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ABSTRACT

It is not an exaggeration to mention that mobile devices have become ubiquitous and
they are used for variety of purposes ranging from personal communication to disaster
management and more. These devices are capable of establishing mobile ad hoc net-
works (MANETs) for multihop communication without the support of infrastructure.
This enables more interesting and useful applications of mobile devices, for exam-
ple for collaborative leaners in large classrooms, shoppers in crowded shopping malls,
spectators in sports stadiums, online gamers and more.

MANETs have not sufficiently developed to a deployable level yet. Routing in
MANETs is a major problem. It is challenging to devise routing protocols for MANETs
due to dynamic topology resulting from mobility, limited battery life and impairments
inherent in wireless links. Traditional routing approach is to tweak the existing routing
protocols that are designed for wired networks. Therefore, it is common to appoint
special nodes to perform routing controls and gather global state information such as
routing tables. We identify this approach as the fixed-stateful routing paradigm. Fixed
stateful routing does not scale with the density of MANETs because the routes will get
obsolete quickly due to the dynamic topology causing frequent routing updates. The
overhead for these frequent updates will be unacceptable when the MANETs become
dense. For example, the control overhead of routing updates in most of the traditional
routing protocols are of magnitude O(N) or O(N2), where N is the number of nodes in
the network.

We name the routing approach that does not require to maintain global network
states and does not appoint key nodes for routing and control as mobile-stateless rout-
ing paradigm. We propose a novel concept called endcast that leverages message
flooding for end to end communication in MANETs in mobile-stateless manner. How-
ever, flooding causes heavy amounts of redundant messages, contention and collisions
resulting in a situation known as broadcast storm problem. When flooding is utilized
for end to end communication, the messages will flood beyond the destination. We call
this situation broadcast flood problem.

Repetitive rebroadcasting in simple flooding is analogous to biological cell division
in the growth of human organs. Chalone mechanism is a regulatory system to control
the growth of the organs. In this mechanism, each biological cell secretes a molecule
called chalone and the concentration of chalones in the environment increases when
the number of cells increases. When the chalone concentration exceeds a threshold the
cells stop dividing themselves. Counter based flooding is one of the efficient flooding
schemes, in which a node decides not to rebroadcast a received message if the mes-
sage is subsequently heard multiple times exceeding a predefined threshold during a
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random wait period. Inspired by the chalone mechanism in the growth of the organs
we selected counter based flooding to unicast messages in a MANET. We proposed an
inhibition scheme to stop the propagation of message beyond the destination to miti-
gate the broadcast flood problem. In this scheme, the destination transmits a smaller
size control message that we call inhibitor that also propagates using counter based
flooding but with a smaller random wait period than in the case of data message. Fur-
thermore, inhibitors are limited to the region of the MANET covered by data flooding.

The proposed endcast scheme outperforms simple flooding in such a way that over
45% of redundant messages are saved in all the network configurations starting from
100-node network in ideal wireless conditions when the nodes were placed on a play-
ground of 600m× 400m and each node was configured to have 200m of transmission
radius. Similarly, the protocol manages to save over 45% of redundant messages for
all node densities ranging from 10 to 300 in realistic wireless conditions simulated by
IEEE 802.11g standard wireless MAC implementation with power saving transmission
radius of 40m. This saving increases rapidly as networks grow by size in both the ideal
and realistic wireless network conditions. The inhibition scheme of the protocol was
also found to be effective, for example, redundant messages grow in number at a rate
about 8 frames per every 25 nodes added to the network when there is inhibition in
operation whereas the growth rate is about 170 frames per every 25 nodes when the
protocol operates without inhibition in the simulated network scenario.

The major contribution of this research is the analytical model that we developed to
design and evaluate endcast schemes. We developed a graph theoretic model to eval-
uate the propagation of messages in endcast, based on a preliminary model developed
by Viswanath and Obraczka [2]. We modified the model by (i) improving its method
of estimating the number of new nodes reached by each level of rebroadcast (ii) mod-
eling the impact of node mobility and (iii) incorporating time domain representation
to model the flooding schemes that involve random assessment delays (iii) enabling
it to represent efficient flooding schemes such as counter based flooding. We present
the process of estimating the area covered by the propagation of flooding messages
using a geometric method. Time domain is represented by indesing the edges of the
flooding graph by time. The counter value and the threshold in counter based flooding
are converted into a rebroadcasting probability and estimated using a probability mass
function that we constructed by considering the overlapping of radio range circles of
the nodes.
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Pb Probability of successful reception at second level rebroadcast

xv



EAC Expected additional coverage

RAD Random assessment delay

ROH Redundancy overhead

FCT Flooding completion time

ni Number of nodes reached at rebroadcast level i

E Number of edges in flooding graph

Pcomp Probability of complete transmission

TRAD Random assessment delay time

C Random variable counter in counter based flooding

K Random variable threshold in counter based flooding

Ptx Probability of rebroadcast of each node

Tmax Maximum value for random assessment delay

Pc Critical probability


