Development of an EEG signal based Brain Machine Interface for a Meal Assistance Robot

Kaluarachchige Don Chamika Janith Perera

 $168024\mathrm{V}$

Degree of Master of Science

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

August 2018

Development of an EEG signal based Brain Machine Interface for a Meal Assistance Robot

Kaluarachchige Don Chamika Janith Perera

168024V

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Biomedical Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

August 2018

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:	 Dat
Signature.	 Dat

Date:

The above candidate has carried out research for the MSc thesis under my supervision.

Signature of the Supervisor(s): Date:

Dr. Thilina Lalitharathne Senior Lecturer Department of Mechanical Engineering University of Moratuwa

Abstract

Most of the countries in the world are facing the problems of aging population and disabilities among the population. Among different problems faced by these individuals, self feeding can be identified as an important aspect that should get more attention from the research community. In addition, self feeding reflects the interdependency of an individual and thus relate to their mental health. Taking care of these individuals using care takers is becoming more and more difficult due to diminishing workforce for such tasks. Therefore assistive robotic technologies play a major role in providing feeding solutions to these individuals with disabilities. Meal assistance robot is a device designed to assist the individuals in need with self feeding.

The research work of this thesis is focused on developing an EEG signal based Brain Machine Interface for a meal assistance robot. Meal assistance robot is capable of handling solid food items using the spoon mounted on the end effector. Identifying user's food selection is carried out using a Steady State Visually Evoked Potential based Brain Machine Interface where 3 LED matrices flicking at 6Hz, 7Hz and 8Hz are used to generate the stimulations in the brain. User has to gaze at a LED panel to activate the motion path of the robot which will feed the solid food from the container associated with the gazed LED panel. System is incorporated with a visual servoing algorithm to identify the user's mouth position and adapt the food feeding location according the mouth location. Further, Mouth open/close status detection system is developed to measure the user's willingness to intake the food. The developed meal assistance robot is experimentally validated using 15 subjects in different experiments.

After detailing the research methods carried out, discussion of the results obtain are presented at the end of the thesis with limitations of the research and possible future improvements.

Keywords-Meal Assistance Robot, SSVEP, visual servoing, EEG

DEDICATION

This dissertation is dedicated to my parents, to whom i can trace my every success to.

ACKNOWLEDGMENTS

First and foremost I offer my sincerest gratitude to my supervisor, Dr Thilina Lalitharatne, who has given me the opportunity to follow my MSc in University of Moratuwa and who supported me throughout my thesis with his patience and knowledge whilst allowing me the room to work in my own way. I attribute the level of my Masters degree to his encouragement and effort and without him this thesis, too, would not have been completed or written. One simply could not wish for a better or friendlier supervisor.

Besides my supervisor, I would like to thank the rest of my progress review committee: Prof. Ruwan Gopura, Dr. Anjula De Silva, and Dr.Damith Chathuranga, for their insightful comments and encouragement, but also for the hard question which encouraged me to widen my research from various perspectives.My sincere thanks also goes to Assistant Professor Chinthaka Premachandra for offering me a summer internship opportunity at Shibaura Institute of Technology, Japan and leading me working on diverse exciting projects.

Special gratitude must be given to my lab members in Bionics Laboratory, Department of Mechanical Engineering Dr. Kanishka Madusanka, Achintha Mihiran, Isuru Ruhunage, Sanka Chandrasiri, Achintha Iroshan, Thilina Weerakkody, and Dinesh Kumara for their support towards me in participating for experiments as subjects. Futher, I would like to thank my final year research group member Isira Naotunna for initiating this research with me. Also I would like to thank Dr. Viraj Muthugala for his helpful insights on the research. Finally, I thank my parents for supporting me throughout all my studies at University.

TABLE OF CONTENTS

Declaration	i
Abstract	ii
Dedication	iii
Acknowledgments	iv
Table of Contents v	iii
List of Figures	xi
List of Tables	xii
Abbreviations	1
1 Introduction	3
1.0.1 Contributions of the Thesis	6
1.0.2 Thesis Overview	6
2 Literature Review	9

	2.1	Mecha	nical design of meal assistance robots.	11
		2.1.1	Feeding methods	11
		2.1.2	Food storage method	13
		2.1.3	Actuation methods used in meal assistance robots	15
		2.1.4	Summary	15
	2.2	Contro	olling methods of meal assistance robot	17
		2.2.1	User input identification methods used in meal assistance robots	17
		2.2.2	Hardware control of the meal assistance robots	20
		2.2.3	Emerging technologies in meal assistance robots	21
		2.2.4	Use of Brain Machine Interfacing as a control signal	22
		2.2.5	Event-related potentials (ERPs)	24
		2.2.6	Sensorimotor rhythms (SMR)	25
		2.2.7	Steady State Visually Evoked Potential (SSVEP)	27
		2.2.8	Summary	27
3	Ove	rview	and hardware design of the proposed meal assistance	
	rob	\mathbf{t}		29
	3.1	Introd	uction	29
	3.2	Overvi	iew of the proposed meal assistance robot $\ldots \ldots \ldots \ldots$	29
	3.3	Mecha	nical design and controlling of the 4DOF meal assistance robot	33

		3.3.1	Mechanism and Mechanical Design	34
		3.3.2	Kinematic analysis of the meal assistance robot	36
		3.3.3	Controlling of the meal assistance robot	41
		3.3.4	Electrical component connections	42
4	Dev	velopm	ent of user intention detection method using EEG:SSV	EP
	base	ed BM	II	44
	4.1	Introd	luction	44
	4.2	Select	ion of the stimulation frequency	45
	4.3	Visua	al stimuli generation	46
	4.4	Acqui	sition of EEG signals.	47
	4.5	Prepro	ocessing of acquired raw signals	52
	4.6	Featu	re extraction and classification of SSVEP signal $\ldots \ldots$	54
		4.6.1	Fast Fourier Transformation based SSVEP classification .	54
		4.6.2	Canonical correlation based SSVEP classification $\ . \ . \ .$	55
5	Visi	ion bas	sed mouth position identification and mouth open/close	e,
	ider	ntificat	ion	59
	5.1	Introd	luction	59
	5.2	Auton	natic mouth position identification and tracking \ldots .	59
	5.3	User r	nouth open/close detection	63

6	\mathbf{Exp}	eriments, results and discussion.	65	
	6.1	Discussion	77	
7	Con	clusion and Future Work	80	
	7.1	Conclusion	80	
	7.2	Future directions	82	
Α	A First Appendix			
	A.1	Forward kinematics equations	83	
	A.2	Inverse kinematics equations	84	
Li	List of Publications			
Bi	Bibliography			

LIST OF FIGURES

1.1	World population projection for the period up to 2050 [1]	4
2.1	Tube feeding and spoon feeding method	12
2.2	Spoon approaching modes	13
2.3	Foods storage methods used in meal assistance robots	14
2.4	Different input signals used in meal assistance robots $\ldots \ldots \ldots$	17
2.5	Implanted electrodes over the motor cortex	22
2.6	Use of non invasive BMI to control a wheelchair	23
2.7	P300 wave. Figure from $[2]$	25
2.8	(a) Motor cortex. (b) Visual cortex	26
3.1	Hardware system overview of the meal assistance robot	30
3.2	Camera mounted of the end effector of the meal assistance robot .	31
3.3	Overall control algorithm of the system	32
3.4	3D illustration of the meal assistance robot's path	33
3.5	Design of the meal assistance robot	34
3.6	Main components used in the fabrication process	35

3.7	Workspace of the designed meal assistance robot	36
3.8	Quadrant design of the food storage method	36
3.9	Kinamatic analysis of the 4DOF robot arm	37
3.10	Forward kinematics analysis- figure 1	38
3.11	Forward kinematics analysis- figure 2	39
3.12	Inverse kinematics analysis- figure 1	39
3.13	Inverse kinematics analysis- figure 2	40
3.14	Feeder robot control algorithm	41
3.15	Connection diagram of electrical components	43
4.1	Section 1 of the main control algorithm	45
4.2	FFT analysis of Subh=ject A and B during resting state	46
4.3	LED Panel connection diagram	47
4.4	3mm Diameter 8 x 8 LED Matrix	48
4.5	OpenBCI EEG acquisition system	49
4.6	Electrode locations used according to $10/10$ system \ldots .	50
4.7	Ten20 electrode paste on gold cup electrodes	51
4.8	Goldcup Electrodes attached to a user's scalp using the EasyCap placement cap	51
4.9	Data preprocessing algorithm	52
4.10	Use of Moving window in data processing	53

4.11	6Hz classification instance	54
4.12	2 Overview of CCA based classification	56
4.13	CCA correlation values for user gazing.	57
5.1	Section 2 and 3 of the main control algorithm	60
5.2	Notations and motion directions of meal assistance robot designed in the proposed camera based automatic mouth position tacking method	61
5.3	Identification of user mouth open/close status $\ldots \ldots \ldots \ldots$	64
6.1	Experiment setup	65
6.2	Steps followed in one feeding cycle	66
6.3	Feedback form given to the experiment participants	67
6.4	FFT plots of 6,7 and 8Hz visual stimulus for the subject CJ $$	68
6.5	Canonical Correlation values of 6, 7 and 8Hz stimuli	69
6.6	Confusion matrices for each subject.	72
6.7	Average classification times for each subject at each frequency $\ . \ .$	73
6.8	Mean and standard deviation of the classification time taken by each subject	73
6.9	Image sequence of mouth position tracking process	75
6.10	Results from the feedback form	76

LIST OF TABLES

2.1	Overview of meal assistance robots	10
2.2	Control methods of existing meal assistance robots	16
6.1	Accuracy and average classification time using FFT based classification	67
6.2	Accuracy and average classification time using CCA based classification	71
6.3	Performance of the camera based mouth position tracking method and mouth open/close detection method	74

LIST OF ABBREVIATIONS

- ${\bf FFT}\,$ Fast Fourier Transformation
- **CCA** Canonical Correlation Analysis
- ADL Activities of Daily Living
- **SSVEP** Steady State Visually Evoked Potential
- EEG Electroencephalography
- FMRI Functional Magnetic Resonance Imaging
- **MRI** Magnetic Resonance Imaging
- **DOF** Degree of Freedom
- SCI Spinal Cord Injury
- ${\bf TMR}\,$ Targeted Muscle Reinnervation
- ECoG Electrocorticography
- EMG Electromyography
- EOG Electrooculography
- **BMI** Brain Machine Interface
- fNIRS Functional Near-Infrared Spectroscopy
- SSVEP Steady State Auditory Evoked Potential
- **ERP** Event Related Potential