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ABSTRACT

Spatio Temporal Forecasting of Dengue Outbreaks using Machine Learning

Dengue is one of the most critical public health concerns in Sri Lanka which imposes

a severe economic and welfare burden on the nation annually. Prior work has shown

that there are multiple factors that contribute to propagation of dengue, including

sociological factors such as human mobility. Therefore, it is a non-trivial task to

model the propagation of this disease accurately at a regional level. However, accurate

quantitative modeling approaches that can predict dengue incidence for a public health

administrative division would be invaluable in allocating valuable public health resources

and preventing sudden disease outbreaks.

In this study, we make use of large-scale pseudonymized call detail records of

approximately 10 million mobile phone subscribers to derive human mobility patterns

that can contribute towards disease propagation. We develop 3 distinct proxy indicators

for human mobility based on different assumptions and evaluate the suitability of each

indicator to accurately model the disease transmission dynamics of dengue. Using the

proxy measures developed by us, we go on to show that human mobility has a significant

impact on the disease incidence at a regional level, even if the disease is already endemic

to a given region.

Combining these proxy mobility indicators with other climatic factors that is known

to affect dengue incidence, we build multiple predictive models using different machine

learning methods to predict dengue incidence 2 weeks ahead of time for a given MOH

division. By introducing an automated input feature selection method based on genetic

algorithms, we show that we are able to improve the predictive accuracy of our models

significantly, with predictive models based on XGBoost yielding the best performance,

with an R2 of 0.935 and RMSE of 7.688.

Keywords: disease outbreak forecasting; human mobility models; mobile network big

data; machine learning applications;
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