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Abstract 
 

Graphic processing unit (GPU) provides a low-cost but powerful hardware platform for 

implementing massively parallel high performance systems. The capabilities of GPUs have 

been used to provide fast and low cost solutions in areas such as machine learning, complex 

simulations such as global warming and genetic engineering and network traffic processing.  

Our research is focused on using GPUs to accelerate the decoding process of the Short 

Message Peer to Peer (SMPP) protocol.  SMPP protocol is used to exchange Short Messages 

between Short Message Service Centers (SMSCs) and TCP/IP based applications. From the 

point of view of a user, a SMS taking few seconds is acceptable and therefore a SMSC is 

mostly focused on achieving a higher throughput than a low per packet latency.  

We have developed a SMPP decoder library in C with GPU support. It supports both CPU 

based and GPU based decoding. The library also includes two primary APIs. The first API is 

for general usage by any C based application and the second API could be used by Java 

Native Interface (JNI) based application. 

We have evaluated the performance of the library in both CPU and GPU modes and 

compared it with a SMPP server based on Cloudhopper, a Java implementation of SMPP 

protocol. The evaluation shows around five times throughput gain in GPU mode over both 

Java and C based CPU modes.  
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1  Introduction 

Background 1.1 

Short Message Service (SMS) [1] is a popular value added service provided by 

telecommunication service providers and uses existing signaling networks for 

communication. Telecommunication infrastructures for signaling networks are expensive and 

setting up a test environment is rather costly.  

The Short Message Peer to Peer (SMPP) [2], a TCP/IP based protocol, was created initially as 

a low cost solution for testing SMSC (Short Message Service Center) functionalities. Later 

SMS based value added services such as personalized applications (for example: thought of 

the day, jokes, and match making applications) gained popularity and SMPP was revamped as 

the standard communication protocol in the IP network for SMS. Well-known SMPP protocol 

implementations (Cloudhopper [3], OpenSMPP [4]) perform protocol data unit decoding and 

encoding using only the CPU. 

Graphics Processing Units (GPU) [5] opened up a new paradigm in parallel computing. GPUs 

with their processing cores (streaming cores), are specifically engineered to run data 

independent (data parallelizable) operations efficiently. This generalized use of GPUs for 

operations other than graphics processing is known as General Purpose GPU (GPGPU) 

programming. Overtime GPU vendors have come up with much simpler programming 

models and APIs for utilizing GPGPUs.   

In this research we have focused on developing a SMPP decoder library which offloads the 

decoding process to a GPU.  

Problem Statement  1.2 

There exists SMPP protocol implementations such as Cloudhopper [3] and OpenSMPP [4] 

etc. Cloudhopper [3] from Twitter is the most popular SMPP framework and is written in 

Java. It uses the Java I/O library Netty [6] for low level network traffic management. 

Cloudhopper [3] supports CPU based multi-threading through Java threads. But it is more 

focused on parallelizing SMPP sessions rather than packet encoding and decoding and that 

leaves room for improvement. 

In this research, we wish to investigate whether the SMPP decoding throughput could be 

improved by utilizing parallel computing specifically with regard to GPUs. SMSCs usually 
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act as SMPP servers which act on received SMPP messages. Therefore our research has 

focused on improving SMPP decoding performance only.  

Objectives 1.3 

The objectives of our research are as follows. 

 

1. Implementing a SMPP decoder based on a multi-core CPU. 

2. Implementing a SMPP decoder which utilizes a GPU.  

3. Evaluating the performance of both implementations against an existing implementation. 

 

Overview of the Thesis 1.4 

 

Chapter 2 contains the literature survey. The literature survey starts with an introduction to 

SMPP protocol and the SMPP decoding algorithm. Next we introduce Cloudhopper as a Java 

based SMPP framework and provide a brief description of the internal logic and architecture. 

Next we start looking into heterogeneous computing and GPU programming models. Then 

under related works we discuss network packet processing in relation with GPUs. The 

discussion is focused on four main aspects of network packet processing. 

Chapter 3 discusses implementation details. It starts with a discussion of the architecture of 

our SMPP decoding library and provides brief introductions of two main APIs in the library.  

Chapter 4 encapsulates evaluation details including the setup of the experiment and the 

analysis of the results. Chapter 5 contains the conclusion and chapter 6 presents potential 

future improvements for the system.  
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2  Literature Survey 

Introduction to SMPP Protocol 2.1 

The SMPP protocol, though the name says peer to peer, actually uses a client-server model. 

The client side components are commonly known as External Short Message Entity (ESME). 

An ESME is basically a SMPP client that receives and sends short messages. The server side 

is a SMSC [2].  

SMPP protocol defines mainly 12 types of Protocol Date Units (PDUs) and all but one 

(ALERT_SM) have response PDUs as well. The most frequently used PDUs are the 

SUBMIT_SM and the DELIVER_SM. Both types have their restrictions on the direction. 

Figure 2-1 depicts the basic message configuration for SMPP protocol. 

  

 

  

 

 

                                                                              

  

   

                                                                        

                                                                        

     

Figure 2-1 : SMPP frequently used message flow 

SMPP PDU Structure 

 

A SMPP packet consists of three main sections as shown in the Figure 2-2.  The first section 

is the header. The header contains information needed to identify the type of the packet and 

the status of the request or the response (success or failure reason).  The mandatory and 

optional parameter sections are part of the PDU body.  

Mandatory parameters are well defined for their length and value types. The type and number 

of mandatory parameters in a PDU vary with the type of the PDU.  

Optional parameters are defined as Tag Length Value (TLV) fields. The type and number of 

optional parameters are dependent on the PDU type as well.  

For our work we mainly focus on DELIVER_SM and SUBMIT_SM and their responses as 

they are the mostly used PDUs in SMPP communication.  
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Figure 2-2 : SMPP PDU structure 

 

Cloudhopper SMPP Library 2.2 

 

Cloudhopper is a SMPP protocol framework written in Java by Twitter. In addition to 

decoding and encoding SMPP PDUs, Cloudhopper provides a set of convenient interfaces to 

manage network connections in terms of creating TCP connections, managing request and 

response timeouts, managing connection failures and managing SMPP sessions.   

Cloudhopper implementation depends heavily on the popular Java NIO library Netty [7] [8]. 

It offers two basic operation modes, server and client. An implementation can create an SMPP 

server that accepts and process SMPP requests or an SMPP client which may initiate an 

SMPP session. The following subsections will look into the implementation of each mode. 

2.2.1 SMPP Decoding Process 

Cloudhopper uses one thread per PDU for decoding. SMPP uses TCP as the transport layer 

protocol. Therefore the data for a particular PDU might not be in a single TCP segment and 

Cloudhopper waits for the complete SMPP PDU.  

After receiving all the data for the PDU, the framework first reads the PDU header and 

figures out the PDU type and total length. Then based on the PDU type, it first decodes the 

mandatory parameters. Lastly the framework decodes optional parameters. Decoding optional 
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parameters is not straight forward as decoding mandatory parameters. Optional parameters are 

encoded in TLV format as we have mentioned before. Therefore decoding optional parameters 

need to be done sequentially. 

2.2.2 Netty Library Architecture  

Netty uses the term channel to identify an entity which wraps components capable of doing 

I/O such as network sockets. When it comes to network I/O, a channel may use a TCP, UDP 

or SCTP socket.  

A channel always has a pipeline associated with it. Pipeline acts as the carrier for sending 

(outbound) and receiving (inbound) data. A pipeline can have a set of handlers for processing 

the aforementioned outbound and inbound data. Handles carry the logic for processing 

inbound and outbound data. 

For an example, a Netty based HTTP library implementation may have several handlers. One 

of the handlers has the logic for encoding and decoding data. Another handler would manage 

connections and so on. In a nutshell, handlers encapsulate the domain specific logic in a Netty 

based application. Figure 2-3 shows the relationship between channels, pipelines and 

handlers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3 : Netty Inbound and Outbound Message Handling Architecture [6] 
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In 1999, Nvidia introduced GPU to the world of personal computers. At the time, a GPU is 

essentially a collection of graphic related processing units. The technical definition of a GPU 

coined by Nvidia is as follows. “A GPU is a single chip processor with integrated transform, 

lighting, triangle setup/clipping, and rendering engines that is capable of processing a 

minimum of 10 million polygons per second” [9] . 

One of the unique traits of graphic processing is that most of the operations are data 

independent. In other words in general, graphic processing operations are data parallelizable. 

GPUs have been designed specifically to optimize the data parallelizable operations and that 

opened up a new platform for developing and executing low cost and high performance 

applications.  The term General Purpose GPU (GPGPU) is used to identify the use of GPUs 

for computations normally done by the Central Processing Unit (CPU).  

In early days, writing applications for GPUs was cumbersome. One of the main reasons was 

the complexity associated with the APIs. Programmers had to master the inner working of a 

GPU before developing an application. As GPGPUs gained popularity, manufactures 

introduced APIs with less coupling to the underlying hardware layer. The two most popular 

such APIs are Open Computing Language (OpenCL) and Compute Unified Device 

Architecture (CUDA). OpenCL framework is more of a generic heterogeneous programming 

standard and apart from programming GPUs it can be used to program a wide array of devices 

including Field Programmable Gate Arrays (FPGAs) and Digital Signal Processors (DSPs). 

CUDA was developed not as a generic framework but as a platform and a framework to work 

with Nvidia GPUs. CUDA provides a much simpler API implementation than OpenCL and 

also has a rich echo system of libraries and tool sets.  

For the project we focus on CUDA [10] parallel computing platform implemented in C/C++.  

 

2.3.1 Heterogeneous Computing 

 

Heterogeneous computing model uses different types of computing cores. It is different from 

homogeneous computing model where the latter uses a single type of computing core. For an 

example the original Cloudhopper framework follows a homogenous computing model where 

it uses only the CPU. In contrast, the SMPP decoder framework that we wish to develop uses 

the CPU as well as the GPU. In general GPGPU applications follow the heterogeneous model 

in which a part of the application tasks gets offloaded to the GPU.  
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2.3.2 Nvidia GPU Hardware Architecture 

Usually a single GPU has a large number of cores compared to a modern multi-core CPU. For 

an example, a GTX 750 Ti GPU has around 600 cores. How a CPU core is different from a 

GPU core is fundamental to understand the way a GPU works as GPU and CPU cores are 

optimized for different purposes. Nvidia uses the term streaming Processor (SP) for a GPU 

core.  

GPUs focus on data parallelism while CPUs are more generic and support both data and task 

parallelism. To achieve a high data parallelism, GPUs relies on a simple but a large number of 

cores. In order to reduce the cost, the power consumption and the size, a single GPU core has 

a limited set of functionalities as well as limited in computational power. Figure 2-4 shows an 

Nvidia Fermi architecture GPU core block diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4 : GPU streaming Processor Core Block Diagram [11] 

 

Figure 2-5 shows an AMD processor block diagram. 
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Figure 2-5 : AMD CPU Processor Core Block Diagram [12] 

 

Here we have listed the differences between a CPU Core and a GPU Core. 

1. A GPU core cannot fetch, decode or dispatch instructions. It relies on instruction 

schedulers of streaming Multiprocessors (SM) to do so. For now we may consider a SM 

as a controller of a set of GPU cores and a GPU would have multiple SMs. A normal 

CPU core has its own program counter and fetch, decode and execute units. Also a CPU 

core has a much larger number of pipeline stages, sometimes in the range of 20 parallel 

stages.  

 

2. A CPU core supports branch predictions. GPU cores do not support branch prediction and 

it is highly advised to not use extensive number of branching instructions in a GPU 

program.  
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3. A GPU core does not have individual caches and registers and a CPU core has much large 

caches and registers. GPU cores use a set of shared registers and caches. A GPU core gets 

allocated a set of registers by the relevant SM.  

 

4. A GPU core cannot handle interruptions, cannot handle I/O read/write where as a normal 

CPU core is well capable of handling I/O and interruptions.   

 

As a summary, a CPU core is a more self-sustaining unit designed to execute a single 

instruction as fast as possible with a low latency. To achieve the low latency in instruction 

execution, a CPU core has more additional units of functionalities and that increase the 

amount of transistors used and the power consumption.  

A GPU core on the other hand is not a self-sustaining computational unit. It relies on a 

common controller to fetch decode and schedule instructions. Apart from the aforementioned 

shortcomings, a GPU core has well designed floating point and integer ALU units. These 

floating point and integer ALUs make up most of the GPU core. In essence a GPU core is 

really a container of floating point and integer ALUs. Some GPU architectures have one 

floating point and one integer ALU per core as with the Fermi architecture and another set of 

GPUs have more than one ALU per core. 

2.3.3 Streaming Multiprocessor 

Nvidia GPUs have been evolving with several generations of microarchitectures such as Tesla 

[12], Fermi [11], Kepler [13], Maxwell [14] and Pascal [15]. For our discussion we have 

focused on Fermi microarchitecture. The reason for considering Fermi is that it has all the 

important elements of successor microarchitectures such as Kepler and only lacks in the 

number of streaming processors and streaming multiprocessors. Older microarchitectures 

such as Tesla lack multiple warp schedulers per streaming multiprocessor and store and load 

units.  
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Figure 2-6 : Nvidia Fermi Architecture - streaming Multiprocessor Block Diagram [11] 

 

Figure 2-6 shows an Nvidia Fermi architecture streaming multiprocessor micro-architecture 

block diagram [14]. Streaming multiprocessor is a term used by NVIDIA to identify a unit 

that controls a group of streaming Processors (SP). As shown in the figure 2-6, a SM has 

several key components.  

 

1. GPU Cores (streaming processors) 

Fermi architecture puts 32 cores in a single SM. As explained previously, we may 

think of a single core as a container for a Floating Point and an Integer ALU and each 

of these cores can be utilized concurrently. 

 

2. Warp Scheduler 

GPUs confirming to Fermi architecture have two warp schedulers as seen in the 

figure 2-6. Before understanding warp schedulers, it is important to understand what a 

warp is. A SM schedules N number (The number depends on the GPU architecture) 

of parallel threads at once to carry out an instruction. A group of such scheduled 
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threads are called a warp. Please note that warps are not a set of streaming processors 

but a set of threads and these threads can be scheduled on a given set of streaming 

processors. Usually the warp size is 32 threads for Fermi architecture. It means that 

when an SM has a set of instructions and needs to run them on N number of threads, 

the SM schedules the instructions in batches of 32 threads. But we have mentioned 

previously that in Fermi architecture, a SM has only 32 streaming processors. So why 

does a Fermi SM have two warp schedulers? 

 

The answer is with the clock speed at which the warp schedulers work and the clock 

speed at which the streaming processors work. A SP works at about twice the rate of 

a warp scheduler. It is called the Hot Clock. So this allows each warp scheduler to 

schedule selected warps on just 16 SPs. As CUDA cores run at twice the scheduler’s 

clock rate, by the time of the next instruction, the set of 16 cores would run 32 cores 

worth of operations.  This allows the GPU to attain a higher level of hardware 

utilization. Figure 2-7 is a sample of how warp scheduling is managed with two warp 

schedulers. 

 

 

                         Figure 2-7 : Dual Warp Scheduler in Fermi Architecture [11] 



12 
 

3. Store and Load Units 

Warp schedulers use Store and Load units to store/load data to/from the global 

memory, shared memory and cache. Fermi architecture has 16 Load and Store units 

and they operate at the warp scheduler’s clock speed. Therefore only a maximum of 

16 threads can be served per clock cycle.  

 

4. Special Function Units  

Special function units are for carrying out instructions such as sin, cosine, reciprocal 

or square root. Fermi architecture has four special function units. With that a 

complete warp takes about 8 cycles to execute a special function. Special function 

units have a decoupled pipeline from the instruction dispatcher of a scheduler. What it 

means is that the dispatchers can issue instructions to other units concurrently. 

 

5. Registers, Cache and Shared Memory 

Cache and registers are shared within a thread and the shared memory is used for 

sharing and coordinating among threads in a block. We will discuss more about 

blocks and shared memory in later sections. 

 

 

2.3.4 CUDA Programming Model 

 

In previous sections we discussed the main components of a GPU and the basics of the Nvidia 

GPU architecture. We discussed the architecture mainly in reference with the Fermi 

architecture. As the architecture evolves the key components evolve too such as the number 

of streaming Processors per SM, the number of warp schedulers per SM, warp size, clock 

speed, Store/Load and Special Function Units etc.  

For the idea of using GPUs for general operations to be viable, it is essential to decouple 

development API from the underlying GPU architectures. Therefore Nvidia CUDA 

framework wraps the underlying device specific architectural details and provides an abstract 

API for the application developers. Doing so allows application developers to focus on the 

business logic instead of every underlying hardware and driver detail. In following we will 

look into the CUDA programming model and the API.  First we will discuss few key concepts 

in CUDA programming model. 
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1. Device and Host and kernel 

Device and host are two of the main abstractions in CUDA. The term device 

means the GPU and host means the CPU. Every CUDA application has a part that 

runs on the CPU and another part that runs on the GPU. The GPU bound 

execution units are called kernels. Though usually a kernel has to be launched by 

the host, there are advance ways to launch kernels by another kernel.  

 

2. Blocks and Grids  

Blocks and grids are CUDA abstractions that for configuring threads. When 

scheduling a kernel, the application needs to provide the number of threads the 

kernel to be executed on. Instead of just configuring the number of threads for a 

kernel, block and grid provides a more flexible model of defining threads. 

 

A block is a collection of threads. The number of threads for a block can be given 

as a single or two or three dimensional array. For an example if the block size is 

N threads, it could be represented as <N> or <N/2, N/2> or <N/3, N/3, N/3>. 

 

A grid is a collection of blocks. Same as a block, the number of blocks for a grid 

can be given as a single or two or three dimensional array.  Following example 

shows the thread configuration for a kernel that runs on 120 threads. 

       It has 10 blocks per grid and 12 threads per block. 

kernel_1<<<10, 12>>>() 

CUDA API provides C structures for defining grid and block dimensions more 

conveniently. Blocks and grids have few unique execution behaviors too.  

 

First is that the threads of a block always get scheduled on the same SM. For an 

example, if the number of threads for a block is 1024 and the number of 

streaming processors in a SM is 32, then all 1024 threads would be scheduled on 

those 32 SPs regardless of the availability of other SMs. Therefore developers 

may need to pay some attention to hardware configurations.  

 

Second is utilizing shared memory. Threads in a block share the SM’s shared 

memory. In fact the developer may define the size of the shared memory 

dynamically for a block too. But keep in mind that memory access is not volatile 

in the sense that changes made to the shared memory by threads in a block might 

not be visible to other threads in the same block immediately.  
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Third is barrier support. The developer may use thread barriers for threads of a 

block. It is useful in certain scenarios such as loading data to the shared memory 

from the global memory. Figure 2-8 shows the relationship between grids and 

blocks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-8 : CUDA Grid and Block Structure 

 

Executing a kernel usually involves the following steps.  

1. Allocating global memory in the GPU (device). 

2. Copying data to be processed to the allocated memory. 

3. Scheduling the kernel and thus processing the data. 

4. Copying the result back from the GPU (device) to CPU (host). 

 

Depending on the application, some of the steps can be skipped like copying data back to host 

memory. But at the end, these four steps or several of the steps would be followed by every 

CUDA based application. Figure 2-9 depicts three of the aforementioned four steps 

(allocating memory in GPU is not shown).  
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Figure 2-9 : Basic CUDA data flow 

 

 

GPU Based Network Packet Processing 2.4 

 

Research has been done on various types of GPU based network packet processing systems 

such as Intrusion Detection Systems [15] [16], Routers [17] [18] [19] [20] and TPC/IP packet 

decoders [21] [22]. Though these systems have different functionalities and algorithms, 

generally they all use a common set of activities as shown below. 

 

1. Packet capturing. 

2. Packet classification and pre-processing. 

3. Transferring packets between the GPU and the CPU. 

4. Processing packets in the GPU. 

 

Let us take a more comprehensive look into each activity. Please note that the aforementioned 

activities are not listed in any particular execution order. For an example, packet classification 

and pre-processing could be done either in the CPU or the GPU. Therefore packets might 

need to be transferred to the GPU before carrying out classification or pre-processing.  
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2.4.1 Packet Capturing 

 

A network packet processor, irrespective of the type, operates on a specific layer of the OSI 

network stack. For an example, a GPU based router might need only to decode the OSI Layer 

3 data and a GPU based switch might need to decode the OSI Layer 2 data. An 

implementation like the SMPP decoder handles a specific application layer protocol such as 

SMPP.  

Most of the network packet processors run on general purpose operating systems (Windows, 

Ubuntu, Fedora, FreeBSD). These operating systems may not handle network traffic in an 

optimized way. For an example, Linux network driver uses two types of buffers, data and 

metadata. The driver allocates and de-allocates these buffers for each packet. The allocation 

and de-allocation overhead could be considerable at a higher receiving and transmission rate. 

Because of that some GPU based packet applications have changed the network driver to 

avert the aforementioned overhead.    

A solution for this has been proposed in PacketShader [17] in which the operating system 

allocates a large data and metadata buffers initially to minimize the allocation and de-

allocation overhead. 

 

2.4.2 Packet Classification and Pre-Processing 

 

Packet classification is a key aspect of a network packet processor. Classification extracts 

useful information from the packet prior to the decoding stage. The specific nature of the 

information depends on the application. For an example, an application might need to ensure 

the availability of the complete TCP based packet prior to start the decoding process. Thus the 

classification stage might need to check the length of the available data based on the protocol 

specification.  

Another example would be to identify the type of the packet. In order to do that, the 

classification module might use pattern matching on a byte stream. When it comes to GPU 

based network packet processors, one might choose to do the classification in the GPU or in 

the CPU [21].  For the GPU to be utilized properly, the classification mechanism should be 

complex and parallelizable enough to justify the time taken for transferring data from the 

CPU to the GPU.  

For an example, a simple TCP segment check, to make sure the availability of the complete 

packet might not be efficient enough to be done in the GPU. Even if the logic is complex and 
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parallelizable enough to run on the GPU, the application needs to decide on the size of the 

batch size and block and grid sizes etc. based on performance metrics such as the throughput 

and the latency.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-10 : Three options for pre-processing and classifying packets. Option A shows classification and 

pre-processing in the CPU, option B shows classification in the CPU and pre-processing in the GPU, option 

C shows both classification and pre-processing in the GPU. 

 

Packet pre-processing changes the original packet by adding some meta-data or altering the 

original content. For an example, pre-processing stage might update a packet with the local 

timestamp or a session identifier. Like classification, pre-processing can also be done either in 

the CPU or the GPU. For an example, CPU or GPU pre-processing could be used for marking 

packet boundaries or updating packets with metadata. Figure 2-10 shows the three options 

available for executing packet classification and pre-processing. Please note that packet 

classification and pre-processing might be done in several stages. For an example an initial 

classification may identify packet types and a later classification which runs in the GPU, 

might extract useful information such as packet boundaries.   

 

 

 

CPU GPU Capture Packets 

Classifying 

Packets 

 

Pre-Processing 

Packets 

 

A 

CPU GPU Capture Packets 

Classifying 

Packets 

 

Pre-Processing 

Packets 

 

B 

CPU GPU 

Capture Packets 

Classifying 

Packets 

 

Pre-Processing 

Packets 

 

C 



18 
 

2.4.3 Transferring Packets Between GPU and CPU 

 

The fundamental question when it comes to transferring data between the CPU and the GPU 

is the size of the data set and the frequency of transferring data. Throughout this section, we 

will discuss the available options for finding the correct data set size and the frequency of data 

transfer.  

The first option is transferring data as they arrive [21] without buffering and the second 

option is transferring data in batches [23]. Both options have their own pros and cons. 

Transferring data to the GPU as they arrive without buffering has the following concerns.  

1. Identifying whether all the data for a packet is available 

As stated in section 2.4.2, an application or a framework may decide to let the GPU 

does the packet boundary identification or have it done in the CPU. If the 

identification of a specific PDU boundary is a responsibility of the GPU, then we may 

transfer each packet to the GPU. If the packet is found to be incomplete, then the 

GPU kernel would notify the CPU to wait for the complete packet. But transferring 

each packet to the GPU incurs a considerable CPU to GPU data transfer overhead.  

 

If the boundary identification is done in the CPU, then we may transfer the complete 

packet to the GPU. Though this has a lower transfer overhead than transferring 

incomplete packets, it still incurs in a considerable transferring overhead. 

 

2. The complexity of the decoding algorithm 

Let us assume that the algorithm supports data parallelism.  With that if the per packet 

decoding time is roughly the same as the time taken to transfer a packet from the CPU 

to the GPU, one may try to justify the transferring of packets as they arrive. But the 

argument can only be made in terms of per packet decoding latency. Decoding one 

packet at a time would underutilize the GPU and the throughput would be degraded 

severely.  

 

Second option is batch transferring. In batch transferring, packets are put into a buffer of fixed 

size as they arrive. Then either after the buffer is full or a timeout period, the complete batch 

gets transferred to the GPU to be decoded.  

The most trivial advantage of batch transferring is the high throughput. Batch transferring 

achieves a high throughput by several means.  
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1. Increased GPU utilization by using more GPU cores for decoding than the option 

of transferring packets to the GPU as they arrive.   

2. When having multiple packets decoded concurrently, it enables the GPU to 

manage memory more efficiently with techniques like memory coalescing. 

3. Reduces the number of GPU kernel launches. kernel launches have a scheduling 

overhead.  

   

As it has been mentioned before, the data transfer from the CPU to the GPU could also be 

triggered by a timeout. The reason for that is the inconsistent nature of the network traffic. If 

the application only transfers data upon reaching the maximum batch size, then at a low 

traffic time, it might take a long time to fill up the buffer. Thus the timeout is a safeguard to 

assure the quality of service of the decoder in terms of the throughput.    

Another important aspect of transferring data is the use of pinned memory. To understand the 

importance of the pinned memory, it is essential to understand the mechanics behind the data 

transfer. When a CPU to GPU memory copy is issued on a non-pinned or pagable memory 

block, the CPU first copies the data from the pageable memory to a pinned memory and the 

DMA (Direct memory access) then takes over and copies the data to the GPU from the pinned 

memory. The CPU copies data from pageable to pinned memory to avoid paginations during 

the actual data transfer process. If a pinned memory is used in the first place, then the extra 

memory copying by the CPU from non-pinned to pinned memory could be avoided.  

On the same note, allocation and de-allocation cost of pinned memory is high, so it is 

advisable to allocate a large pinned memory buffer beforehand and reuse it. That way we can 

avoid frequent pinned memory allocations and de-allocations. If the size of the buffer found 

to be not enough, then we may increase the size of it. Figure 2-11 shows the normal process 

of using non-pinned or pageable memory. 
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Figure 2-11 : Normal data flow from CPU to GPU 

 

Figure 2-12 shows the use of pinned memory directly.  

   

 

Figure 2-12 : Data flow from the CPU to the GPU when data stored in pinned memory 
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Use of Asynchronous Memory Transfer 

A GPU based application has three main steps as discussed in section 2.3. Copying data from 

the CPU to the GPU (H2D or Host to Device), executing the kernel (K) in the GPU and lastly 

copying the results back to the CPU from the GPU (D2H or Device to Host). Some steps are 

optional though, like copying data from and to the CPU/GPU.   

Though it might not be evident in a simple GPU based application, every aforementioned 

operation belongs to something called a stream. Please note that these streams are different 

from byte or data streams. A stream could be thought of as a sequence of operations that 

executes in the issued order. 

Within a single stream, there could be multiple H2D, D2H and kernel executions and one of 

the main characteristics of a stream is that all operations issued within a stream are carried out 

in the insertion order. In other words operations inside a stream are synchronized.  

If an operation does not have a stream assigned, then CUDA places it within the default 

stream. The default stream is a unique stream as it synchronizes other streams in the device. 

The default stream waits until all the operations issued before within other streams complete. 

All the CPU side operations issued after the default stream have to wait till default stream 

finishes execution. 

Usually to get a performance gain through multiple streams, the framework needs to comply 

with at least one of the two scenarios below.  

 

1. The most apparent one is the support for asynchronous batch execution. What it 

means is that the application should not block CPU threads till previous kernel 

cycles finish.  Let us take an example. Think of a system with a kernel that 

processes PDUs in batches of 1000 elements. If the application does not support 

non-blocking kernels, then successive batch execution requests have to wait for 

previous executions to finish.  

Figure 2-13 shows the timeline diagram for the aforementioned scenario.  

 

 

 

 

 

 Time 

H2D kernel-1 D2H 

H2D kernel-2 D2H 

Figure 2-13 : Timeline diagram of synchronized decoding cycles 
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As we can see in the figure 2-13, each Host to Device data transfer and kernel 

cycle has to wait till the previous cycle finishes. This would be acceptable if each 

of the cycle utilizes all GPU resources. For an example if the kernel logic 

consumes all the cores for a batch of 1000 records, then executing kernel cycles 

sequentially would be acceptable. But most of the time, the kernel does not utilize 

much of the GPU resources and therefore decreases the efficiency. By using 

multiple streams, the application can issue kernel execution requests 

concurrently. The number of streams could be decided based on the resource 

availability.  

  

2. The second scenario does not require non-blocking kernel execution. But it looks 

at the transfer delays of raw data to the GPU and processed data from the GPU to 

the CPU. If we assume a near linear or better relationship between the number of 

packets and the overall processing time, then by using two streams we could 

significantly reduce the overall processing time. The figure 2-14 shows how this 

works. 
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2.4.4 Processing Packets in the GPU 

 

2.4.4.1 GPU Concurrent Kernel Execution Patterns 

 

In this section we will discuss several ways of using asynchronous memory transferring and 

streams and their effectiveness [24] .  

A typical GPU contains two types of functional units, the execution and the copy engines. 

Each GPU contains one or more of each of the engine types. The most important aspect of 
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Figure 2-14 : Timeline diagram for using non-blocking execution cycles with multiple 

streams 
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knowing the number of engines in a GPU is that the information is critical in deciding the 

execution pattern of streams. 

Most of the GPUs today have either one of following engine configurations. One execution 

engine and two copy engines or one execution engine and one copy engine. Let us first 

discuss general execution patterns for each type. The first pattern is obviously to execute all 

sequentially.  

Pattern – A 

Pattern A uses only one stream and first it copies the data to the GPU from the CPU. Then it 

issues the kernel execution command and lastly copies the processed data back to the CPU 

from the CPU. 

 

Pattern - B 

For i <= number_of_streams : 

       Copy_to_device (stream[i]); 

       Issue_kernel_execution(stream[i]); 

       Copy_from_device(steam[i]); 

 

The execution pattern B issues all the operations for a given stream sequentially one after 

another.  

Now the third execution pattern and we may call it the execution pattern C. 

Pattern - C 

For i <= number_of_streams : 

       Copy_to_device (stream[i]); 

For i <= number_of_streams : 

       Issue_kernel_execution(stream[i]); 

For i <= number_of_streams : 

       Copy_from_device(steam[i]); 

 

Pattern C issues Host to Device copy instructions for each stream first and then issues kernel 

executions for each stream and lastly issues Device to Host copy instructions for each stream. 

Both patterns B and C have pros and cons based on the number of copy and execution engines 

available. First let us see how a GPU with one execution engine and one copy engine works 

with the three patterns. For the example we may think of a two stream configuration.  
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Pattern comparison with single copy engine and single execution engine 

 

Pattern A  

Copy 

Engine 
Host to Device  Device to Host 

Execution 

Engine 
 kernel Execution  

Time  

Figure 2-15 : Sequential execution pattern with one copy engine and one execution engine 

Figure 2-15 illustrates the sequential execution of copying raw data to the GPU (host to 

device) and the execution of the kernel and lastly copying the processed data back to the CPU 

from the GPU ( device to host). Following figure 2-16 and figure 2-17 illustrate the effect of 

using two streams on the overall processing time. The raw data has been divided equally 

between the two streams.   

Pattern B 

Copy 

Engine 
H2D-1  D2H-1 H2D-2  D2H-2 

Execution 

Engine 
 K-1  K-2  

Time  

Figure 2-16 : Execution pattern B with one copy engine and one execution engine. The number of streams is 

two. 

Figure 2-16 shows the effect on the overall execution time when we use two streams and 

follow the pattern B. As we may clearly see in the figure 2-16, the overall execution time has 

not improved compared to the pattern A (sequential execution).  

   

Pattern C 

Copy 

Engine 
H2D-1 H2D-2 D2H-1 D2H-2   

Execution 

Engine 
 K-1 K-2    

Time  

Figure 2-17 : Execution pattern C with one copy engine and one execution engine. The number of streams is 

two. 

Figure 2-17 shows the effect on the overall execution time when we use two streams and 

follow the pattern B. Looking at the figure 2-17 and then figures 2-15 and 2-16, it is evident 

that for a GPU with only one copy engine and one execution engine the best option is to use 

the pattern C execution model.  
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Now we have seen how pattern A, B and C performs in a GPU with only one copy engine and 

one execution engine, next we will check how a GPU with two copy engines and one 

execution engine performs with each pattern. The two copy engines would be responsible for 

host to device and device to host data transferring respectively. 

 

Pattern comparison with two (H2D and D2H) copy engines and one execution engine 

 

Pattern A 

Copy 

Engine  - 

H2D 

Host to Device   

Execution 

Engine 
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Copy 

Engine  - 

D2H 

  Device to Host 

Time  

Figure 2-18 : Sequential execution pattern with two copy engines and one execution engine. The number of 

streams is two. 

 

Figure 2-18 illustrates the sequential execution of copying raw data to the GPU (host to 

device) and the execution of the kernel and lastly copying the processed data back to the CPU 

from the GPU ( device to host).  
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Time  

Figure 2-19 : Execution pattern B with two copy engines and one execution engine. The number of streams 

is two. 

 

Figure 2-19 shows the effect of dividing data into two streams while utilizing two copy 

engines and one execution engine on the overall execution time. As it is shown in the figure 

2-19, pattern B is more efficient than the pattern A in terms of the total execution time and the 

reason for that is the overlapping kernel executions and data transfers between the two 

streams. 
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Pattern C 

Copy 

Engine  - 

H2D 

H2D-1 H2D-2   

Execution 

Engine 
 K-1 K-2   

Copy 

Engine  - 

D2H 

  D2H-1 D2H-2  

Time  

Figure 2-20 : Execution pattern C with two copy engines and one execution engine. The number of streams 

is two. 

 

Looking at figures 2-18, 2-19 and 2-20, a GPU with two copy engines and one execution 

engine is better off using the pattern B.  In the figure 2-20, it might look a bit strange that the 

D2H copy engines waits till the end of all kernel executions to start D2H transferring in 

pattern C. The reason for the delay is due to the behavior of the execution engine queue. We 

will discuss the reason after looking into the behavior of queues in copy and execution 

engines.  

Now that we have discussed the behavior of three GPU execution patterns used in a multi-

stream CUDA application, next we will discuss the behavior of execution and copy engines 

queues.  Every copy and execution engine has a queue in which it stores copy and execution 

requests and dispatches them in the sequence they were issued. Thus the order of copy and 

execution requests matters.  

Throughout the section we will discuss the impact of the copy and execution request order on 

the overall system performance. For the discussion we may consider a two stream 

configuration. Throughout the rest of the chapter we may use the following notation. 

 

1. H2D{identifier}-{stream number} – Identifies a host to device data transfer. 

2. D2H{identifier}-{stream number} – Identifies a device to host data transfer. 

3. K{identifier}-{stream number} – Identifies a kernel execution. 

 

The first stream configuration is as follows. 

Stream-1 : H2Da-1, H2Db-1, K-1, D2H-1 

Stream-2 : D2H-2 

 

Figure 2-21 shows the execution order of each stream against a timeline. The order of the 

execution requests issued is as follows. 
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H2Da-1, H2Db-1, K-1, D2H-1, D2H-2  

Copy 

Engine  - 

H2D 

H2Da-1 H2Db-1   

Execution 

Engine 
  K-1   

Copy 

Engine  - 

D2H 

  D2H-1 D2H-2  

Time  

Figure 2-21 : Timeline diagram for the execution order for H2Da-1, H2Db-1, K-1, D2H-1, D2H-2 for two 

streams. 

As it is shown in the figure 2-21, the Device to Host transfer of the second stream has to wait 

till the device to host transfer of the first stream finishes. The reason is that the device to host 

copy engine has its own queue and it only dispatches copy request in the insertion order.  

But if we issue the device to host request of the second stream before start issuing requests of 

the first stream, then the second streams device to host request would be dispatched first. The 

resulted execution pattern is shown in the figure 2-22. 

 

D2H-2, H2Da-1, H2Db-1, K-1, D2H-1 

Copy 

Engine  - 

H2D 

H2Da-1 H2Db-1   

Execution 

Engine 
  K-1   

Copy 

Engine  - 
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D2H-2   D2H-1   

Time  

Figure 2-22 : Timeline diagram for the execution order for D2H-2, H2Da-1, H2Db-1, K-1, D2H-1 for two 

streams. 

Figure 2-22 shows the effect of blocked queues. In the example, when issuing stream 1 

requests, the D2H engine queue gets blocked until the H2D and kernel execution operations 

of the stream 1 finish. The reason is that though engines can dispatch requests concurrently, 

requests of a single stream get dispatched sequentially. Thus it is imperative to check the 

order of the dispatch requests. 

In multi-stream GPU applications there will be situations in which we may have to use 

multiple kernels instead of using a single kernel. For an example a network packet processor 

may first run the classification kernel and then run the decoding kernel. Provided that multiple 
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kernels are used by an application, then the kernel dispatching order has a significant impact 

on the performance as well. For the next example we will consider two streams and two 

kernels. Each kernel would take up only half of the GPU resources thus enabling them to 

execute concurrently. The first dispatch order is as follows. 

 

Stream-1 : Kernel-1 (Ka-1), Kernel-2 (Kb-1)    

Stream-2 : Kernel-1 (Ka-2), Kernel-2 (Kb-2) 

 

Kernel Dispatch Order : Ka-1, Kb-1, Ka-2, Kb-2 

 

Note that the execution order of a given stream is sequential regardless of the resource 

availability.  

 

stream-1 

Execution 
Ka-1 Kb-1   

stream-2 

Execution 
 Ka-2 Kb-2   

Time  

Figure 2-23 : Timeline diagram for the kernel execution order Ka-1, Kb-1, Ka-2, Kb-2 with two streams. 

When looking at the figure 2-23, it is evident that during the Ka-1 execution the GPU has not 

been fully utilized. We may increase the GPU utilization by changing the order of kernel 

dispatch requests as shown in the figure 2-24. 

 

Kernel Dispatch Order: Ka-1, Ka-2, Kb-1, Kb-2 

 

stream-1 

Execution 
Ka-1 Kb-1   

stream-2 

Execution 
Ka-2 Kb-2    

Time   

Figure 2-24 : Timeline diagram for the kernel execution order Ka-1, Ka-2, Kb-1, Kb-2 with two streams. 

 

As shown in the figure 2-24, just by changing the order of execution we could cut the 

execution time by 1/3 and utilize the GPU 100% all the time. 

But what if kernels are different in sizes in terms of the execution time?  Let us consider 4 

kernels of different sizes. Kernel Ka and Kc have the same execution time and kernel Kb and 

Kd have twice the execution time of Ka or Kc. Let us discuss four kernel execution patterns 

and their overall execution time. For our discussion we assume that the four kernels can run 
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independently of one another and every kernel irrespective of the execution time takes half of 

the GPU resources. 

Kernel Dispatch Order: Kb-1, Ka-1, Kc-2, Kd-2 

 

stream-1 

Execution 
Kb-1 Ka-1  

stream-2 

Execution 
 Kc-2 Kd-2  

Time  

Figure 2-25 : Timeline diagram of the kernel execution order Kb-1, Ka-1, Kc-2, Kd-2. Kernel Kb and Kd 

have twice the execution time of Ka or Kc. 

Figure 2-25 shows that though the GPU has enough resources to run Kc of the second stream, 

the execution engines waits till it dispatches both kernels of the first stream. The reason is that 

the execution engine queue always honors the insertion order and therefore Ka-1 has to be 

dispatched before dispatching the Kc-2. The reason for not running both Ka and Kb 

concurrently is that within the same stream, operations are carried out sequentially. 

The overall execution time for this pattern is about 5 time units.    

 

Kernel Dispatch Order: Kb-1, Kc-2, Ka-1, Kd-2 
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Figure 2-26 : Timeline diagram of the kernel execution order Kb-1, Kc-2, Ka-1, Kd-2. Kernel Kb and Kd 

have twice the execution time of Ka or Kc. 

The execution pattern shown in the 2-26 shows the effect of blocking the execution queue by 

a stream on other streams. By the end of the execution of Kc, the GPU has enough resources 

to schedule Kd. But Ka issued on stream one is blocked from been dispatched till Kb ends 

running and thus blocks Kd from been executed. The overall execution time for this pattern is 

about 4 time units. 

 

Kernel Dispatch Order: Kb-1, Kc-2, Kd-2, Ka-1 
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Figure 2-27 : Timeline diagram of the kernel execution order Kb-1, Kc-2, Kd-2, Ka-1. Kernel Kb and Kd 

have twice the execution time of Ka or Kc. 

The pattern shown in figure 2-27 has significantly improved the execution time from 5 time 

units in figure 2-25 to 3 time units. The reason for the increased performance is that none of 

the streams are blocking potential kernel executions of other streams.  

Figure 2-25, 2-26 and 2-27 illustrate the importance of the kernel dispatching order on overall 

performance when each kernel has different execution times. Next we will see how the 

dispatching order of kernels with different resource consumptions affects the overall 

execution time. For that the following kernel configuration would be used. Kernel Ka, Kb, Kc 

and Kd have the same execution time. Ka and Kc use 1/3 of the GPU resources and Kb and 

Kd use 2/3 of the resources. We will start with the pattern shown in the figure 2-27. 

 

Kernel Dispatch Order: Kb-1, Kc-2, Kd-2, Ka-1 

 

stream-1 

Execution 
Kb-1 Ka-1  

stream-2 

Execution 
Kc-2 Kd-2  

Time  

Figure 2-28 : Timeline diagram of the kernel execution order Kb-1, Kc-2, Kd-2, Ka-1. Kernel Kb and Kd 

consumes 2/3 of the GPU resources while kernel Ka and Kc consumes 1/3 of the GPU resources. 

Looking at the figure 2-28 it is evident that the order of kernel dispatch has no major effect on 

the overall execution time provided that low resource consuming operations are interleaved 

with high resource consuming operations.  

Next we will go a step further and see the performance impact of kernels with different 

execution times and resource consumptions. The execution time and resource consumption of 

each kernel would be as follows. Kernel Ka and Kc have the same execution time and kernel 

Kb and Kd have twice the execution time of Ka or Kc. In addition to that Ka and Kc consume 

1/3 of the GPU resources and Kb and Kd consume 2/3 of the GPU resources. Let us start with 

the kernel dispatching order shown in the figure 2-27. 

Kernel Dispatch Order: Kb-1, Kc-2, Kd-2, Ka-1 

 

stream-1 

Execution 
Kb-1 Ka-1  

stream-2 

Execution 
Kc-2  Kd-2  

Time  

Figure 2-29 : Timeline diagram of the kernel execution order Ka-1, Kb-2, Ka-2, Kb-1. Kernel Kb and Kd 

consumes 2/3 of the GPU resources while kernel Ka and Kc consumes 1/3 of the GPU resources. 
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The figure 2-29 shows that the kernel dispatch sequence which yielded the best performance 

of 3 time units shown in the figure 2-27, now takes 4 time units to run. The reason is that Kb 

takes 2/3 of the GPU resources and thus even though stream one is not blocking stream two, 

Kd cannot start until Kb finishes.   

Each execution pattern from the figure 2-23 to figure 2-29 illustrate the effect of kernel 

dispatching order on the overall performance. The patterns we discussed can be put into three 

categories.  

First category is kernels having the same execution time and same resource consumption. 

Second category is kernels having the same resource consumption but different execution 

times. Third category is kernels having different resource consumptions as well as different 

execution times. Throughout all three categories, to gain the best performance, we have make 

sure that streams do not block each other from dispatching kernels and kernel dispatches from 

different streams are interleaved.    

Now that we have discussed several important aspects of copy and execution engine queues, 

we may clarify the behavior seen with the execution pattern C with multiple streams. The 

behavior was that even though the kernel has finished execution for the stream-1, the GPU 

waits till all kernels are dispatched to start the D2H transfer for the stream-1. We may explain 

it in two steps. The GPU inserts a signal into the queues after each dispatch request to 

dispatch the next operation in the same stream.  But when the execution engine is sequentially 

loaded with kernel dispatching requests, the signal gets delayed till the end of dispatching all 

kernels. This delay of issuing the signal causes D2H copy engine queue to block. 

 

2.4.4.2 Thread Allocation in GPU 

 

In sections 2.4.3 and 2.4.4.1 we discussed different kernel launch and memory transferring 

patterns and compared their efficiencies. The next question is how to organize and allocate 

threads in a GPU in an efficient manner. For the discussion we will consider a network packet 

processing application. We have two options to allocate threads. First is using one thread per 

packet and the second is using multiple threads per packet.  

When using the first option which is one thread per packet, all threads in a block first load 

respective packets from the global memory to the shared memory of the block and then 

proceed with the actual data processing. The main concern with this method is the per packet 

processing latency. GPU cores are not designed to efficiently handle complex instructions 
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such as branching and looping. Therefore a fairly complex kernel logic would take a longer 

time to process a single packet than a CPU core and thus increases the per packet latency [25]. 

The advantage of this option is that if the application processes a large number of packets in 

parallel, the throughput will be higher. But for achieving the high throughput, we need to 

make sure to utilize GPU cores at a higher percentage.  

When using the second option which is multiple threads per packet, the content of a packet 

would be separated into different sections and each section would be processed by a separate 

thread in a block. For an example, one thread would be processing from the 0
th
 byte to 100

th 

byte and another thread would be processing from 100
th
 byte to 200

th
 byte. This option is 

viable only if the packet itself is data parallelizable. Another concern is that the number of 

packets get processed by a block is lower compared to the one thread per packet option. 

Therefore it lowers the throughput but because of using multiple threads to process a single 

packet, it also lowers the per packet latency. As a summarization, the first option is better for 

applications aiming for high throughput and the second option is better for low latency 

focused applications. 

Another point to remember is that with GPUs, it is best advised to not use complex data 

structures. The reason is that complex data structures are not localized in memory and result 

in un-coalesced memory access patterns. In GPUs, localization of data is important to gain 

performance.  

 

 

2.4.4.3 Dynamic Parallelism 

 

The data processing flow of an application can be broken down into one or more logical steps. 

For an example, the packet processing flow of a network packet processing application can be 

broken into two logical steps. First step is finding and marking boundaries of each packet and 

the second step is processing the packets based on marked boundaries. The Logic is shown in 

the figure 2-30. 

 

Byte stream 

 

 

 

 

Find and Mark 

Boundaries 

Process Packets Using 

Marked Boundaries 

 Figure 2-30 : The SMPP PDU decoding process flow diagram 
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These steps can be either fully executed in the CPU or can be splitted between the GPU and 

the CPU. When breaking down and allocating steps to either the CPU or the GPU, we need to 

take two points into consideration.  

1. Steps running on the GPU need to be data parallelizable to take advantage of the GPU 

architecture. 

2. The execution order of steps and their inter dependencies.  

The first point is obvious with what we have discussed so far in chapter 2.4. Without been 

data parallelizable, it is hard to achieve any performance gain by using the GPU. To explain 

the second point, let us consider a data processor with three steps. Throughout the section 

2.4.4.3 we will discuss two data flow patterns. 

The first data flow that we will discuss is as follows. Step-1 and step-3 are massively data 

parallelizable and step-2 is not data parallelizable. 

Step-1(Parallelizable) -> Step-2(Not Parallelizable) -> Step-3(Parallelizable) 

Now let us see how we may efficiently allocate each one of these steps to either the CPU or 

the GPU. The obvious solution is offloading step-1 and step-3 to a GPU as they are data 

parallelizable. But doing so does not always yield a performance gain and we have to take 

few factors into consideration. First factor is the data transferring delays associated with 

crossing the CPU/GPU boundary. We have to cross the CPU/GPU boundary four times 

(copying to the GPU from the CPU and copying from the GPU to the CPU) if we choose to 

use the GPU for step-1 and step-3. Therefore when we are presented with data flows in which 

parallelizable and non-parallelizable steps are interleaved, first a performance evaluation 

should be done for each step. Based on the performance evaluation we may then decide on 

which step to be offloaded to the GPU. 

The second data flow pattern is as follows. Step 1 is non-parallelizable and step-2 and step-3 

are parallelizable. 

 

Step-1(Not Parallelizable) -> Step-2(Parallelizable) -> Step-3(Parallelizable) 

 

With the second data flow pattern, the second and third steps both are massively 

parallelizable. Therefore if we run them both in the GPU and follow the conventional GPU 

execution model, CPU and GPU boundary would be crossed four times. First two times, the 

boundary would be crossed to transfer data for the step-2 and last two times to transfer data 

for the step-3. As both second and third step are executed in the GPU, what if we can 

schedule the third step from the GPU without involving the CPU. 
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With dynamic parallelism [26] [27] [28] we may reduce the number of CPU/GPU boundary 

crossings from four to two. By using dynamic parallelism a kernel launched by the CPU can 

launch child kernels from the GPU. The concept of dynamic parallelism is as follows.   

A CUDA kernel can launch other kernels from the GPU. Once a secondary (child) kernel is 

launched, the CUDA runtime implicitly synchronizes the parent kernel execution with the 

secondary kernel execution. Simply putting it, the CUDA runtime ensures that the parent 

kernel waits till the secondary kernel finishes executing. Figure 2-31 illustrates the 

relationship between parent and child kernels. 

 

 

 

 

 

 

 

 

 

 

 

                                       

 

 

 

 

Apart from reducing the overhead of having to transfer data back and forth between the CPU 

and the GPU, dynamic parallelism has few other advantages over normal execution patterns. 

 

1. The device algorithm (Algorithm that runs on the GPU) can be written without 

having to fit it into a flat single level structure. Dynamic parallelism enables 

recursions and simplifies the designing process. 

 

2. Enables managing GPU resources at a more granular level. For an example, a single 

level processing of an image enhancement would allocate the same level of resources 

throughout the image grid. Whereas with dynamic parallelism, resources could be 

allocated based on the intensity of different parts of the image.  
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Figure 2-31 : Dynamic Parallelism parent kernel and child kernel execution model 
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3  Implementation 
 

Introduction 3.1 

 

The implementation consists of four primary components. First component is the SMPP 

decoder library written in C language. Second component is the integration with the Java 

based SMPP framework Cloudhopper. Third component is the SMPP traffic simulator written 

in Java. The fourth component is a performance tuner written in C. Following figure 3-1 

illustrates how these components are related. 
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Cloudhopper Changes 3.2 

We have used the Cloudhopper SMPP framework for managing TCP connections and SMPP 

sessions. The framework does not support GPU based decoding and therefore we did few 

design modifications. Figure 3-5 shows the original design for decoding SMPP packets.  

 

 

 

 

 

 

 

 

 

 

 

SMPP-Decoder-Library 
Cloudhopper-

SMPP-Framework 

SMPP-Simulator Tuner 

Figure 3-1 : Primary components in the SMPP decoder library 

Collect all TCP frames 

for a complete SMPP 

PDU  

Read the header of the 
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Identifies the SMPP 

packet type. 

Decodes the packet and 

send the decoded details 

to the session 

 
Figure 3-2 : Cloudhopper SMPP PDU original decoding flow 



36 
 

Figure 3-6 shows the altered Cloudhopper decoding flow integrated with the SMPP decoder 

library.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6 illustrates the changes made to the Cloudhopper original decoding flow. Step-1, 

step-2, step-3 and step-4 are packet classification stages (section 2.4.2) whereas the step-5 

represents a packet pre-processing stage (section 2.4.2). The main alterations are the 

introduction of a batch of packets and updating each packet with session information and 

boundary markers and lastly invoking the SMPP decoder library through JNI. 

 

SMPP Decoder Library 3.3 

 

The SMPP Decoder library provides following key features through an API.  

1. GPU based SMPP decoding using dynamic parallelism. 

2. GPU based SMPP decoding without using dynamic parallelism. 

3. CPU based SMPP decoding. 

4. Performance tuner. 

The library implementation can be separated into five components.  

1. A JNI interface to communicate with the Cloudhopper framework. 

2. An interface with methods to either tune or perform normal SMPP decoding. The 

interface supports both GPU or CPU based decoding.  

3. The GPU based decoder implementation in CUDA. 

4. The CPU based decoder implementation. 

5. A set of utility methods to manipulate a stream of bytes. 

Throughout the sub-sections we would discuss each step in detail.  

Step-1 : Collect all TCP 

frames for a complete 

SMPP PDU 

Step-2 : Read the header 

of the SMPP PDU 

Step-3 : Identifies the 

SMPP packet type 

Step-4 : Decides whether to be decoded 

by the SMPP decoder library or 

internally 

 

Step-5 : Prepend the byte stream for 

the PDU with session information 

and a unique identifier 

Step-6 : If batch size has reached 

invoke the SMPP decoder library 

decoding function through JNI 

Step-7 : Once received the decoded data, 

send them to the relevant SMPP session 

Figure 3-3 : The altered design with SMPP decoder library integration 
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3.3.1 JNI Interface 

 

As it has been mentioned before, the SMPP decoder library is written in C language  

And the Cloudhopper SMPP framework is written in Java. The Java based Cloudhopper runs 

on a JVM (Java Virtual Machine) and the data structures and language semantics are different 

from C. Thus, for the Cloudhopper services to access the SMPP decoder functionalities, we 

need an adapter between the two platforms. Java comes with a standard implementation to 

communicate with native implementations called JNI (Java Native Interface).  

JNI offers a set of primitive data types to match Java primitive data types. Apart from the 

primitive data types, JNI defines jobject, jclass, jstring, jthrowable, jarray data structures 

synonymous with Java counterparts. A native function accepts data as arguments of 

aforementioned data types and also returns results in one of the aforementioned data types.  

When a Java application needs to invoke native methods such as SMPP decoder 

functionalities, it first has to generate a header file with required methods with arguments and 

return types. Here follows the three functions generated for the SMPP decoder JNI interface 

and their descriptions. 

 

JNIEXPORT void JNICALL _initialize ( 

               JNIEnv *env, jobject thisObj, jstring configurationFilePath)  

 

The first function is to initialize the library. Calling native functions through JNI is a heavy 

task. Creating new objects or calling a method of a Java object or accessing attributes of a 

Java object requires accessing the JVM from the native code. For an example to call a method 

of a Java object, the native code should first acquire the equivalent JNI structure for the 

method which is called jmethod. It is same for Java classes and attributes as well. This process 

takes time and it is advised to cache those frequently used JNI data structures. The initialize 

method caches jmethods, jclasses and jfields. Apart from caching, the method configures the 

core decoder implementations as well. 

 

JNIEXPORT jobject JNICALL _decodePDUDirect ( 

JNIEnv *env, jobject thisObj, jobject pduContainerBuffer, jint size, jint correlationIdLength) 

 

The second function is the most important one. It acts as an adapter for the SMPP decoder 

core API functions. The most important arguments are the pduContainerBuffer, size and the 

correlationIdLength.  

The pduContainerBuffer is an off heap byte buffer containing a stream of PDUs. At earlier 

stages of the SMPP decoder development, the off heap byte buffer was not used. Instead a 
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List of byte buffers was passed as a parameter. This approach was time consuming for two 

reasons.  

First is that when passing a Java object allocated in the heap through JNI, the JVM has to first 

copy it into a non-heap memory location and then copy it to the relevant location.  By using 

off heap byte buffers we can reduce the number of copy operations to one. 

The second reason is that, to access each PDU data element in a list, the native 

implementation has to use Java method. Calling Java methods per element is time consuming 

as each call has to cross the JNI boundary.  

By using an off heap byte buffer (The name used in Java is DirectByteBuffer) we can 

eliminate aforementioned concerns. All we have to do is to allocate an off heap byte buffer 

and then write to it and pass the pointer for that buffer as a method argument.  

The correlationIdLength is the length of the unique id used to identify each individual packet. 

The SMPP decoder library allows attaching a unique id for each packet. The id would be sent 

back with the decoded packet which can then be used to identify the SMPP session to which 

the packet belongs. The size parameter represents the length of the byte buffer.  

 

 

JNIEXPORT void JNICALL _startTuner( 

             JNIEnv *env, jobject thisObj, jobject pduContainerBuffer, jint size, jint correlationIdLength) 

 

The SMPP decoder performance depends on several factors. To name a few, the type of the 

GPU, number of CPU cores and number of GPU cores, block and grid configurations, the 

batch size etc. Therefore the library provides a build-in performance tuner. The startTuner 

method could be used to run the tuner. The parameters are the same as the decodePduDirect 

method.  

Another important feature is that we can set a threshold value for the batch size through a 

configuration. If it is set to a greater than zero value, then the GPU would be used for 

decoding only for batches larger than the threshold. If the threshold value is zero, then a 

compilation time flag would decide between CPU and GPU decoder implementations. 
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3.3.2 SMPP Decoder Library Interface 

 

This is the primary API provided by the SMPP decoder library and following are the 

available methods. 

  

1. CudaDecodedContext *decodeGpu(DecoderMetadata decoderMetadata) 

 

2. CudaDecodedContext *decodeGpuDynamic(DecoderMetadata decoderMetadata) 

 

3. DecodedContext *decodePthread(DecoderMetadata decoderMetadata) 

 

4. void startPerfTuner(DecoderMetadata decoderMetadata) 

 

5. void startPerfTunerPthread(DecoderMetadata decoderMetadata) 

 

Before start discussing aforementioned methods figure 3-2 depicts the format that the SMPP 

decoder expects each PDU to confirm to. 

 

Correlation-Id PDU-Content PDU-End-Indicator 

 

Figure 3-4 : Structure of the decodable element accepted by the API 

First part is the Correlation-Id and the second part is the actual PDU content and the last part 

contains a byte pattern to mark the end of the PDU.  Every method uses one input parameter 

of the type DecoderMetadata. DecoderMetadata is a C structure and contains several 

parameters including the byte buffer for the batch of PDUs, the length of the byte buffer, the 

correlation id length and the batch size.  

 

CudaDecodedContext *decodeGpu(DecoderMetadata decoderMetadata) 

 

The method decodes SMPP PDUs using the GPU without utilizing Dynamic Parallelism. The 

flow of the execution is as follows.  

 

1. Creates a C structure (ByteBufferContext) to hold the pointer to the PDU byte buffer 

as well as the complete length of the buffer and the read index of the buffer. The 

structure would be used throughout the decoding process.  

 

2. Next by using the received byte buffer, the method creates an array of C structures 

(CudaPduContext) to hold start and end positions and the correlation id of each PDU.  
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3. Next we create another array of C structures (CudaDecodedContext) to hold the 

decoded PDUs.  

 

4. Lastly we create another C structure (CudaMetaData) which holds the preferred block 

and grid dimensions, the byte buffer of PDUs and pre-processed PDU details and the 

array of structures for holding the decoded PDUs. This structure would then be sent 

to the GPU to get decoded. 

 

CudaDecodedContext *decodeGpuDynamic(DecoderMetadata decoderMetadata) 

 

The method decodes PDUs using the GPU and utilizes Dynamic Parallelism provided with 

CUDA. The steps of decoding are different from the normal GPU based decoding process. 

  

1. Creates an array of C structures (CudaDecodedContext) to hold decoded PDUs.  

 

2. Creates a CudaMetaData C structure which contains the initial block and grid 

dimensions, the byte buffer of PDUs.  The main thing to notice here is that the pre-

processing of the provided byte buffers happens in the GPU as opposed to the normal 

GPU based decoding option. 

 

3. Next invokes the Dynamic Parallelism based GPU decoding process.  

 

 

DecodedContext *decodePthread(DecoderMetadata decoderMetadata) 

 

The method decodes PDUs only using the CPU. The steps are almost same as the normal 

GPU based decoding process.  

 

1. Creates a C structure (ByteBufferContext) to hold the pointer to the PDU byte buffer, 

the complete length of the buffer and the read index of the buffer. The structure 

would be used throughout the decoding process.  

 

2. Next by using the received byte buffer creates an array of C structures 

(DirectPduContext) with the start and end positions of PDUs and a pointer to the byte 

buffer.  
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3. Creates a predefined number of Pthreads and allocates each thread a part of the PDU 

list to decode. The only difference with the normal GPU based decoding method is 

that the Pthread version does the decoding in the CPU instead of the GPU. 

 

 

startPerfTuner(DecoderMetadata decoderMetadata) 

 

The method is used to find the best GPU grid and block configurations for a given batch size. 

We may configure a set of block and grid sizes and batch sizes through a configuration file. 

The method then calculates the average throughput and the latency for each configuration and 

logs the result to a file.  

 

startPerfTunerPthread(DecoderMetadata decoderMetadata) 

 

Same as the startPerfTuner, the method can be used to calibrate the CPU thread count for 

different batch sizes. Just like the startPerfTuner method, startPerfTunerPthread generates a 

result file with average throughput and latency for each CPU thread configuration with 

different batch sizes. These measurements can be used to find the best CPU thread 

configuration for a given batch size for different machines. 

  

3.3.3 The Decoder Implementation 

 

The SMPP decoding process can be split into two steps. We will referrer the first step as pre-

decoding in which boundaries and lengths of each packet would be identified and extracted 

into a set of C structures. Final step is executing the actual decoding logic based on the 

information from the first step. The library offers three different options for performing the 

pre-decoding and the decoding steps. Please note that the pre-decoding is a packet 

classification step (section 2.4.2) in which we extract useful information from packets without 

altering the content.    

The first option executes both pre-decoding and decoding steps in the CPU. The second 

option performs pre-decoding in the CPU and the decoding is done in the GPU. The third 

option executes both pre-decoding and decoding steps in the GPU. 

Running Pre-Decoding and Decoding Steps in the CPU 

This option allows both the pre-decoding and decoding to be carried out in the CPU. The 

library accepts packets in batches and if the batch size is small enough, the throughput gain in 

using GPU might get overshadowed by the overheads associated with GPU processing. 
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Therefore for smaller batch sizes, CPU based decoding yields the best performance. The CPU 

based decoder has used Pthread in both pre-decoding and decoding steps. The number of 

CPU threads is configurable.  

 

Running Pre-Decoding and Decoding Steps in the GPU 

The common way of performing both pre-decoding and decoding in the GPU is as follows. 

First we copy the byte stream to the GPU. Then the pre-decoding kernel calculates metadata 

for each packet. Next the metadata would be copied back to the CPU. Finally the decoding 

kernel is executed. 

With this approach, the application crosses the CPU/GPU boundary four times. Therefore to 

reduce the number of data movements between the CPU and the GPU, we have used CUDA 

dynamic parallelism (see section 2.4.4). With dynamic parallelism, once the pre-decoding 

kernel finishes executing, a child kernel with the decoding logic would be scheduled by the 

respective pre-decoding kernel. Following figure 3-3 illustrates the decoding flow. 
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Figure 3-5 : Dynamic Parallelism based SMPP decoding flow 
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Each thread of the parent kernel (pre-decoding) iterates through a part of the byte stream 

looking for packet boundaries. Once a packet boundary is identified, the thread creates and 

populates a metadata structure with the start and end indexes. Once every thread in a block 

completes pre-decoding, the first thread of the block schedules a child kernel with the actual 

decoding logic. As discussed in section 2.4.4, the parent block waits till the child kernel 

finishes.     

Running Pre-Decoding Step in the CPU and Decoding Step in the GPU 

Pre-decoding at the CPU calculates metadata for each packet. Metadata contains the start and 

end indexes of a packet and a pointer to the byte stream. After calculating metadata for each 

packet, application dispatches the decoding kernel. The number of streams to be used is a 

configuration.  In the section 2.4.4.1 we introduced three multi-stream kernel execution 

patterns. Pattern B is recommended for GPUs with only one copy engine and one execution 

engine. Pattern C is recommended for GPUs with multiple copy engines and one execution 

engine. Therefore the library checks for the number of execution and copy engines first and 

then decides on which pattern to be used. In terms of the development effort, pre-decoding in 

the CPU is much easier than the GPU based pre-decoding. Both pre-decoding and decoding 

logics are much simpler in the CPU version. Following figure 3-4 illustrates the data flow. 
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Figure 3-6 : SMPP decoding flow with CPU based pre-decoding and GPU based decoding 
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The SMPP decoder library supports all three pre-decoding and decoding methods (CPU based 

pre-decoding and decoding, GPU based pre-decoding and decoding and CPU based pre-

decoding and GPU based decoding) and the user may decide on the specific method based on 

throughput requirements and network traffic patterns. 

 

The GPU Thread Allocation 

As discussed in section 2.4.4.2, we have two options for allocating thread in the GPU. First is 

to use one thread per packet and the second is to use multiple threads or a thread block for a 

single packet. The first options yields better throughput and the second option yields lower 

latency. The SMPP decoder is focused on the throughput and therefore we are using one 

thread per packet. The implementation distributes the batch of packets among the available 

threads and each thread processes one or more packets. But a single packet is always 

processed by a single thread.   

 

3.3.4 Utility methods for reading a Byte stream 

 

The SMPP decoder library implements methods for extracting following data types from the 

byte stream. Unsigned 8 bit Integer, Unsigned 16 bit Integer, Unsigned 32 bit Integer, NULL 

terminated character array (String), byte array of a given size. Every method takes a 

ByteBufferContext C structure as one of the input parameter and increment the read index at 

the end of a read accordingly.  
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4  Evaluation 

Workload Generation 4.1 

 

Our implementation is focused on improving the throughput of SMPP decoding. Therefore 

the workload is not focused on traffic patterns such as variations in TPS over time but mostly 

on the structure and size of PDUs. One of the major issues we faced was that though there are 

open source SMPP frameworks, there were no standard SMPP simulators. Therefore we 

wrote our own simulator.  

The simulator is capable of generating SMPP PDUs of different types and lengths. It supports 

mixing of PDUs of different lengths. For the experiment we have used PDUs of 

SUBMIT_SM type only. SUBMIT_SM and DELIVER_SM are structurally identical except 

for the COMMAND_ID header. On top of that those two are the most widely used PDU types 

in SMPP applications. Following are the compositions of different batch sizes that we have 

used.  

 

1. For 1000 batch – 1000 SUBMIT_SMs. Each PDU had different destination and 

source addresses and different messages of 20 characters. Experiments were carried 

out with 5 optional (TLV) parameters. 

  

2. For 10,000 batch –SUBMIT_SMs with different source and destination addresses and 

different message of 20 characters. Experiments were carried out with 5 optional 

(TLV) parameters. The simulator used two SMPP sessions with each sending 5000 

PDUs. Each session fired at a TPS of 500. Thus it took 5 seconds to fill the buffer. 

 

3. For 100,000 batch –SUBMIT_SMs with different source and destination addresses 

and different message of 20 characters. Experiments were carried out with 5 optional 

(TLV) parameters. The simulator used four SMPP sessions with each sending 25,000 

PDUs. Each session fired at a TPS of 1000. Thus it took 25 seconds to fill the buffer. 

 

4. For 1,000,000 batch –SUBMIT_SMs with different source and destination addresses 

and different message of 20 characters. Experiments were carried out with 5 optional 

(TLV) parameters. The simulator used ten SMPP sessions with each sending 100,000 

PDUs. Each session fired at a TPS of 2000. Thus it took 50 seconds to fill the buffer. 
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Experiment Setup 4.2 

 

Following are the GPU, CPU, Operating System and Memory configurations used. 

 

1. GPU - GeForce GTX 750 Ti GPU 

2. Intel Core i7 – 4790 CPU 

3. Operating System - Ubuntu 16.04 LTE Release 

4. Memory - 16GB RAM 

 

The SMPP Simulator has been allocated 1024 MB of maximum heap size and 512 MB of 

initial heap size. The SMPP Server with the GPU accelerated decoder has been allocated 4096 

MB of maximum heap size and 1024 MB of initial heap size.  

 

Analysis 4.3 

 

4.3.1 Maximum Throughput Analysis for Different Batch Sizes 

Following figure 4-1 illustrates the maximum throughput for a set of batch sizes. For each 

batch size, the throughput has been given for Java decoding mode with 4 threads, Pthread 

decoding mode with 4 threads, GPU normal execution mode and GPU Dynamic Parallelism 

execution mode. 
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Figure 4-1: Max throughput analysis for four decoding modes and four batch sizes 
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Looking at the figure 4-1, it is evident that both normal and dynamic parallelism based GPU 

implementations have higher throughputs than the Java multi-thread or C multi-thread 

decoder implementations. The performance gain of GPU over CPU based implementations 

(Java or C) is nearly 5 times for batch sizes around 10,000. Apart from the obvious 

performance gain, we may make two key observations. 

1. Dynamic parallelism based GPU implementation has better performance for                   

large batch sizes. 

2. Normal GPU based implementation is faster for small batch sizes like 1000. 

   

Let us discuss why the system behaves like that. As it has been discussed before, the SMPP 

decoder logical flow can be divided into two parts. First part is pre-processing and the second 

part is the actual decoding. 

With the dynamic parallelism based implementation, both stages (pre-processing and 

decoding) are carried out in the GPU. The parent kernel first pre-processes the byte stream 

and marks boundaries of each PDU. Finally each parent kernel block launches a child kernel 

to carry out the decoding logic. The grid and block sizes for the child kernel are based on the 

number of PDU boundaries marked by the parent kernel block. 

With the normal multi stream implementation, first the pre-processing is performed in the 

CPU. Then the actual decoding logic is offloaded to the GPU. The performance difference 

that we observed is mostly due to the implementation of the pre-processing stage. With lower 

batch sizes such as 1000, the time taken by the CPU to mark the boundaries is less than the 

time taken by the GPU. It is mostly due to the overheads associated with launching parent and 

child kernels and also the logic at the GPU for marking boundaries is more complex than the 

CPU version. Thus the computational advantage of the GPU is not evident with low batch 

sizes.      

When the batch size increases, the overhead associated with the GPU bound pre-processing 

becomes insignificant and provides a significant performance gain over a normal GPU based 

implementation. 
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4.3.2 Throughput Analysis of Dynamic Parallelism GPU Mode 

  

The figure 4-2 illustrates the throughput for different batch sizes with different thread 

configurations in dynamic parallelism mode. For the experiment we have used six different 

GPU thread configurations ranging from 10,000 to 2 million. With such a wide range of 

thread configurations we can make few interesting observations. 

 

1. With a 1000 element batch, the CPU version has better performance than the GPU 

version of 2 million threads (Around 2000 blocks were used). 

 

2. For medium and high batch sizes, low thread counts have better performance. 

 

To understand aforementioned behaviors we need to recall how the pre-processing works in a 

GPU. During the pre-processing, each thread is allocated a range of bytes from the byte 

stream. The byte stream is distributed among threads equally. At the end of marking 

boundaries, the starting thread of each block launches a child kernel to carry out the decoding.  

For that child kernel to be scheduled, there should be enough resources available in the GPU.  

What happens with a large number of threads is that it exhausts the maximum allowed active 

warp count on each SM and many of these warps would not be doing any significant work 

either. Therefore child kernel launch requests would be delayed and queued up in the 

execution engine.   
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With a low thread count such as 10,000 or 20,000 the amount of work done by each thread is 

significant and most importantly, there would be enough resources left for child kernels as 

well. The bottom line is that in order to get the best performance out from the SMPP decoder, 

it is imperative not to over allocate threads to pre-processing stage. 

4.3.3 Throughput Analysis of Normal GPU Mode 

 

The test runs were done with 4 CUDA streams. When comparing figure 4-3 and figure 4-2, it 

is evident that for small batch sizes like 1000, normal GPU implementation has an advantage 

over using Dynamic Parallelism. The reason is that for small batch sizes, the time taken by the 

CPU is less than the time taken by any GPU configuration to mark PDU boundaries. 

Next observation is that with a batch size of 1 million, the thread configuration for the best 

throughput was 1.2 million. When it comes to Dynamic Parallelism version, it was 20,000 

threads. 

The reason is that with normal GPU implementation, the GPU decoding throughput was only 

affected by the available cores. Whereas with Dynamic Parallelism based version, over 

allocation of threads to pre-processor stage might exhaust GPU resources and therefore 

reduces the throughput. 

For an example, with a batch size of 1 million, the number of threads need to mark PDU 

boundaries is not that much higher than the number of threads need with a 100,000 batch size. 

It stays around the same value. What matters is the availability of resources to schedule child 

kernels to do the decoding. 
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Last observation is that the rate of the throughput difference for different thread 

configurations is low for large batch sizes. The reason again is the time taken for pre-

processing. Normal GPU execution performs the pre-processing at the CPU. Thus the 

throughput is limited by the number of available CPU resources. In other words when the 

batch size increases, CPU based pre-processing becomes the performance bottleneck.   

 

4.3.4 Effect of Block and Grid Sizes on Performance 

 

Regardless the GPU mode, finding the best thread configuration is a key to achieve a high 

throughput. Even with the same number of threads, different Block and Grid configurations 

yield different performances. For an example, for a batch size of 10,000, the best performance 

is given by 10,000 threads (Dynamic parallelism mode). With that said, we may configure the 

10,000 threads in different Grid and Block configurations. Following figure 4-4 illustrates 

performance for each configuration. 
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Looking at figure 4-4, two observations can be made. First is that irrespective of the GPU 

mode (Dynamic parallelism or normal mode), when the number of Blocks decreases, 

throughput increases. Scheduling Blocks is a costly operation compared to scheduling threads 

in a SM. To schedule a Block, the GPU need to assign Shared memory, check for the 

available SPs in the potential SM etc. On the contrary scheduling threads for a Block is more 

and done by their respective SMs. Also there is a bigger penalty for using higher number of 

blocks in dynamic parallelism mode. It exhausts the available SMs for child kernels. All the 

aforementioned factors contribute to the first observation. 

Second observation is that irrespective of the GPU mode, for Block numbers below 100, the 

rate of performance gain is negligible. Every GPU based application has a sweet spot when it 

comes to Block and Grid configurations. In our case, it is close to 100 Blocks per Grid and 

100 threads per Block. When we are at a sweet spot, any further improvement in thread 

allocations may not yield a significant performance gain. In the context of the example, 

around 100 Blocks the overhead of Block scheduling becomes insignificant compared to the 

workload.   
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5  Conclusion and Future Work 

Conclusion 5.1 

We started the discussion with an introduction to the SMPP protocol and then introduced the 

popular SMPP framework Cloudhopper (section 2.1 and 2.2). Next we discussed GPUs in 

general along with heterogeneous computing model and following that looked into Nvidia 

GPU architecture basics and CUDA programming model (section 2.3).  

Next we started looking into GPU based network packet processing. Throughout the section 

2.4, the discussion was planned out across four major steps of network packet processing. For 

each step, we discussed the available options and their pros and cons.  

Then we stared discussing the SMPP decoder library implementation in chapter 3. We first 

introduced primary modules involved in the project and then started discussing specific 

implementation details of the library.  

Next in chapter 4 we explained the evaluation process and the section 4.3 produces an 

analysis on the throughput of the system for various grid and block sizes and batch sizes. The 

analysis was done for three decoding modes namely CPU based decoding, normal multi-

stream GPU based decoding and dynamic parallelism based GPU decoding.      

The analysis in chapter 4 shows that the SMPP decoder library provides better performance in 

both dynamic parallelism based and normal multi-stream based GPU modes than the CPU 

based implementations (Implemented in both Java using Cloudhopper and C). The 

performance gain of GPU based decoding modes for most commonly used batch sizes like 

10,000 is more than five times and in average the gain is around four times over CPU based 

decoding. Therefore in conclusion, we have achieved a significantly accelerated SMPP 

decoding through GPUs. 

Future Work 5.2 

1. One of the major drawbacks in the SMPP decoder is the poor JNI performance. When 

the JNI interface is used, the library adaptation layer has to convert each decoded C 

Structure into a Java object. For an example, for a batch size of 10,000 PDUs, the 

decoder has to create 10,000 Java objects and put them into a List and then return the 

List back to the Java application. Crossing the JNI boundary for 10,000 times is 

costly. One suggestion is to not create Java objects for every decoded PDU. Instead 

the decoder will create a new output byte stream with decoded bytes and delimiters 

for each parameter. For an example, when the decoder encounters the Destination 
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Address field of a PDU, it would first update the output byte stream with the start 

delimiter for the Destination Address field then update the output byte stream with 

the actual decoded Destination Address bytes and lastly inserts the Destination 

Address end delimiter to the output byte stream.  

       

 

 

 

 

 

 

 

 

 

  

   

The figure 5-1 shows the layout of the updated output byte stream for the Destination 

Address field. With that, the SMPP decoder does not have to create decoded Java 

objects for each PDU. Instead we could allocate an off heap memory for the new 

output stream and return the pointer. The Java application can now create Java objects 

just by reading the stream. The delimiters for each parameter are unique and would be 

stored in a table for fast lookup. 

 

2. One of the most complex parts in CUDA application development is manipulating 

data in multiple memory spaces (CPU and GPU). For an example a pointer to a data 

structure allocated in CPU cannot be used in the GPU. Unified Memory Access 

(UMA) [29] [30] solves much of the programming complexities associated with 

working on multiple memory spaces. Unified Memory is a single memory address 

space that can be accessed by any processor (GPU or CPU) in the system. It enables 

the programmer to allocate and manipulate data in the CPU as well as in GPU 

without explicitly copying data from and to CPU/GPU. 

 

3. The SMPP decoder library currently supports only a limited amount of TLVs in GPU 

modes. The number of TLVs supported cannot be changed dynamically at runtime 

and we need to update the library to decode any number of TLVs in a single packet. 

 

4. The library uses a maximum SMPP PDU size in order to limit unnecessary memory 

allocations. We need to update the library to facilitate the PDU size based on the 

batch size so that smaller batches could have large SMPP packets.   

Destination Address Bytes 

Destination Address Bytes 
Start 

Delimiter 

End 

Delimiter 

 
Figure 5-1 : Updating decoded fields with delimiters 
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