TECHNO-ECONOMIC VIABILITY OF LARGE SCALE SOLAR INTEGRATION WITH BATTERY STORAGE IN SRI LANKA

Loku Gam Hewage Mekhala Prabhani

(159316R)

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

November 2019

TECHNO-ECONOMIC VIABILITY OF LARGE SCALE SOLAR INTEGRATION WITH BATTERY STORAGE IN SRI LANKA

Loku Gam Hewage Mekhala Prabhani

(159316R)

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

November 2019

DECLARATION

I declare that this thesis is my own work and does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning. Further to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the due acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters/MPhil/PhD thesis/Dissertation under our supervision.

1) Name of the supervisor: Dr. J. V. Upuli P. Jayatunga

Signature of the supervisor: Date:

2) Name of the supervisor: Prof. J. Rohan Lucas

Signature of the supervisor: Date:

3) Name of the supervisor: Eng. K.P.K. Shanthi

Signature of the supervisor: Date:

ABSTRACT

In Sri Lanka, power is generated from fossil fuel, hydro power and other renewable sources while generation from solar power is prominent in non-conventional Renewable Energy Sources (RESs). Over the past few years large scale Solar PV Power plants (SPVPs) are being added to the national grid at Medium Voltage (MV) distribution network. However, the quality of the distribution networks can adversely be affected, if they are connected without the knowledge of optimum sizes and locations.

In the research performed for outlining of SPVPs in the distribution networks, the output power from the SPVPs are assumed dispatchable without considering the variations of solar potential, which affect the output of the PV modules. Besides this, utilization of electricity generated from the weather dependent SPVPs is also affected by the mismatches in the timings of the electrical supply and demand. The difficulties associated with proliferation of SPVPs could be alleviated by the proper use of Battery Energy Storage Systems (BESSs). The use of BESS for SPVPs has been proposed in many studies, however, the impact of installing BESS on the quality of distribution networks during the sizing of battery storage has been ignored in majority of those research. The computational methods in most existing studies for the sizing and placements of SPVPs and Battery connected SPVPs (B-SPVPs) have used different analytical approaches and heuristic techniques. The analytical approaches are favourable for small systems but are not suitable for large and complex networks.

In this research, the optimal planning for SPVPs and B-SPVPs in terms of size and location in the distribution networks is presented. Solar intermittency has also been considered for the output power from PV modules. The main objective of this study is the development of a model to find out the self-sufficiency level of a Grid Substation in terms of energy required to serve the energy demand within the distribution network as much as possible. Models for proposing sizing and placement of SPVPs and B-SPVPs using heuristic optimization technique called Mixed Integer Programming with Genetic Algorithm (MIGA) was developed, preserving power balances and voltage limits before and after either SPVP or B-SPVP is connected to the distribution network.

To building up the basic model and optimization, Backward-Forward Sweep Load flow was carried out on IEEE 33 Bus network. The outcomes from MIGA were verified using Particle Swarm Optimization (PSO). The objective function was taken as minimization of the percentage of loss reduced when SPVP or B-SPVP is installed with respect to neither SPVP nor B-SPVP is present in the distribution network. The built model was then used to assess self-sufficiency level of Tissa 1 Feeder of Hambanthota GSS. The variability of load over a day was also considered in the modelling. In addition to reduction in power losses resulted after installing SPVP and B-SPVP, the improvements in bus voltages were also found significant. A financial evaluation was carried out to inspect the viability of SPVP and B-SPVP in Tissa 1 feeder of Hambanthota GSS using the optimized results with respect to Simple Payback Period and Levelised Cost of Energy for Tissa 1 feeder. At the closure, suggestions have been put forward as future works for any interested researcher.

DEDICATION

This thesis is dedicated to my parents and husband for being my pillars of success.

ACKNOWLEDGEMENT

I would like to acknowledge Prof. J. Rohan Lucas and Dr. J. V. Upuli P. Jayatunga for inspiring my interest persistently and providing extensive personal and professional guidance while teaching me a great deal about both scientific research and life in general. I would especially like to thank my external supervisor Eng. K.P. Kusum Shanthi, the Deputy General Manager (Transmission Design & Environment). As my teacher and mentor in Ceylon Electricity Board, he has taught me more than I could ever give him credit for here.

I would like to express the deepest appreciation to Eng. Udara Kapuduwa, Electrical Engineer from Saga Solon Solar Power Park for providing me with weather data. Without his help this dissertation would not have been possible.

Nobody has been more important to me in the pursuit of this dissertation than the members of my family. I would like to commemorate my parents, whose love and guidance are with me in whatever I wish for. Most importantly, I wish to thank my loving and supportive husband, Isuru, caring brothers and my adorable child, Thisaja, who provide unending inspiration.

TABLE OF CONTENTS

DECLARATIONi
ABSTRACTii
DEDICATIONiii
ACKNOWLEDGEMENTiv
TABLE OF CONTENTSv
LIST OF FIGURESix
LIST OF TABLESxii
EQUATIONS xiv
ABBREVIATIONSxv
1 INTRODUCTION
1.1 Problem Statement1
1.2 Research Objectives
1.3 Scope of Work
1.4Research Contribution and Novelty
1.5 Thesis Structure and Organization
1.6 Summary
2 LITERATURE REVIEW
2.1 Distributed Generators in present power systems
2.1.1 Types of Distributed Generators
2.1.2 Merits of Distributed Generators
2.1.3 Objectives of DG integration in distribution network7
2.1.4 Battery Energy Storage System as Distributed Generator
2.2 Combination of large scale SPVP and BESS in distribution systems 10
2.3 Algorithms and optimization techniques for locating and sizing of large
scale SPVPs and B-SPVPs12

	2.4	SPVP and BESS under the purview of Sri Lankan Power System	17
	2.5	Summary 1	19
3	DE	EVELOPMENT OF SOLAR PV MODULE POWER OUTPUT MODEL2	20
	3.1	Weather Data Collection	20
	3.2	Output from a Solar PV module for Hambanthota Area	20
	3.3	Variation of solar irradiance for Hambanthota Area	22
	3.3	3.1 Seasonal Solar Irradiance Probability Variation	22
	3.3 we	3.2 Seasonal solar PV module power output based on Hambantho eather data	ota 23
4	OF	TIMATION OF LARGE SCALE SPVP PLUS BATTERY INTEGRATIO	N
B	ASED	ON LOSS MINIMIZATION	24
	4.1	Main components for the execution of research work	24
	4.2	Formulation of optimizing function for SPVP and B-SPVP connected case 26	es
	4.2	2.1 Distribution networks under study	29
	4.2	2.2 24-h Load profile	30
	4.2	2.3 Power Loss across Branches	30
	4.2 4.2	2.3 Power Loss across Branches 3 2.4 BESS Control logic 3	30 33
	4.2 4.2 4.3	 2.3 Power Loss across Branches	30 33 33
5	4.2 4.2 4.3 OF	2.3 Power Loss across Branches	30 33 33 33
5 N	4.2 4.2 4.3 OF	2.3 Power Loss across Branches	30 33 33 33 ST 34
5 N	4.2 4.2 4.3 OF ETWO 5.1	 2.3 Power Loss across Branches 2.4 BESS Control logic Summary PTIMAL SPVP AND B-SPVP INTEGRATION FOR IEEE 33 BUS TES ORK IEEE 33 Bus Test Network 	30 33 33 33 5T 34 34
5 N	4.2 4.2 4.3 OF ETWO 5.1 5.2	2.3 Power Loss across Branches 3 2.4 BESS Control logic 3 Summary 3 PTIMAL SPVP AND B-SPVP INTEGRATION FOR IEEE 33 BUS TES 3 ORK 3 IEEE 33 Bus Test Network 3 Basic power flow results without concerning hourly load variation 3	30 33 33 33 37 34 34 34
5 N	4.2 4.3 OF ETWO 5.1 5.2 5.3	2.3 Power Loss across Branches	30 33 33 33 5T 34 34 34 in
5 N	4.2 4.3 OF ETWO 5.1 5.2 5.3 each	2.3 Power Loss across Branches 3 2.4 BESS Control logic 3 Summary 3 PTIMAL SPVP AND B-SPVP INTEGRATION FOR IEEE 33 BUS TES ORK 3 IEEE 33 Bus Test Network 3 Basic power flow results without concerning hourly load variation 3 Variation of total energy loss under different solar PV penetration levels 3 bus (as a % of Total load) 3	30 33 33 33 33 34 34 34 34 in 35
5 N	4.2 4.3 OF ETWO 5.1 5.2 5.3 each 5.4	2.3 Power Loss across Branches 3 2.4 BESS Control logic 3 Summary 3 3 PTIMAL SPVP AND B-SPVP INTEGRATION FOR IEEE 33 BUS TES 3 ORK 3 IEEE 33 Bus Test Network 3 Basic power flow results without concerning hourly load variation 3 Variation of total energy loss under different solar PV penetration levels 3 Variation of hourly energy loss for different solar PV penetration levels 3	30 33 33 33 33 34 34 34 34 34 35 %

5.5 V	ariation of Bus voltage under different Solar PV penetration levels (% of
Total loa	ad)
5.6 O	ptimization results for SPVP connected scenario
5.6.1	Optimization by MIGA and PSO
5.6.2	Network power balance preservation check for optimized results 38
5.6.3	Summary of Optimization Results for SPVP
5.7 0	ptimization results for B-SPVP scenario
5.7.1	Hourly Optimum energy levels (OE)
5.7.2	Optimization by MIGA and PSO41
5.7.3	Network power balance preservation check for optimized results 42
5.7.4	Summary of Optimization Results for B-SPVP43
5.8 C	omparison of total energy loss variation of optimized results over a day
for IEEE	E RTS 33 Bus Distribution Network
5.9 C	omparison of voltage profile improvement with optimized results over a
day for l	EEE RTS 33 Bus Distribution Network
OPTI	MAL SPVP AND B-SPVP INTEGRATION FOR TISSA 1 FEEDER 48
6.1 T	issa 1 feeder of Hambanthota GSS 48
6.2 B	asic power flow results without concerning hourly load variation
6.3 O	ptimization results for SPVP connected scenario
6.3.1	Optimization by MIGA and PSO49
6.3.2	Network power balance preservation check for optimized results 50
6.3.3	Summary of Optimization Results for SPVP51
6.4 O	ptimization results for B-SPVP scenario
6.4.1	Hourly Optimum energy levels (OE)
6.4.2	Optimization by MIGA and PSO53
6.4.3	Network power balance preservation check for optimized results 54

6.4.4 Summary of Optimization Results for B-SPVP55
6.4.5 Comparison of total energy loss variation of optimized results over a
day for Tissa 1 feeder57
6.4.6 Comparison of voltage profile improvement with optimized results
over a day for Tissa 1 feeder
6.5 Financial Evaluation
7 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 69
7.1 Conclusions
7.2 Recommendations for further studies72
REFERENCESxvi
ANNEXURE Ixxii
ANNEXURE IIxxiii
ANNEXURE IIIxxiv
ANNEXURE IVxxv
ANNEXURE Vxxvi
ANNEXURE VIxxvii
ANNEXURE VII
ANNEXURE VIIIxxix
ANNEXURE IX xxx

LIST OF FIGURES

Figure 2.1: Objectives of DG integration in power system [1, 36]7
Figure 2.2: Differentiating Characteristics of Different Battery Technologies9
Figure 2.3: The economies of unit scale and incremental unit costs for Solar PV
systems (2018 US\$/kW-ac) [Left] & The economies of unit scale and incremental
unit costs for LiBs (2017 US\$/kWh) [Right] [3]10
Figure 2.4 : Energy Contribution of Renewable Energy Sources and Energy Share for
Next 20 Years
Figure 3.1 : Seasonal solar irradiance probability variation for 12 th hour for
Hambanthota
Figure 3.2 : Seasonal solar power output in pu
Figure 4.1: Flow of Research work
Figure 4.2 : Overview of self-sufficient grid substations with battery sourced
distributed PV generation
Figure 4.3 : Summary of works carried out using MATLAB software
Figure 4.4 : Daily demand curve for Active and Reactive power for Hambanthota
GSS
GSS 30 Figure 5.1 : IEEE 33 Bus Test Network Single Line Diagram 34 Figure 5.2 : Total energy loss in each bus for different Solar PV penetration levels 35 (as a % of Total load) 35 Figure 5.3 : Hourly Energy loss for different Solar PV penetration levels (% of Total load) 36
GSS 30 Figure 5.1 : IEEE 33 Bus Test Network Single Line Diagram 34 Figure 5.2 : Total energy loss in each bus for different Solar PV penetration levels 35 (as a % of Total load) 35 Figure 5.3 : Hourly Energy loss for different Solar PV penetration levels (% of Total load) 36 Figure 5.4 : Hourly SPVP Connected Bus voltage profile for different Solar PV
GSS 30 Figure 5.1 : IEEE 33 Bus Test Network Single Line Diagram 34 Figure 5.2 : Total energy loss in each bus for different Solar PV penetration levels 35 (as a % of Total load) 35 Figure 5.3 : Hourly Energy loss for different Solar PV penetration levels (% of Total load) 36 Figure 5.4 : Hourly SPVP Connected Bus voltage profile for different Solar PV penetration levels (% of Total load) 37
GSS 30 Figure 5.1 : IEEE 33 Bus Test Network Single Line Diagram 34 Figure 5.2 : Total energy loss in each bus for different Solar PV penetration levels 35 (as a % of Total load) 35 Figure 5.3 : Hourly Energy loss for different Solar PV penetration levels (% of Total load) 36 Figure 5.4 : Hourly SPVP Connected Bus voltage profile for different Solar PV penetration levels (% of Total load) 37 Figure 5.5 : Optimized workspace results obtained from MIGA (Left) & PSO (Right) 37
GSS 30 Figure 5.1 : IEEE 33 Bus Test Network Single Line Diagram 34 Figure 5.2 : Total energy loss in each bus for different Solar PV penetration levels (as a % of Total load) 35 Figure 5.3 : Hourly Energy loss for different Solar PV penetration levels (% of Total load) 36 Figure 5.4 : Hourly SPVP Connected Bus voltage profile for different Solar PV penetration levels (% of Total load) 37 Figure 5.5 : Optimized workspace results obtained from MIGA (Left) & PSO (Right) for IEEE 33 Bus distribution network for SPVP 38
GSS 30 Figure 5.1 : IEEE 33 Bus Test Network Single Line Diagram 34 Figure 5.2 : Total energy loss in each bus for different Solar PV penetration levels 35 (as a % of Total load) 35 Figure 5.3 : Hourly Energy loss for different Solar PV penetration levels (% of Total load) 36 Figure 5.4 : Hourly SPVP Connected Bus voltage profile for different Solar PV penetration levels (% of Total load) 37 Figure 5.5 : Optimized workspace results obtained from MIGA (Left) & PSO (Right) for IEEE 33 Bus distribution network for SPVP 38 Figure 5.6 : Simulation output obtained from MIGA (Left) & PSO (Right) for IEEE 38
GSS30Figure 5.1 : IEEE 33 Bus Test Network Single Line Diagram34Figure 5.2 : Total energy loss in each bus for different Solar PV penetration levels35(as a % of Total load)35Figure 5.3 : Hourly Energy loss for different Solar PV penetration levels (% of Total36Figure 5.4 : Hourly SPVP Connected Bus voltage profile for different Solar PVpenetration levels (% of Total load)37Figure 5.5 : Optimized workspace results obtained from MIGA (Left) & PSO (Right)for IEEE 33 Bus distribution network for SPVP38Figure 5.6 : Simulation output obtained from MIGA (Left) & PSO (Right) for IEEE33 Bus distribution network38
GSS 30 Figure 5.1 : IEEE 33 Bus Test Network Single Line Diagram 34 Figure 5.2 : Total energy loss in each bus for different Solar PV penetration levels (as a % of Total load) 35 Figure 5.3 : Hourly Energy loss for different Solar PV penetration levels (% of Total load) 36 Figure 5.4 : Hourly SPVP Connected Bus voltage profile for different Solar PV penetration levels (% of Total load) 37 Figure 5.5 : Optimized workspace results obtained from MIGA (Left) & PSO (Right) for IEEE 33 Bus distribution network for SPVP 38 Figure 5.6 : Simulation output obtained from MIGA (Left) & PSO (Right) for IEEE 33 Bus distribution network 38 Figure 5.7: Power from main grid and SPVP with time 40
GSS 30 Figure 5.1 : IEEE 33 Bus Test Network Single Line Diagram 34 Figure 5.2 : Total energy loss in each bus for different Solar PV penetration levels (as a % of Total load) 35 Figure 5.3 : Hourly Energy loss for different Solar PV penetration levels (% of Total load) 36 Figure 5.4 : Hourly SPVP Connected Bus voltage profile for different Solar PV penetration levels (% of Total load) 36 Figure 5.4 : Hourly SPVP Connected Bus voltage profile for different Solar PV penetration levels (% of Total load) 37 Figure 5.5 : Optimized workspace results obtained from MIGA (Left) & PSO (Right) for IEEE 33 Bus distribution network for SPVP 38 Figure 5.6 : Simulation output obtained from MIGA (Left) & PSO (Right) for IEEE 33 Bus distribution network 38 Figure 5.7: Power from main grid and SPVP with time 40 Figure 5.8 : Optimized workspace results obtained from MIGA (Left) & PSO (Right) 40

Figure 5.9 : Simulation output obtained from MIGA (Left) & PSO (Right) for IEEE
33 Bus distribution network
Figure 5.10: BESS Charge/Discharge with time
Figure 5.11 : Power from main grid and B-SPVP with time
Figure 5.12: Power from main grid and B-SPVP with time
Figure 5.13 : Hourly energy loss variation with Solar/Solar connected BES
penetration compared to base case
Figure 5.14 : Bus voltage variation with Solar/Solar connected BES penetration with
time
Figure 6.1 : Tissa 1 feeder of Hambanthota GSS
Figure 6.2 : Optimized workspace results obtained from MIGA (Left) & PSO (Right)
for Tissa 1 feeder for SPVP
Figure 6.3 : Simulation output obtained from optimization with MIGA (Left) & PSO
(Right) for Tissa 1 feeder 50
Figure 6.4: Power from main grid and SPVP with time
Figure 6.5 : Optimized workspace results obtained from MIGA (Left) & PSO (Right)
for Tissa 1 feeder
Figure 6.6 : Simulation output for Tissa 1 feeder using MIGA 54
Figure 6.7: BESS Charge/Discharge with time
Figure 6.8 : Power from main grid and B-SPVP with time
Figure 6.9: Power from main grid and B-SPVP with time
Figure 6.10 : Hourly energy loss variation with Solar/Solar connected BES
penetration compared to base case
Figure 6.11 : Voltage profile improvement with optimized results over a day for
Tissa 1 feeder (Graph 1/5)60
Figure 6.12 : Voltage profile improvement with optimized results over a day for
Tissa 1 feeder (Graph 2/5)
Figure 6.13 : Voltage profile improvement with optimized results over a day for
Tissa 1 feeder (Graph 3/5)
Figure 6.14 : Voltage profile improvement with optimized results over a day for
Tissa 1 feeder (Graph 4/5)

Figure	6.15 :	Voltage	profile	improvement	with	optimized	results	over	a o	day	for
Tissa 1	feeder	(Graph 5	5/5)	•••••			•••••			•••••	. 64

LIST OF TABLES

Table 2.1 : Comparison of analytical and heuristic concept
Table 2.2 : Summary of literature review on DG sizing and placement using heuristic
methods14
Table 3.1: Months for seasons considered 21
Table 3.2 : Characteristics of PV module
Table 3.3 : Output power from PV module (in W) for a given time segment (in h)
[46]21
Table 3.4: Statistical parameters for historical seasonal solar irradiance data for the
12 th hour based on Hambanthota weather data
Table 5.1 : Basic power flow results without concerning hourly load variation for
IEEE 33 Bus Distribution Network
Table 5.2 : Network power balance preservation check for Case 1 & 2 for IEEE 33
Bus distribution network
Table 5.3 : Summary of Optimization Results for SPVP 39
Table 5.4 : Hourly Optimum energy levels (OE) for IEEE 33 Bus distribution
network
Table 5.5 : Network power balance preservation check for Case 1, 2 & 3 for IEEE 33
Bus distribution network
Table 5.6 : Summary of Optimization Results for B-SPVP 43
Table 6.1 : Basic power flow results without concerning hourly load variation for
Tissa 1 feeder of Hambanthota GSS
Table 6.2 : Network power balance preservation check for Case 1 & 2 for Tissa 1
feeder
Table 6.3 : Summary of Optimization Results for SPVP 51
Table 6.4 : Hourly Optimum energy levels (OE) for Tissa 1 feeder
Table 6.5 : Network power balance preservation check for Case 1, 2 & 3 for Tissa 1
feeder54
Table 6.6 : Summary of Optimization Results for B-SPVP 55
Table 6.7 : Variable cost (Rs./MWh) for generating units of Sri Lanka on 03 rd August

Table 6.8 : Specific values used for financial evaluation	57
Table 6.9 : Summary of financial evaluation for optimized Tissa 1 feeder SPVP and	١d
B-SPVP	57
Table 7.1 : Self-sufficiency level in terms of energy for Tissa 1 feeder and IEEE RT	<u>S</u>
33 bus network under optimized condition for SPVP and B-SPVP	70
Table 7.2 : Optimal Solar power plant and BESS sizes of SPVP and B-SPVP	70
Table 7.3 : Reduction in total power losses & voltage profile improvement in Tissa	. 1
feeder	71

EQUATIONS

Equation 4.1 : Total Energy Loss Index	27
Equation 4.2 Network power balance equations	28
Equation 4.3 : Reduction in energy loss	29
Equation 4.4 : Self-sufficiency level in terms of energy penetration	29
Equation 4.5: Active power loss across i^{th} branch; $P_{loss(i)}$ for Case 1	31
Equation 4.6 : Reactive power loss across i^{th} branch; $Q_{loss(i)}$ for Case 1	31
Equation 4.7 : Total power loss during a day; Ploss_Total_Day for Case 1	31
Equation 4.8 : Active power during t^{th} hour; $P_{(i)}(t)$ for Case 2	31
Equation 4.9 : Reactive power during t^{th} hour; $Q_{(i)}(t)$ for Case 2	31
Equation 4.10 : Active power loss across i^{th} branch; $P^{SPVP}_{loss(i)}$ for Case 2	32
Equation 4.11 : Reactive power loss across i^{th} branch; $Q^{SPVP}_{loss(i)}$ for Case 2	32
Equation 4.12 : Total power loss during a day; P ^{SPVP} _{loss_Total_Day} for Case 2	32
Equation 4.13 : Active power during t^{th} hour; $P_{(i)}(t)$ for Case 3	32
Equation 4.14 : Reactive power during t^{th} hour; $Q_{(i)}(t)$ for Case 3	32
Equation 4.15 : Active power loss across i^{th} branch; $P^{B-SPVP}_{loss(i)}$ for Case 3	32
Equation 4.16 : Reactive power loss across i^{th} branch; $Q^{B-SPVP}_{loss(i)}$ for Case 3	32
Equation 4.17 : Total power loss during a day; P ^{B-SPVP} _{loss_Total_Day} for Case 3	33

ABBREVIATIONS

Abbreviation	Description			
ADB	Asian Development Bank			
BESS	Battery Energy Storage System			
BFSF	Backward-Forward Sweep Flow			
B-SPVP	Battery energy storage connected solar PV power plant			
PDF	Probability Density Function			
CEB	Ceylon Electricity Board			
DG	Distributed Generator			
DER	Distributed Energy Resource			
DP	Dynamic Programming			
GA	Genetic Algorithm			
GSS	Grid Substation			
IRR	Internal Rate of Return			
IT	Information Technology			
LCLTGEP	Least Cost Long Term Generation Expansion Plan			
LCOE	Levelized Cost of Energy			
LiB	Lithium-ion battery system			
MIGA	Mixed Integer Genetic Algorithm for Linear Programming			
MV	Medium Voltage			
OE	Optimum Energy Level			
PPA	Power Purchase Agreement			
PSO	Particle Swarm Optimization			
PV	Photovoltaic			
R&D	Research and Development			
RE	Renewable Energy			
RES	Renewable Energy Sources			
RTS	Reliability Test System			
SPP	Simple Payback Period			
SPVP	Solar PV power plant			
TELI	Total Energy Loss Index			
UNFCCC	United Nations Framework Convention on Climate Change			
US	United States			