ROUTING AND CONTROL MECHANISMS FOR DENSE MOBILE ADHOC NETWORKS

Sulochana Jayashamalee Sooriyaarachchi (118025E)

Thesis submitted in partial fulfillment of the requirements for the degree Doctor of Philosophy

Department of Computer Science and Engineering University of Moratuwa Sri Lanka

September 19, 2016

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the PhD thesis under my supervision.

Name of the supervisor:

Signature of the supervisor:

Date:

Dedicated to my loving mother

ACKNOWLEDGEMENTS

I am blessed to be surrounded by many extraordinary people who made it possible for me to march forward in my life. Especially, I would rather express my sincere gratitude to my supervisor Dr. Chandana Gamage for his untiring effort in guiding me along the correct path in my research work while enhancing my research skills remarkably with constructive and invaluable criticisms. He also immensely supported me in publishing in reputed conferences. He not only encouraged me in participating in foreign hosted conferences such as IEEE WoWMoM in US and ACM MobiCom in France but also made it a reality by helping me find the funding which is a scarce resource in Sri Lankan universities.

I would also extend my sincere thanks to my co supervisor Dr. Anil Fernando in University of Surrey, UK who patiently helped me in obtaining a Commonwealth scholarship for a Split-Site research experience which ultimately did not get operationalized due to a hard personal circumstance. The vice chancellor, Prof. Ananda Jayawardane should also be mentioned here with gratitude in arranging this scholarship.

The contribution of the examiners Dr. Priyanka Undugodage, Dr. Upali Kohomban, Dr. Ravi Monaragala and especially Dr. Manodha Gamage and Dr. Himal Suraweera who spent their time and effort in giving insightful feedback for my work during progress reviews is commendable.

I would like to extend my special thanks to Prof. Gihan Dias and all the relevant staff in LK domain registry including Ms. Geethika for arranging the sponsorship for my US visit which was a valuable experience related to this research work. Dr. Shehan Perera as the research coordinator and all the colleagues including Ms. Vishaka Nanayakkara, Dr. Dilum Bandara, Mr. Sanjeewa Darshana, Mr. Thusitha Bandara and Ms. Akila Pemasiri helped me in various ways especially giving valuable inputs for preparing for conference participation abroad. I would like to thank Mr. Kishan Wimalawarne for helping me access research papers.

Furthermore, my grateful thanks are due to the Head of the Department of Computer Science and Engineering, Dr. Chathura de Silva and the former Dean of the Faculty of Engineering, Prof. Anuruddha Puswewala for their fatherly advises and help regarding the administrative process of my PhD. All the staff of the postgraduate division and the establishment division should also be mentioned for their friendly assistance in administrative procedures of the PhD and study leaves.

This thesis would not be a success without the help of my mother. I would extend my gratitude to my husband, all the extended family members and friends including Ms. Chathurika for the unconditional support and encouragement rendered to me.

ABSTRACT

It is not an exaggeration to mention that mobile devices have become ubiquitous and they are used for variety of purposes ranging from personal communication to disaster management and more. These devices are capable of establishing mobile ad hoc networks (MANETs) for multihop communication without the support of infrastructure. This enables more interesting and useful applications of mobile devices, for example for collaborative leaners in large classrooms, shoppers in crowded shopping malls, spectators in sports stadiums, online gamers and more.

MANETs have not sufficiently developed to a deployable level yet. Routing in MANETs is a major problem. It is challenging to devise routing protocols for MANETs due to dynamic topology resulting from mobility, limited battery life and impairments inherent in wireless links. Traditional routing approach is to tweak the existing routing protocols that are designed for wired networks. Therefore, it is common to appoint special nodes to perform routing controls and gather global state information such as routing tables. We identify this approach as the *fixed-stateful routing paradigm*. Fixed stateful routing does not scale with the density of MANETs because the routes will get obsolete quickly due to the dynamic topology causing frequent routing updates. The overhead for these frequent updates will be unacceptable when the MANETs become dense. For example, the control overhead of routing updates in most of the traditional routing protocols are of magnitude O(N) or $O(N^2)$, where N is the number of nodes in the network.

We name the routing approach that does not require to maintain global network states and does not appoint key nodes for routing and control as *mobile-stateless routing paradigm*. We propose a novel concept called *endcast* that leverages message flooding for end to end communication in MANETs in mobile-stateless manner. However, flooding causes heavy amounts of redundant messages, contention and collisions resulting in a situation known as *broadcast storm problem*. When flooding is utilized for end to end communication, the messages will flood beyond the destination. We call this situation *broadcast flood problem*.

Repetitive rebroadcasting in simple flooding is analogous to biological cell division in the growth of human organs. *Chalone mechanism* is a regulatory system to control the growth of the organs. In this mechanism, each biological cell secretes a molecule called *chalone* and the concentration of chalones in the environment increases when the number of cells increases. When the chalone concentration exceeds a threshold the cells stop dividing themselves. *Counter based flooding* is one of the efficient flooding schemes, in which a node decides not to rebroadcast a received message if the message is subsequently heard multiple times exceeding a predefined threshold during a random wait period. Inspired by the chalone mechanism in the growth of the organs we selected counter based flooding to unicast messages in a MANET. We proposed an *inhibition scheme* to stop the propagation of message beyond the destination to mitigate the broadcast flood problem. In this scheme, the destination transmits a smaller size control message that we call *inhibitor* that also propagates using counter based flooding but with a smaller random wait period than in the case of data message. Furthermore, inhibitors are limited to the region of the MANET covered by data flooding.

The proposed endcast scheme outperforms simple flooding in such a way that over 45% of redundant messages are saved in all the network configurations starting from 100-node network in ideal wireless conditions when the nodes were placed on a playground of $600m \times 400m$ and each node was configured to have 200m of transmission radius. Similarly, the protocol manages to save over 45% of redundant messages for all node densities ranging from 10 to 300 in realistic wireless conditions simulated by IEEE 802.11g standard wireless MAC implementation with power saving transmission radius of 40m. This saving increases rapidly as networks grow by size in both the ideal and realistic wireless network conditions. The inhibition scheme of the protocol was also found to be effective, for example, redundant messages grow in number at a rate about 8 frames per every 25 nodes added to the network when there is inhibition in operation whereas the growth rate is about 170 frames per every 25 nodes when the protocol operates without inhibition in the simulated network scenario.

The major contribution of this research is the analytical model that we developed to design and evaluate endcast schemes. We developed a graph theoretic model to evaluate the propagation of messages in endcast, based on a preliminary model developed by Viswanath and Obraczka [2]. We modified the model by (i) improving its method of estimating the number of new nodes reached by each level of rebroadcast (ii) modeling the impact of node mobility and (iii) incorporating time domain representation to model the flooding schemes that involve random assessment delays (iii) enabling it to represent efficient flooding schemes such as counter based flooding. We present the process of estimating the area covered by the propagation of flooding messages using a geometric method. Time domain is represented by indesing the edges of the flooding graph by time. The counter value and the threshold in counter based flooding are converted into a rebroadcasting probability and estimated using a probability mass function that we constructed by considering the overlapping of radio range circles of the nodes.

CONTENTS

De	eclara	tion		i
De	edicat	ion		ii
Ac	know	vledgem	ents	iii
Ał	ostrac	:t		iv
Co	onten	ts		vi
Li	st of l	Figures		X
Li	st of '	Fables		xiii
De	eclara	tion		xvi
1	Intr	oductio	n	1
	1.1	Contex	at and Motivation	4
	1.2	Contril	butions	7
	1.3	Organi	zation	8
2	Lite	rature s	survey	10
	2.1	Introdu	uction	10
	2.2	Existin	g routing mechanisms in MANETs	10
		2.2.1	Proactive routing protocols	12
		2.2.2	Reactive routing protocols	14
		2.2.3	Hybrid routing protocols	17

		2.2.4	Cost of r	outing protocols	19
	2.3	Floodi	ng as a da	ta forwarding scheme	20
		2.3.1	Storm co	ontrol	21
			2.3.1.1	Ant colony heuristics	22
			2.3.1.2	Foraging of honey bees	23
			2.3.1.3	Swarm intelligence of termites	23
			2.3.1.4	Multi-agent systems	23
			2.3.1.5	Immune system	24
			2.3.1.6	Bacterial activities	24
			2.3.1.7	Diffusion-based systems	24
			2.3.1.8	Epidemics	25
			2.3.1.9	Cell proliferation	25
		2.3.2	Flood co	ntrol	25
			2.3.2.1	TTL-based controlled flooding	26
			2.3.2.2	Timer based control	26
			2.3.2.3	Cell biological mechanisms	26
			2.3.2.4	Negative feedback packets	27
	2.4	Summ	ary		27
3	Rev	iew of f	looding sc	hemes	28
	3.1	Introd	uction		28
	3.2	Broad	cast protoc	cols in MANETs	29
		3.2.1	Probabil	istic flooding	32
		3.2.2	Counter	based flooding	34
	3.3	Broad	cast protoc	col evaluation	38
	3.4	Simula	ation studi	es of flooding schemes in MANETs	44
	3.5	MAC	protocols	enabling broadcasts	46
	3.6	Mobili	ity models		50
		3.6.1	Selecting	g a mobility model	50
		3.6.2	Impact o	f mobility on wireless links	53
	3.7	Theore	etical analy	ysis of MANET flooding	57

		3.7.1	Graph ba	ased representations of MANETs	57
		3.7.2	Operatio	nal characteristics of MANETs	59
	3.8	Summ	ary		63
4	Rese	earch m	ethodolog	39	65
	4.1	Introd	uction		65
	4.2	Unicas	st via simp	le flooding	65
	4.3	Param	eterizing a	MANET that unicast via simple flooding	70
	4.4	Graph	based mo	del for flooding schemes	73
		4.4.1	Number	of edges in flooding tree	76
		4.4.2	Span of f	flooding tree	77
		4.4.3	Nodes co	overed by the first level of rebroadcast	78
		4.4.4	Nodes co	overed by next levels of rebroadcast	83
		4.4.5	Effect of	node mobility	84
	4.5	Storm	control .		91
		4.5.1	Graph ba	ased analysis of counter based flooding	91
		4.5.2	Mathema	atical model for counter based flooding	95
	4.6	Flood	control .		98
	4.7	Summ	ary		99
5	Proj	posed p	rotocol		101
	5.1	Introd	uction		101
	5.2	Contro	olling redu	ndant rebroadcasts	103
		5.2.1	Growth r	regulation in organs	104
			5.2.1.1	Using growth as the inhibitor of growth	104
			5.2.1.2	Terminal conditions of growth	104
			5.2.1.3	Growth sensing mechanisms	104
		5.2.2	Biologic	al system to MANET mapping	105
		5.2.3	Operatio	nal model of the bio-inspired system	107
	5.3	Protoc	ol archited	cture and design	108
	5.4	Summ	ary		117

CONTENTS

6	Ana	lytical	model for the protocol	118	
	6.1	Introd	uction	118	
	6.2	Model	ling of probabilistic flooding with Viswanath-Obraczka model .	119	
		6.2.1	Modeling node-to-node transmission on CSMA MAC	120	
		6.2.2	Modeling multihop transmission in flooding schemes	126	
	6.3	Propos	sed modifications to Viswanath-Obraczka model	129	
		6.3.1	Modeling the counter based flooding parameters	132	
		6.3.2	Modeling node mobility	142	
	6.4	Mode	ling the proposed protocol in a sample CSMA based network	143	
	6.5	Summ	nary	149	
7	Sim	ulation	results for the proposed protocol	151	
	7.1	Introd	uction	151	
	7.2	Exper	imental design	153	
		7.2.1	Experiments based on ideal wireless conditions	154	
		7.2.2	Experiments based on realistic wireless conditions	154	
	7.3	Simul	ation based experiments and results	158	
		7.3.1	Redundancy overhead	158	
		7.3.2	Reachability	163	
		7.3.3	Latency	166	
	7.4	Discus	ssion	167	
		7.4.1	Effect of storm control	167	
		7.4.2	Effect of inhibition scheme	168	
		7.4.3	Effect of mobility	169	
		7.4.4	Effect of chalone threshold	172	
	7.5	Summ	nary	172	
8	Disc	cussion	and conclusions	175	
Bi	Bibliography 190				

LIST OF FIGURES

1.1	Research stages	7
3.1	Categorization of broadcast schemes in MANETs	31
3.2	Data propagation in simple flooding [2]	34
3.3	Total number of nodes reached by probabilistic flooding	35
3.4	Additional area covered by a rebroadcast	36
3.5	Expected additional coverage area by a node with rebroadcasts of neighbors	37
3.6	Motion of node N_k passing through the transmission region of node N_0 [95]	55
3.7	An example for time evolving graphs [102]	59
4.1	Problem of unicast via flooding	66
4.2	Geometric estimation of reached nodes at each rebroadcast level	67
4.3	Total number of frames in simple flooding with network density	68
4.4	Playground approximation by rectangular regions	69
4.5	Adjacency matrix of a sample network	71
4.6	Redundant rebroadcasting modeled as graph evolution	74
4.7	Redundant rebroadcasting modeled as graph evolution for sample network	75
4.8	Maximum hop count calculation	77
4.9	Geometric estimation of the area of regions that receive the frame at each	
	rebroadcast level	78
4.10	Estimating the average area covered by rebroadcast level 1	79
4.11	Estimating average distance d_{av} between source and a neighbor	80
4.12	Probability mass function for nodes covered by rebroadcast levels	82
4.13	Redundant frames due to simple flooding in sample network	83

4.14	Problem of unicast via flooding in the presence of mobility	84
4.15	Network configurations at two time instances while the nodes are moving	85
4.16	Time evolving graph due to mobility	85
4.17	Flooding graphs for simple flooding in static and mobile networks	86
4.18	Motion of node N_k passing through the transmission region of node N_0 [95]	87
4.19	Probability of complete transmission with relative node speeds	90
4.20	Flooding graph for sample network with counter based flooding	93
4.21	Accumulation of frames for counter based flooding and simple flooding .	95
4.22	Geometric estimation of counter value by rebroadcast of neighbors	97
4.23	Broadcast flood in sample network with simple flooding	98
5.1	Chalone mechanism for cell proliferation control	105
5.2	Cell proliferation Vs message rebroadcasting	106
5.3	Event flow at a receipt of a data frame by a node	111
5.4	Log format	112
5.5	Abstract shape of threshold function proposed in [69]	112
5.6	State diagram for the protocol	115
5.7	Proposed protocol with respect to fixed-stateful and mobile-stateless rout-	
	ing approaches	116
6.1	Data propagation in probabilistic flooding	118
6.2	Illustration of hidden node problem [4]	120
6.3	Three state Markov chain model of a node	122
6.4	Two state Markov chain model of a channel	123
6.5	Second level retransmission	126
6.6	First two retransmissions of flooding	127
6.7	Estimating the average area covered by rebroadcasts	129
6.8	Geometric interpretation of counter based flooding	131
6.9	Librino algorithm for calculating area of intersecting circles	131
6.10	Trellis structure for sample five circles	133
6.11	Illustration of change in counter values of nodes in the presence of mobility	143

6.12	Variation of transmission probability	145
6.13	Illustration of hidden terminal problem for transmission from X to Y	145
6.14	Successful transmission probability	146
6.15	Probability mass function of frame count from simulation data	147
6.16	Reachability with retransmission level in a MANET having density $100\ $.	148
7.1	Basic IEEE 802.11 DCF protocol [143]	156
7.2	Redundant frames by blind, SNCF and CA protocols	159
7.3	Example 15-node network	161
7.4	Number of rebroadcasts Vs distance between node pairs	162
7.5	Redundant frames until the end of events in SNCF and CA protocols	163
7.6	Saved rebroadcasts (SRB) for CA and SNCF protocols for a 300-node net-	
	work	163
7.7	Reachability of SNCF and CA protocols	165
7.8	Reachability (RE_{uf})	166
7.9	Latency of CA protocol in terms of flooding completion time (FCT) in	
	comparison with simple flooding	167
7.10	Redundant frames caused by CA protocol with and without inhibition scheme	e169
7.11	Redundancy overhead and reachability of SNCF and CA protocols with	
	mobility	170
8.1	Redundant rebroadcasting modeled as graph evolution for sample network	177
8.2	Geometric estimation of reached nodes at each rebroadcast level	178
8.3	Redundant rebroadcast frames with rebroadcast levels	179
8.4	Total number of frames due to propagation of simple flooding	180
8.5	Broadcast flood problem	180
8.6	Redundant rebroadcasting modeled as graph evolution for sample network	181

LIST OF TABLES

2.1	Complexity of proactive protocols [9]	12
2.2	Complexity of reactive protocols [9]	15
2.3	Complexity of hybrid protocols [9]	18
2.4	Complexity of constructing and maintaining virtual backbones [17]	20
3.1	Selecting flooding schemes for mobile-stateless endcast	33
3.2	Selecting performance metrics for mobile-stateless endcast	40
3.3	Selected performance metrics	42
3.4	Surveyed simulation parameters	46
3.5	Selecting a MAC protocol	50
3.6	Selecting a mobility model	51
3.7	Selecting values for RWP mobility model parameters	53
3.8	Comparson of algorithms for analyzing reachability of nodes in a given	
	network topology	61
3.9	Selecting analytical models	62
4.1	Accumulation of frames in simple flooding	66
4.2	Accumulation of frames in simple flooding with network density	68
4.3	Metrics and definitions to describe graphs	74
4.4	Theoretical results for flooding propagation for 20-node sample network .	82
5.1	Comparison of cell proliferation with blind rebroadcasting	103
5.2	Mapping from biological system to MANET	106
6.1	Recursive calculation of intersection areas	140

6.2	Comparison of P_S in two definitions $\ldots \ldots \ldots$	146
6.3	Probabilities that the frame count is less than different threshold values	148
6.4	Parameter set for the reachability analysis of an example MANET	148
7.1	Simulation parameters for experiments in ideal wireless conditions	154
7.2	IEEE 802.11 parameters	156
7.3	Network densities of simulated topologies	157
7.4	Topologies with constant network density	158
7.5	Simulation parameters for experiments in realistic wireless conditions	158

LIST OF ACRONYMS

MANET	Mobile adhoc network
CSMA/CA	Carrier sense multiple access/ Collision avoidance
MAC	Medium access control
N_k	Node <i>k</i>
d_{av}	Average distance between a node and a neighbor
DCF	Distribution coordination function
SNCF	Sequence number controlled flooding
SRB	Saved rebroadcasts
RE	Reachability
CA	Cellular automata
RWP	Random waypoint
P_S	Probability of successful node to node transmission
RTS	Request to send
CTS	Clear to send
TTL	Time to live
N _{ix}	Node <i>x</i> at rebroadcast level <i>i</i> in flooding graph
N_T	Total number of nodes reached by flooding operation
β	Percentage additional area covered by propagation of flooding
P_b	Probability of successful reception at second level rebroadcast

- EAC Expected additional coverage
- RAD Random assessment delay
- ROH Redundancy overhead
- FCT Flooding completion time
- n_i Number of nodes reached at rebroadcast level i
- *E* Number of edges in flooding graph
- *P_{comp}* Probability of complete transmission
- T_{RAD} Random assessment delay time
- *C* Random variable counter in counter based flooding
- *K* Random variable threshold in counter based flooding
- P_{tx} Probability of rebroadcast of each node
- *T_{max}* Maximum value for random assessment delay
- *P_c* Critical probability