as well.

JNIEXPORT jobject JNICALL _decodePDUDirect (

JNIEnv *env, jobject thisObj, jobject pduContainerBuffer, jint size, jint correlationIdLength)

The second function is the most important one. It acts as an adapter for the SMPP decoder

core API functions. The most important arguments are the pduContainerBuffer, size and the

correlationIdLength.

The pduContainerBuffer is an off heap byte buffer containing a stream of PDUs. At earlier

stages of the SMPP decoder development, the off heap byte buffer was not used. Instead a

38

List of byte buffers was passed as a parameter. This approach was time consuming for two

reasons.

First is that when passing a Java object allocated in the heap through JNI, the JVM has to first

copy it into a non-heap memory location and then copy it to the relevant location. By using

off heap byte buffers we can reduce the number of copy operations to one.

The second reason is that, to access each PDU data element in a list, the native

implementation has to use Java method. Calling Java methods per element is time consuming

as each call has to cross the JNI boundary.

By using an off heap byte buffer (The name used in Java is DirectByteBuffer) we can

eliminate aforementioned concerns. All we have to do is to allocate an off heap byte buffer

and then write to it and pass the pointer for that buffer as a method argument.

The correlationIdLength is the length of the unique id used to identify each individual packet.

The SMPP decoder library allows attaching a unique id for each packet. The id would be sent

back with the decoded packet which can then be used to identify the SMPP session to which

the packet belongs. The size parameter represents the length of the byte buffer.

JNIEXPORT void JNICALL _startTuner(

 JNIEnv *env, jobject thisObj, jobject pduContainerBuffer, jint size, jint correlationIdLength)

The SMPP decoder performance depends on several factors. To name a few, the type of the

GPU, number of CPU cores and number of GPU cores, block and grid configurations, the

batch size etc. Therefore the library provides a build-in performance tuner. The startTuner

method could be used to run the tuner. The parameters are the same as the decodePduDirect

method.

Another important feature is that we can set a threshold value for the batch size through a

configuration. If it is set to a greater than zero value, then the GPU would be used for

decoding only for batches larger than the threshold. If the threshold value is zero, then a

compilation time flag would decide between CPU and GPU decoder implementations.

39

3.3.2 SMPP Decoder Library Interface

This is the primary API provided by the SMPP decoder library and following are the

available methods.

1. CudaDecodedContext *decodeGpu(DecoderMetadata decoderMetadata)

2. CudaDecodedContext *decodeGpuDynamic(DecoderMetadata decoderMetadata)

3. DecodedContext *decodePthread(DecoderMetadata decoderMetadata)

4. void startPerfTuner(DecoderMetadata decoderMetadata)

5. void startPerfTunerPthread(DecoderMetadata decoderMetadata)

Before start discussing aforementioned methods figure 3-2 depicts the format that the SMPP

decoder expects each PDU to confirm to.

Correlation-Id PDU-Content PDU-End-Indicator

Figure 3-4 : Structure of the decodable element accepted by the API

First part is the Correlation-Id and the second part is the actual PDU content and the last part

contains a byte pattern to mark the end of the PDU. Every method uses one input parameter

of the type DecoderMetadata. DecoderMetadata is a C structure and contains several

parameters including the byte buffer for the batch of PDUs, the length of the byte buffer, the

correlation id length and the batch size.

CudaDecodedContext *decodeGpu(DecoderMetadata decoderMetadata)

The method decodes SMPP PDUs using the GPU without utilizing Dynamic Parallelism. The

flow of the execution is as follows.

1. Creates a C structure (ByteBufferContext) to hold the pointer to the PDU byte buffer

as well as the complete length of the buffer and the read index of the buffer. The

structure would be used throughout the decoding process.

2. Next by using the received byte buffer, the method creates an array of C structures

(CudaPduContext) to hold start and end positions and the correlation id of each PDU.

40

3. Next we create another array of C structures (CudaDecodedContext) to hold the

decoded PDUs.

4. Lastly we create another C structure (CudaMetaData) which holds the preferred block

and grid dimensions, the byte buffer of PDUs and pre-processed PDU details and the

array of structures for holding the decoded PDUs. This structure would then be sent

to the GPU to get decoded.

CudaDecodedContext *decodeGpuDynamic(DecoderMetadata decoderMetadata)

The method decodes PDUs using the GPU and utilizes Dynamic Parallelism provided with

CUDA. The steps of decoding are different from the normal GPU based decoding process.

1. Creates an array of C structures (CudaDecodedContext) to hold decoded PDUs.

2. Creates a CudaMetaData C structure which contains the initial block and grid

dimensions, the byte buffer of PDUs. The main thing to notice here is that the pre-

processing of the provided byte buffers happens in the GPU as opposed to the normal

GPU based decoding option.

3. Next invokes the Dynamic Parallelism based GPU decoding process.

DecodedContext *decodePthread(DecoderMetadata decoderMetadata)

The method decodes PDUs only using the CPU. The steps are almost same as the normal

GPU based decoding process.

1. Creates a C structure (ByteBufferContext) to hold the pointer to the PDU byte buffer,

the complete length of the buffer and the read index of the buffer. The structure

would be used throughout the decoding process.

2. Next by using the received byte buffer creates an array of C structures

(DirectPduContext) with the start and end positions of PDUs and a pointer to the byte

buffer.

41

3. Creates a predefined number of Pthreads and allocates each thread a part of the PDU

list to decode. The only difference with the normal GPU based decoding method is

that the Pthread version does the decoding in the CPU instead of the GPU.

startPerfTuner(DecoderMetadata decoderMetadata)

The method is used to find the best GPU grid and block configurations for a given batch size.

We may configure a set of block and grid sizes and batch sizes through a configuration file.

The method then calculates the average throughput and the latency for each configuration and

logs the result to a file.

startPerfTunerPthread(DecoderMetadata decoderMetadata)

Same as the startPerfTuner, the method can be used to calibrate the CPU thread count for

different batch sizes. Just like the startPerfTuner method, startPerfTunerPthread generates a

result file with average throughput and latency for each CPU thread configuration with

different batch sizes. These measurements can be used to find the best CPU thread

configuration for a given batch size for different machines.

3.3.3 The Decoder Implementation

The SMPP decoding process can be split into two steps. We will referrer the first step as pre-

decoding in which boundaries and lengths of each packet would be identified and extracted

into a set of C structures. Final step is executing the actual decoding logic based on the

information from the first step. The library offers three different options for performing the

pre-decoding and the decoding steps. Please note that the pre-decoding is a packet

classification step (section 2.4.2) in which we extract useful information from packets without

altering the content.

The first option executes both pre-decoding and decoding steps in the CPU. The second

option performs pre-decoding in the CPU and the decoding is done in the GPU. The third

option executes both pre-decoding and decoding steps in the GPU.

Running Pre-Decoding and Decoding Steps in the CPU

This option allows both the pre-decoding and decoding to be carried out in the CPU. The

library accepts packets in batches and if the batch size is small enough, the throughput gain in

using GPU might get overshadowed by the overheads associated with GPU processing.

42

Therefore for smaller batch sizes, CPU based decoding yields the best performance. The CPU

based decoder has used Pthread in both pre-decoding and decoding steps. The number of

CPU threads is configurable.

Running Pre-Decoding and Decoding Steps in the GPU

The common way of performing both pre-decoding and decoding in the GPU is as follows.

First we copy the byte stream to the GPU. Then the pre-decoding kernel calculates metadata

for each packet. Next the metadata would be copied back to the CPU. Finally the decoding

kernel is executed.

With this approach, the application crosses the CPU/GPU boundary four times. Therefore to

reduce the number of data movements between the CPU and the GPU, we have used CUDA

dynamic parallelism (see section 2.4.4). With dynamic parallelism, once the pre-decoding

kernel finishes executing, a child kernel with the decoding logic would be scheduled by the

respective pre-decoding kernel. Following figure 3-3 illustrates the decoding flow.

Decoding

Kernel-1

(Child kernel)

Decoding

Kernel-2

(Child kernel)

Decoding

Kernel-3

(Child kernel)

Decoding

Kernel-N

(Child kernel)

Byte stream

Pre-Decoding Kernel

PDU-Set-1-

Metadata

PDU-Set-2

Metadata

PDU-Set-3

Metadata

PDU-Set-N

Metadata

Decoded-

PDU-Set-1

Decoded-

PDU-Set-2

Decoded-

PDU-Set-3

Decoded-

PDU-Set-N

Figure 3-5 : Dynamic Parallelism based SMPP decoding flow

43

Each thread of the parent kernel (pre-decoding) iterates through a part of the byte stream

looking for packet boundaries. Once a packet boundary is identified, the thread creates and

populates a metadata structure with the start and end indexes. Once every thread in a block

completes pre-decoding, the first thread of the block schedules a child kernel with the actual

decoding logic. As discussed in section 2.4.4, the parent block waits till the child kernel

finishes.

Running Pre-Decoding Step in the CPU and Decoding Step in the GPU

Pre-decoding at the CPU calculates metadata for each packet. Metadata contains the start and

end indexes of a packet and a pointer to the byte stream. After calculating metadata for each

packet, application dispatches the decoding kernel. The number of streams to be used is a

configuration. In the section 2.4.4.1 we introduced three multi-stream kernel execution

patterns. Pattern B is recommended for GPUs with only one copy engine and one execution

engine. Pattern C is recommended for GPUs with multiple copy engines and one execution

engine. Therefore the library checks for the number of execution and copy engines first and

then decides on which pattern to be used. In terms of the development effort, pre-decoding in

the CPU is much easier than the GPU based pre-decoding. Both pre-decoding and decoding

logics are much simpler in the CPU version. Following figure 3-4 illustrates the data flow.

Decoding Kernel

Byte stream

CPU-Pre-Decoding

PDU-Set-1

Bytes

PDU-Set-2

Bytes

PDU-Set-3

Bytes

PDU-Set-N

Bytes

Decoded-

PDU-Set-1

Decoded-

PDU-Set-2

Decoded-

PDU-Set-3

Decoded-

PDU-Set-N

Figure 3-6 : SMPP decoding flow with CPU based pre-decoding and GPU based decoding

44

The SMPP decoder library supports all three pre-decoding and decoding methods (CPU based

pre-decoding and decoding, GPU based pre-decoding and decoding and CPU based pre-

decoding and GPU based decoding) and the user may decide on the specific method based on

throughput requirements and network traffic patterns.

The GPU Thread Allocation

As discussed in section 2.4.4.2, we have two options for allocating thread in the GPU. First is

to use one thread per packet and the second is to use multiple threads or a thread block for a

single packet. The first options yields better throughput and the second option yields lower

latency. The SMPP decoder is focused on the throughput and therefore we are using one

thread per packet. The implementation distributes the batch of packets among the available

threads and each thread processes one or more packets. But a single packet is always

processed by a single thread.

3.3.4 Utility methods for reading a Byte stream

The SMPP decoder library implements methods for extracting following data types from the

byte stream. Unsigned 8 bit Integer, Unsigned 16 bit Integer, Unsigned 32 bit Integer, NULL

terminated character array (String), byte array of a given size. Every method takes a

ByteBufferContext C structure as one of the input parameter and increment the read index at

the end of a read accordingly.

45

4 Evaluation

Workload Generation 4.1

Our implementation is focused on improving the throughput of SMPP decoding. Therefore

the workload is not focused on traffic patterns such as variations in TPS over time but mostly

on the structure and size of PDUs. One of the major issues we faced was that though there are

open source SMPP frameworks, there were no standard SMPP simulators. Therefore we

wrote our own simulator.

The simulator is capable of generating SMPP PDUs of different types and lengths. It supports

mixing of PDUs of different lengths. For the experiment we have used PDUs of

SUBMIT_SM type only. SUBMIT_SM and DELIVER_SM are structurally identical except

for the COMMAND_ID header. On top of that those two are the most widely used PDU types

in SMPP applications. Following are the compositions of different batch sizes that we have

used.

1. For 1000 batch – 1000 SUBMIT_SMs. Each PDU had different destination and

source addresses and different messages of 20 characters. Experiments were carried

out with 5 optional (TLV) parameters.

2. For 10,000 batch –SUBMIT_SMs with different source and destination addresses and

different message of 20 characters. Experiments were carried out with 5 optional

(TLV) parameters. The simulator used two SMPP sessions with each sending 5000

PDUs. Each session fired at a TPS of 500. Thus it took 5 seconds to fill the buffer.

3. For 100,000 batch –SUBMIT_SMs with different source and destination addresses

and different message of 20 characters. Experiments were carried out with 5 optional

(TLV) parameters. The simulator used four SMPP sessions with each sending 25,000

PDUs. Each session fired at a TPS of 1000. Thus it took 25 seconds to fill the buffer.

4. For 1,000,000 batch –SUBMIT_SMs with different source and destination addresses

and different message of 20 characters. Experiments were carried out with 5 optional

(TLV) parameters. The simulator used ten SMPP sessions with each sending 100,000

PDUs. Each session fired at a TPS of 2000. Thus it took 50 seconds to fill the buffer.

46

Experiment Setup 4.2

Following are the GPU, CPU, Operating System and Memory configurations used.

1. GPU - GeForce GTX 750 Ti GPU

2. Intel Core i7 – 4790 CPU

3. Operating System - Ubuntu 16.04 LTE Release

4. Memory - 16GB RAM

The SMPP Simulator has been allocated 1024 MB of maximum heap size and 512 MB of

initial heap size. The SMPP Server with the GPU accelerated decoder has been allocated 4096

MB of maximum heap size and 1024 MB of initial heap size.

Analysis 4.3

4.3.1 Maximum Throughput Analysis for Different Batch Sizes

Following figure 4-1 illustrates the maximum throughput for a set of batch sizes. For each

batch size, the throughput has been given for Java decoding mode with 4 threads, Pthread

decoding mode with 4 threads, GPU normal execution mode and GPU Dynamic Parallelism

execution mode.

1000 10000 100000 1000000

0

1000000

2000000

3000000

4000000

5000000

6000000

Batch-Size

Th
ro

u
gh

p
u

t

Max-Throughput

Without-
DP
With-DP

CPU – C (4
Threads)
CPU – Java
(4 Threads)

Figure 4-1: Max throughput analysis for four decoding modes and four batch sizes

47

Looking at the figure 4-1, it is evident that both normal and dynamic parallelism based GPU

implementations have higher throughputs than the Java multi-thread or C multi-thread

decoder implementations. The performance gain of GPU over CPU based implementations

(Java or C) is nearly 5 times for batch sizes around 10,000. Apart from the obvious

performance gain, we may make two key observations.

1. Dynamic parallelism based GPU implementation has better performance for

large batch sizes.

2. Normal GPU based implementation is faster for small batch sizes like 1000.

Let us discuss why the system behaves like that. As it has been discussed before, the SMPP

decoder logical flow can be divided into two parts. First part is pre-processing and the second

part is the actual decoding.

With the dynamic parallelism based implementation, both stages (pre-processing and

decoding) are carried out in the GPU. The parent kernel first pre-processes the byte stream

and marks boundaries of each PDU. Finally each parent kernel block launches a child kernel

to carry out the decoding logic. The grid and block sizes for the child kernel are based on the

number of PDU boundaries marked by the parent kernel block.

With the normal multi stream implementation, first the pre-processing is performed in the

CPU. Then the actual decoding logic is offloaded to the GPU. The performance difference

that we observed is mostly due to the implementation of the pre-processing stage. With lower

batch sizes such as 1000, the time taken by the CPU to mark the boundaries is less than the

time taken by the GPU. It is mostly due to the overheads associated with launching parent and

child kernels and also the logic at the GPU for marking boundaries is more complex than the

CPU version. Thus the computational advantage of the GPU is not evident with low batch

sizes.

When the batch size increases, the overhead associated with the GPU bound pre-processing

becomes insignificant and provides a significant performance gain over a normal GPU based

implementation.

48

4.3.2 Throughput Analysis of Dynamic Parallelism GPU Mode

The figure 4-2 illustrates the throughput for different batch sizes with different thread

configurations in dynamic parallelism mode. For the experiment we have used six different

GPU thread configurations ranging from 10,000 to 2 million. With such a wide range of

thread configurations we can make few interesting observations.

1. With a 1000 element batch, the CPU version has better performance than the GPU

version of 2 million threads (Around 2000 blocks were used).

2. For medium and high batch sizes, low thread counts have better performance.

To understand aforementioned behaviors we need to recall how the pre-processing works in a

GPU. During the pre-processing, each thread is allocated a range of bytes from the byte

stream. The byte stream is distributed among threads equally. At the end of marking

boundaries, the starting thread of each block launches a child kernel to carry out the decoding.

For that child kernel to be scheduled, there should be enough resources available in the GPU.

What happens with a large number of threads is that it exhausts the maximum allowed active

warp count on each SM and many of these warps would not be doing any significant work

either. Therefore child kernel launch requests would be delayed and queued up in the

execution engine.

1000 10000 100000 1000000

0

1000000

2000000

3000000

4000000

5000000

6000000

Batch-Size

Th
ro

u
gh

p
u

t
Throughput - Dynamic parallelism

200000
0
102400
0
115200

51200

20000

10000

Figure 4-2 : Throughput analysis for different thread configurations - Dynamic parallelism mode

49

With a low thread count such as 10,000 or 20,000 the amount of work done by each thread is

significant and most importantly, there would be enough resources left for child kernels as

well. The bottom line is that in order to get the best performance out from the SMPP decoder,

it is imperative not to over allocate threads to pre-processing stage.

4.3.3 Throughput Analysis of Normal GPU Mode

The test runs were done with 4 CUDA streams. When comparing figure 4-3 and figure 4-2, it

is evident that for small batch sizes like 1000, normal GPU implementation has an advantage

over using Dynamic Parallelism. The reason is that for small batch sizes, the time taken by the

CPU is less than the time taken by any GPU configuration to mark PDU boundaries.

Next observation is that with a batch size of 1 million, the thread configuration for the best

throughput was 1.2 million. When it comes to Dynamic Parallelism version, it was 20,000

threads.

The reason is that with normal GPU implementation, the GPU decoding throughput was only

affected by the available cores. Whereas with Dynamic Parallelism based version, over

allocation of threads to pre-processor stage might exhaust GPU resources and therefore

reduces the throughput.

For an example, with a batch size of 1 million, the number of threads need to mark PDU

boundaries is not that much higher than the number of threads need with a 100,000 batch size.

It stays around the same value. What matters is the availability of resources to schedule child

kernels to do the decoding.

1000 10000 100000 1000000

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

Batch-Size

Th
ro

u
gh

p
u

t

Throughput - Without Dynamic Parallelism

2000000

1024000

115200

51200

20000

10000

CPU*4

Figure 4-3: Throughput analysis for different thread configurations - Normal GPU mode

50

Last observation is that the rate of the throughput difference for different thread

configurations is low for large batch sizes. The reason again is the time taken for pre-

processing. Normal GPU execution performs the pre-processing at the CPU. Thus the

throughput is limited by the number of available CPU resources. In other words when the

batch size increases, CPU based pre-processing becomes the performance bottleneck.

4.3.4 Effect of Block and Grid Sizes on Performance

Regardless the GPU mode, finding the best thread configuration is a key to achieve a high

throughput. Even with the same number of threads, different Block and Grid configurations

yield different performances. For an example, for a batch size of 10,000, the best performance

is given by 10,000 threads (Dynamic parallelism mode). With that said, we may configure the

10,000 threads in different Grid and Block configurations. Following figure 4-4 illustrates

performance for each configuration.

25 * 400 50 * 200 100 * 100 200 * 50 250 * 40

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

With-DP

Without-DP

Figure 4-4 : Performance for different Block and Grid sizes. The batch is 10,000 elements. X axis format

is (Block Size * Grid Size)

51

Looking at figure 4-4, two observations can be made. First is that irrespective of the GPU

mode (Dynamic parallelism or normal mode), when the number of Blocks decreases,

throughput increases. Scheduling Blocks is a costly operation compared to scheduling threads

in a SM. To schedule a Block, the GPU need to assign Shared memory, check for the

available SPs in the potential SM etc. On the contrary scheduling threads for a Block is more

and done by their respective SMs. Also there is a bigger penalty for using higher number of

blocks in dynamic parallelism mode. It exhausts the available SMs for child kernels. All the

aforementioned factors contribute to the first observation.

Second observation is that irrespective of the GPU mode, for Block numbers below 100, the

rate of performance gain is negligible. Every GPU based application has a sweet spot when it

comes to Block and Grid configurations. In our case, it is close to 100 Blocks per Grid and

100 threads per Block. When we are at a sweet spot, any further improvement in thread

allocations may not yield a significant performance gain. In the context of the example,

around 100 Blocks the overhead of Block scheduling becomes insignificant compared to the

workload.

52

5 Conclusion and Future Work

Conclusion 5.1

We started the discussion with an introduction to the SMPP protocol and then introduced the

popular SMPP framework Cloudhopper (section 2.1 and 2.2). Next we discussed GPUs in

general along with heterogeneous computing model and following that looked into Nvidia

GPU architecture basics and CUDA programming model (section 2.3).

Next we started looking into GPU based network packet processing. Throughout the section

2.4, the discussion was planned out across four major steps of network packet processing. For

each step, we discussed the available options and their pros and cons.

Then we stared discussing the SMPP decoder library implementation in chapter 3. We first

introduced primary modules involved in the project and then started discussing specific

implementation details of the library.

Next in chapter 4 we explained the evaluation process and the section 4.3 produces an

analysis on the throughput of the system for various grid and block sizes and batch sizes. The

analysis was done for three decoding modes namely CPU based decoding, normal multi-

stream GPU based decoding and dynamic parallelism based GPU decoding.

The analysis in chapter 4 shows that the SMPP decoder library provides better performance in

both dynamic parallelism based and normal multi-stream based GPU modes than the CPU

based implementations (Implemented in both Java using Cloudhopper and C). The

performance gain of GPU based decoding modes for most commonly used batch sizes like

10,000 is more than five times and in average the gain is around four times over CPU based

decoding. Therefore in conclusion, we have achieved a significantly accelerated SMPP

decoding through GPUs.

Future Work 5.2

1. One of the major drawbacks in the SMPP decoder is the poor JNI performance. When

the JNI interface is used, the library adaptation layer has to convert each decoded C

Structure into a Java object. For an example, for a batch size of 10,000 PDUs, the

decoder has to create 10,000 Java objects and put them into a List and then return the

List back to the Java application. Crossing the JNI boundary for 10,000 times is

costly. One suggestion is to not create Java objects for every decoded PDU. Instead

the decoder will create a new output byte stream with decoded bytes and delimiters

for each parameter. For an example, when the decoder encounters the Destination

53

Address field of a PDU, it would first update the output byte stream with the start

delimiter for the Destination Address field then update the output byte stream with

the actual decoded Destination Address bytes and lastly inserts the Destination

Address end delimiter to the output byte stream.

The figure 5-1 shows the layout of the updated output byte stream for the Destination

Address field. With that, the SMPP decoder does not have to create decoded Java

objects for each PDU. Instead we could allocate an off heap memory for the new

output stream and return the pointer. The Java application can now create Java objects

just by reading the stream. The delimiters for each parameter are unique and would be

stored in a table for fast lookup.

2. One of the most complex parts in CUDA application development is manipulating

data in multiple memory spaces (CPU and GPU). For an example a pointer to a data

structure allocated in CPU cannot be used in the GPU. Unified Memory Access

(UMA) [29] [30] solves much of the programming complexities associated with

working on multiple memory spaces. Unified Memory is a single memory address

space that can be accessed by any processor (GPU or CPU) in the system. It enables

the programmer to allocate and manipulate data in the CPU as well as in GPU

without explicitly copying data from and to CPU/GPU.

3. The SMPP decoder library currently supports only a limited amount of TLVs in GPU

modes. The number of TLVs supported cannot be changed dynamically at runtime

and we need to update the library to decode any number of TLVs in a single packet.

4. The library uses a maximum SMPP PDU size in order to limit unnecessary memory

allocations. We need to update the library to facilitate the PDU size based on the

batch size so that smaller batches could have large SMPP packets.

Destination Address Bytes

Destination Address Bytes
Start

Delimiter

End

Delimiter

Figure 5-1 : Updating decoded fields with delimiters

54

6 References

[1] 3gpp-specification. (2013, Dec.) 3GPP Web Site - SMS Specification Archive. [Online].

http://www.3gpp.org/ftp//Specs/archive/23_series/23.040/

[2] SMPP Specification Version 3.4. [Online].

http://opensmpp.org/specs/smppv34_gsmumts_ig_v10.pdf

[3] Twitter. Git Hub - Cloudopper SMPP implementation source - Git-Tag - v5.0.9. [Online].

https://github.com/twitter/cloudhopper-smpp

[4] opensmpp. open smpp. [Online]. http://opensmpp.org/

[5] Peter Schwabe. (2013, Mar.) Graphics Processing Units- First Chapter. [Online].

https://cryptojedi.org/papers/gpus-20130310.pdf

[6] Netty IO. Netty IO. [Online].

https://netty.io/4.0/api/io/netty/channel/ChannelPipeline.html

[7] Netty-IO. (2017, Oct.) Netty Framework Main Website. [Online]. https://netty.io/

[8] Netty-IO. (2017, Sep.) Netty Source Code - GitHub - Tag - netty-4.1.16.Final. [Online].

25

[9] Nvidia. Nvidia-GPU-Introduction. [Online]. http://www.nvidia.com/object/gpu.html

[10] NVIDIA. (2017) NVIDIA GPU Programming Guide - Version 2.5.0. [Online].

https://developer.download.nvidia.com/GPU_Programming_Guide/GPU_Programming

_Guide.pdf

[11] NVIDIA. (2010, April) Nvidia-Fermi-Architecture-Whitepaper. [Online].

https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_

Architecture_Whitepaper.pdf

[12] Sergey Pakhomov. compress.ru - Microarchitecture AMD Bobcat vs. Intel Atom.

[Online]. http://compress.ru/article.aspx?id=21785

[13] Erik Lindholm, John Nickolls, Stuart Oberman, John Montrym. NVIDIA TESLA:A UNIFIED

GRAPHICS AND COMPUTING ARCHITECTURE. [Online].

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=795272016A91B31BF765F4

7CE0E3A758?doi=10.1.1.210.5016&rep=rep1&type=pdf

[14] Nvidia. NVIDIA’s Next Generation CUDATM Compute Architecture- Kepler TM GK110.

[Online]. https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf

[15] Wikipedia. Maxwell-Microarchitecture. [Online].

https://en.wikipedia.org/wiki/Maxwell_(microarchitecture)

[16] Wikipedia. Pascal-Microarchitecture. [Online].

https://en.wikipedia.org/wiki/Pascal_(microarchitecture)

[17] Nvidia. (2010) Nvidia - Fermi GPU Architecutre Document. [Online].

https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_

Architecture_Whitepaper.pdf

[18] Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evangelos P. Markatos,

and Sotiris Ioannidis, "Gnort: High Performance Network Intrusion Detection Using

http://www.3gpp.org/ftp/Specs/archive/23_series/23.040/
http://opensmpp.org/specs/smppv34_gsmumts_ig_v10.pdf
https://github.com/twitter/cloudhopper-smpp
http://opensmpp.org/
https://cryptojedi.org/papers/gpus-20130310.pdf
https://netty.io/4.0/api/io/netty/channel/ChannelPipeline.html
https://netty.io/
file:///D:/MSC/thesis/25
http://www.nvidia.com/object/gpu.html
https://developer.download.nvidia.com/GPU_Programming_Guide/GPU_Programming_Guide.pdf
https://developer.download.nvidia.com/GPU_Programming_Guide/GPU_Programming_Guide.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://compress.ru/article.aspx?id=21785
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=795272016A91B31BF765F47CE0E3A758?doi=10.1.1.210.5016&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=795272016A91B31BF765F47CE0E3A758?doi=10.1.1.210.5016&rep=rep1&type=pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://en.wikipedia.org/wiki/Maxwell_(microarchitecture)
https://en.wikipedia.org/wiki/Pascal_(microarchitecture)
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

55

Graphics Processors," in RAID '08 Proceedings of the 11th international symposium on

Recent Advances in Intrusion Detection, Cambridge, MA, USA, 2008, pp. 116-134.

[19] Nigel Jacob and Carla Brodley, "Offloading IDS Computation to the GPU," in ACSAC '06

Proceedings of the 22nd Annual Computer Security Applications Conference,

Washington, DC, USA, 2006, pp. 371-380.

[20] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon, "PacketShader: A GPU-

Accelerated Software Router," in SIGCOMM '10 Proceedings of the ACM SIGCOMM

2010 conference, NEW DELHI, INDIA, 2010, pp. 195-206.

[21] Diego Perino, Matteo Varvello, Leonardo Linguaglossa, Rafael Laufer, and Roger

Boislaigue, "Caesar: a content router for high-speed forwarding on content names," in

2014 ACM/IEEE Symposium on Architectures for Networking and Communications

Systems, Marina del Rey, CA, USA, 2014, pp. 137-147.

[22] Jin Zhao, Xinya Zhang, Xin Wang, and Xiangyang Xue, "Achieving O(1) IP lookup on

GPU-based software routers," in SIGCOMM '10 Proceedings of the ACM SIGCOMM

2010 conference, NEW DELHI, INDIA, 2010, pp. 429-430.

[23] Shuai Mu, Xinya Zhang, Nairen Zhang, and Jiaxin Lu, "IP routing processing with graphic

processors," in DATE '10 Proceedings of the Conference on Design, Automation and

Test in Europe, Leuven, Belgium, 2010, pp. 93-98.

[24] Giorgos Vasiliadis, Lazaros Koromilas, Michalis Polychronakis, and Sotiris Ioannidis,

"GASPP: A GPU-Accelerated Stateful Packet Processing Framework," in USENIX ATC'14

Proceedings of the 2014 USENIX conference on USENIX Annual Technical Conference,

Philadelphia, PA, 2014, pp. 321-332.

[25] Chengkun Wu, Jianping Yin, Zhiping Cai, En Zhu, and Jieren Chen, "A Hybrid Parallel

Signature Matching Model for Network Security Applications Using SIMD GPU," in APPT

'09 Proceedings of the 8th International Symposium on Advanced Parallel Processing

Technologies, Rapperswil, Switzerland, 2009, pp. 191 - 204.

[26] Long Chen, Oreste Villa, Sriram Krishnamoorthy, and Guang R. Gao, "Dynamic Load

Balancing on Single- and Multi-GPU Systems," in 2010 IEEE International Symposium on

Parallel & Distributed Processing (IPDPS), Atlanta, GA, USA, 2010, pp. 1-12.

[27] Mohammed Sourouri, Tor Gillberg, and Scott B. Baden, "Effective multi-GPU

communication using multiple CUDA streams and threads," in 2014 20th IEEE

International Conference on Parallel and Distributed Systems, Hsinchu, Taiwan, 2014,

pp. 981 - 986.

[28] Marisabel Guevara, Chris Gregg, Kim Hazelwood, and Kevin Skadron. (2009) Semantic

Scholar. [Online]. https://www.semanticscholar.org/paper/Enabling-Task-Parallelism-

in-the-CUDA-Scheduler-Guevara-

Gregg/95eeb5141693f807fba987a66fb63de40a5a0c27?tab=abstract

[29] Jin Wang and Sudhakar Yalamanchili, "Characterization and analysis of dynamic

parallelism in unstructured GPU applications," in 2014 IEEE International Symposium on

Workload Characterization, Raleigh, North Carolina, USA, 2014, pp. 51 - 60.

[30] Peter Zhang et al., "Dynamic parallelism for simple and efficient GPU graph

algorithms," in IA3 '15 Proceedings of the 5th Workshop on Irregular Applications:

https://www.semanticscholar.org/paper/Enabling-Task-Parallelism-in-the-CUDA-Scheduler-Guevara-Gregg/95eeb5141693f807fba987a66fb63de40a5a0c27?tab=abstract
https://www.semanticscholar.org/paper/Enabling-Task-Parallelism-in-the-CUDA-Scheduler-Guevara-Gregg/95eeb5141693f807fba987a66fb63de40a5a0c27?tab=abstract
https://www.semanticscholar.org/paper/Enabling-Task-Parallelism-in-the-CUDA-Scheduler-Guevara-Gregg/95eeb5141693f807fba987a66fb63de40a5a0c27?tab=abstract

56

Architectures and Algorithms, Boston, 2015, pp. Article No:11.

[31] NVIDIA. Nvidia Dynamic Parallelism Tech Brief. [Online].

http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_

Dynamic_Parallelism_in_CUDA.pdf

[32] Mark Harris. (2017, June) devblogs.nvidia.com. [Online].

https://devblogs.nvidia.com/parallelforall/unified-memory-cuda-beginners/

[33] Raphael Landaverde, Tiansheng Zhang, and Ayse K. Coskun, "An investigation of Unified

Memory Access performance in CUDA," in 2014 IEEE High Performance Extreme

Computing Conference, Waltham, MA, USA, 2014, pp. 1-6.

[34] NVIDIA-CUDA Programming-Guide. [Online]. http://docs.nvidia.com/cuda/cuda-c-

programming-guide/#concurrent-kernel-execution

[35] Lingyuan Wang, Miaoqing Huang, and Tarek El-Ghazawi, "Exploiting Concurrent Kernel

Execution on Graphic Processing Units," in 2011 International Conference on High

Performance Computing & Simulation, Istanbul, Turkey, 2011, pp. 24 - 32.

[36] Chris Gregg, Jonathan Dorn, Kim Hazelwood, and Kevin Skadron, "Fine-Grained

Resource Sharing for Concurrent GPGPU," in HotPar'12 Proceedings of the 4th USENIX

conference on Hot Topics in Parallelism, Berkeley, CA, 2012, pp. 10-10.

[37] Sreepathi Pai, Matthew J. Thazhuthaveetil, and R. Govindarajan, "Improving GPGPU

Concurrency with Elastic Kernels," in ASPLOS '13 Proceedings of the eighteenth

international conference on Architectural support for programming languages and

operating systems, Houston, Texas, 2013, pp. 407-418.

[38] Nicholas Wilt, The CUDA Handbook, 1st ed. Boston, Massachusetts: Addison-Wesley,

2013.

[39] NVIDIA. Nvidia CUDA Streams and Concurrency Webinar. [Online].

http://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebin

ar.pdf

[40] Michael Bauer, Henry Cook, and Brucek Khailany, "CudaDMA: Optimizing GPU Memory

Bandwidth via Warp," in SC '11: Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Analysis, Seatle, WA, USA, 2011, pp.

1-11.

http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
https://devblogs.nvidia.com/parallelforall/unified-memory-cuda-beginners/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#concurrent-kernel-execution
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#concurrent-kernel-execution
http://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
http://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

