USE OF STATISTICAL MODELING AND PREDICTING THE EMPLOYEE SATISFACTION OF ACADEMICS IN SRI LANKA: A CASE STUDY

D. P. N. P. Dias

158375L

Dissertation submitted in partial fulfillment of the requirements for the

degree Master of Science in Operational Research

Department of Mathematics

University of Moratuwa Sri Lanka

March 2019

USE OF STATISTICAL MODELLING AND PREDICTING THE EMPLOYEE SATISFACTION OF ACADEMICS IN SRI LANKA: A CASE STUDY

D. P. N. P. Dias

158375L

Degree of Master of Science

Department of Mathematics

University of Moratuwa

Sri Lanka

March 2019

DECLARATION

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters thesis under my supervision.

Signature of the supervisor:

Date:

The above candidate has carried out research for the Masters thesis under my supervision.

Signature of the supervisor:

Date:

Abstract

This study has mainly focused on statistical modelling in predicting employee satisfaction. Different regression techniques have been applied to examine the factors affecting employee satisfaction of the academics in Sri Lankan universities. Superior behavior, co-worker behavior, job itself, physical conditions, teaching and research, administrative duties, academic environment and freedom were the main factors collected from the questionnaire and except that demographic factors were also collected. Employee satisfaction is measured with six questions in the questionnaire and all the measured variables were categorical variables. Different regression techniques such as ordinal regression, multinomial logistic regression and categorical regression were used to test for the relationship between key factors and employee satisfaction. Three regression techniques resulted in 3 different models and the sector was significant in all three models. Analysis of demographic factors with employee satisfaction resulted in a model with only two factors sector and salary from ordinal regression. Multinomial logistic regression resulted in 3 factors sector, salary and gender. Categorical regression resulted in a model with 3 factors gender, sector and distance. Before analyzing the factors, in the questionnaire, reliability analysis was done with chronbach's alpha and in order to make some of the factors consistent, recoding was done for some questions. Main factors were analyzed with the 3 regression techniques and resulted in 4 models. By comparing the models with R-squared values and goodness-of-fit statistics, the appropriate model was obtained from ordinal regression. This study revealed that, co-workers' behavior, physical conditions. Teaching and Research. Administrative duties and academic environment were not more significant factors in predicting employee satisfaction of academics in Sri Lanka.

Key Words: Employee Satisfaction, Ordinal Regression, Multinomial Logistic Regression,

Categorical Regression

Acknowledgements

First and foremost, I would like to address my deepest appreciation and sincere thanks to my research supervisors Mr. T. M. J. A. Cooray and Dr. Wasantha Rajapakse for their direction, guidance, encouragement, comments and brilliant ideas for my research.

I must thank all the individuals who helped me in collecting all two hundred and thirty responses. It was a really difficult task to collect responses for the questionnaire since it is lengthy. Therefore I must tank all of them for consuming their valuable time in filling the questionnaire.

Last but not least, I would also like to express my gratitude to my beloved husband, daughter, parents and my dear friends, thank you very much for the concern, morale support and encouragement.

Table of Contents

Declar	ation	<u>i</u>
Abstra		ii
Ackno	wledgement	iii
Table	of Contents	iv
List of	Figures	vii
List of	Tables	viii
List of	Equations	xi
List of	Abbreviations	xii
1	INTRODUCTION	
	1.1 Background	1
	1.2 Significance of the Study	2
	1.3 Objectives of the Study	3
	1.4 Organization of the Thesis	3
2	LITERATURE REVIEW	5
	2.1 Background of the Study	5
	2.2 Ordinal Regression	6
	2.3 Multinomial Logistic regression	9
	2.4 Employee Satisfaction	11
3	METHODOLOGY	
	3.1 Research Design	
	3.2 Questionnaire Design	
	3.3 Data Collection	
	3.4 Questionnaire Design	16
	3.5 Proposed Model	17
	3.6 Data Analysis Methods	
	3.6.1 Chi-Squared Test	20

3.5 Ordinal regression	20
3.5.1 Formulating an ordinal logistic regression model	21
3.5.1.1 Link Function	22
3.5.2 Model Assumptions	22
3.5.3. Interpreting the SPSS output of ordinal regression	23
3.6 Categorical Regression	26
3.6.1 Interpreting the SPSS output of categorical regression	27
3.7 Measures of Model Fit	25
3.7.1 Deviance	26
3.7.2 Akaike Information Criterion	26
3.7.3 Bayesian Information Criterion	27
3.7.4 Mc Fadden's adjusted R ²	27
3.7.5 Cox and snell pseudo R ²	28
3.7.6 Nagelkerke pseudo R ²	28
3.7.7 Test of parallel lines	28
3.8 Residual Analysis	30
3.9 Reliability Analysis	30
RESULTS AND ANALYSIS	32
4.1 Analyzing Demographic Factors	32
4.1.1 Age	32
4.1.2 Gender	35
4.1.3 Academic Rank	37
4.1.4 Sector	39
4.1.5 Years of Service	41
4.1.6 Salary	43
4.1.7 Distance to Work Location	45
4.2 Relationship between Demographic Factors	47
4.2.1 Salary and academic rank	<u>51</u>
4.2.2 Age and Salary	52

4

v

4.2.3 Sector and years of service	
4.3 Regression Analysis on Demographic	
Factors and Employee Satisfaction	53
4.3.1 Ordinal logistic regression analysis	
on demographic factors and employee satisfaction	53
4.3.2 Multinomial logistic regression analysis	
on demographic factors and employee satisfaction	56
4.3.3 Categorical regression analysis	
on demographic factors and employee satisfaction	58
4.4 Reliability Analysis	57
4.5 Analysis of the Main Factors	59
4.5.1. Superior behavior	59
4.5.2. Co-worker behavior	60
4.5.3. Job Itself	60
4.5.4. Physical conditions	<u>61</u>
4.6.5. Teaching and Research	<u>62</u>
4.5.6. Adminstrative duties	<u>63</u>
4.5.7. Academic Environment	64
4.5.8.Freedom	<u>65</u>
4.6 Ordinal Regression Model for Employee Satisfaction	65
4.6.1 Model I	<u>65</u>
4.6.2 Model II	<u>68</u>
4.7 Multinomial Logistic Regression Model for Employee Satisfaction	70
4.8 Categorical Regression Model for Employee Satisfaction	72
CHAPTER SUMMARY	75
DISCUSSIONS AND CONCLUSIONS	86
5.1 Discussion	86
5.2 Conclusion	87
5.3 Limitations of the Study	88

5

5.4 Further Research	
References	90
Appendix I: Questionnaire	95
Appendix II: Residuals for the Models	<u>99</u>

List of Figures

Figure 2.1. Main Factors in the Employee Satisfaction	15
Figure 4.1. Pie Chart for Age	_38
Figure 4.2. Pie chart for Gender	_40
Figure 4.3. Pie Chart for Academic Rank	_42
Figure 4.4. Pie chart for Sector	_44
Figure 4.5. Pie Chart for Years of Service	_46
Figure 4.6. Pie Chart for Salary	_48
Figure 4.7. Pie Chart for Distance to Work Location	_50

List of Tables

Table 2.1. Main Factors in the Questionnaire	16
Table 3.1. Link Functions	23
Table 3.2. Model Fitting Information	24
Table 3.3. Results of Goodness of fit test	25
Table 3.4. Pseudo R-Square Table	26
Table 3.5. Results of the Test of Parallel Lines	27
Table 3.6. Model Summary for the categorical Regression Model	28
Table 3.7. ANOVA Table for categorical Regression Model	29
Table 3.8. Coefficients Table for Categorical Regression Model	29
Table 3.9. Correlations and Tolerance	30
Table 3.10. Internal Consistency according to Chronbach's Alpha	36
Table 4.1. Distribution of Lecturers in different age groups	37
Table 4.2. Chi Squared test between Employee Satisfaction and Age	39
Table 4.3. Model Fitting Information for employee satisfaction and age	39
Table 4.4. Parameter Estimates of the model between	
employee satisfaction and age	39
Table 4.5. Distribution of respondents according to Sex	40
Table 4.6. Chi Squared test Results between Employee Satisfaction and Gender_	41
Table 4.7. Model Fitting Information for the model between	
Employee Satisfaction and Gender	41
Table 4.8.Parameter Estimates for the model between Employee	
Satisfaction and Gender	41
Table 4.9. Distribution of the respondents according to academic rank	42
Table 4.10.Chi Squared Test Results for Academic rank and	
Employee Satisfaction	43

Table 4.11. Model Fitting Information for the model between	
Employee Satisfaction and Academic Rank	43
Table 4.12. Parameter Estimates	44
Table 4.13. Chi Squared Test Results for Employee Satisfaction Sector	45
Table 4.14. Model Fitting Information for the model	
between employee satisfaction and sector	45
Table 4.15. Parameter Estimates for the model	
between employee satisfaction and sector	46
Table 4.16. Chi Square Test Results for Years of Service	
and Employee Satisfaction	47
Table 4.17. Model Fitting Information for the model between	
Employee Satisfaction and Years of Service	47
Table 4.18. Parameter Estimates for the model between Employee	
Satisfaction and Years of Service	48
Table 4.19. Chi Square Test Results for Employee Satisfaction and Salary	49
Table 4.20. Model fitting Information for the model between	
Employee Satisfaction and Salary	49
Table 4.21. Parameter Estimates for the model between	
Employee Satisfaction and Salary	50
Table 4.22. Chi Square Test Results for Employee	
Satisfaction and Distance to Work Location	51
Table 4.23. Model fitting Information for the model between	
Employee Satisfaction and Distance to Work Location	51
Table 4.24. Parameter estimates for the model between Employee	
Satisfaction and Distance to Work Location	51
Table 4.25. Results of the Chi Square Test for Salary and Academic Rank	
Table 4.26. Cross Table between Salary and Academic Rank	53
Table 4.27. Results of the Chi Square Test between Age and Salary	53
Table 4.28. Results of Chi Square Test for Years of Service and Sector	54

Table 4.29. Model Fitting Information for the model between	
Employee Satisfaction, sector and salary	55
Table 4.30. Goodness of fit Test Results for the model between	
Employee Satisfaction, sector and salary	56
Table 4.31. Pseudo R – Square for the model between	
Employee Satisfaction, sector and salary	56
Table 4.32. Parameter Estimates for the model between	
Employee Satisfaction, sector and salary	
Table 4.33. Results of the Test of Parallel lines for the model between	
Employee Satisfaction, sector and salary	
Table 4.34. Model Fitting Information for the model	
between employee Satisfaction and gender, salary, sector	<u>.</u> 59
Table 4.35. Pseudo R-Square the model between	
employee Satisfaction and gender, salary, sector	<u></u> 59
Table 4.36. Likelihood Ratio Tests and Significance of the parameters	59
Table 4.37. Correct Classification Rate of the model	60
Table 4.38. Model Summary of the category regression model	60
Table 4.39. ANOVA Table of the categorical regression model	61
Table 4.40. Parameter Estimates of the categorical regression model	61
Table 4.41. Correlations and Tolerance of the Model	61
Table 4.42. Chronbach's alpha for all the factors	64
Table 4.43. Recoded questions in superior behavior	64
Table 4.44. Significant items in Superior behavior	
Table 4.45. Significant items in Co-Worker behavior	
Table 4.46. Significant items in Job Itself	
Table 4.47. Significance of the items in Physical Conditions	
Table 4.48. Significant items in Teaching and Research	<u></u> 69
Table 4.49. Significance of the items in Administrative Duties	
Table 4.50. Significance of the items in Academic Environment	70

Table 4.51. Significant items in Freedom	71
Table 4.52. Model Fitting Information for the Model I	72
Table 4.53. Goodness of fit Test Statistics for the Model I	72
Table 4.54. Pseudo R- Square values for the Model I	72
Table 4.55. Parameter Estimates for the Model I	73
Table 4.56. Test of parallel lines for Model I	73
Table 4.57. Significant items in Model I	74
Table 4.58. Model Fitting Information for the Model II	75
Table 4.59. Goodness-of-fit statistics for Model II	75
Table 4.60. Pseudo R-square Values for Model II	75
Table 4.61. Parameter Estimates for Model II	76
Table 4.62. Test of Parallel lines for Model II	77
Table 4.63. Significant items in Model II	77
Table 4.64. Model Fitting Information for the Model	78
Table 4.65. Pseudo R-square Values for Model	78
Table 4.66. Likelihood Ratio Tests for the Model	79
Table 4.67. Correct Classification Rate for Multinomial logistic regression mo	del 79
Table 4.68. Significant items in Questionnaire	80
Table 4.69. Model Summary for the categorical Regression Model	80
Table 4.70. ANOVA Table for categorical Regression Model	
Table 4.71. Coefficients Table for Categorical Regression Model	
Table 4.72. Correlations and Tolerance	
Table 4.73. Significant items in Categorical Regression Model	82
Table 4.74.Comparison of the 3 models	
Table 4.75. Summary of the modeling for demographic factors	

List of Equations

Equation 02.Calculating Expected Frequency in the chi square test. .20 Equation 03.Binary Logistic Regression Model. .21 Equation 04. Basic form of a Generalized Linear Model .23 Equation 05. Test statistic for the table 3.1. .25 Equation 06. CATREG Standard deviation .28 Equation 07. The Deviance Measure. .32 Equation 08. Akaike Information Criterion .32 Equation 10. McFadden's adjusted R ² .33 Equation 11. Cox and Snell pseudo R ² .34 Equation 13. Pearson Residual .35	Equation 01. Chi Square Test Statistic	19
Equation 03.Binary Logistic Regression Model.21Equation 04. Basic form of a Generalized Linear Model23Equation 05. Test statistic for the table 3.1.25Equation 06. CATREG Standard deviation.28Equation 07. The Deviance Measure.32Equation 08. Akaike Information Criterion.32Equation 09. Bayesian Information Criterion.33Equation 10. McFadden's adjusted R ² .33Equation 11. Cox and Snell pseudo R ² .34Equation 13. Pearson Residual35	Equation 02.Calculating Expected Frequency in the chi square test	20
Equation 04. Basic form of a Generalized Linear Model .23 Equation 05. Test statistic for the table 3.1 .25 Equation 06. CATREG Standard deviation .28 Equation 07. The Deviance Measure .32 Equation 08. Akaike Information Criterion .32 Equation 09. Bayesian Information Criterion .33 Equation 10. McFadden's adjusted R ² .33 Equation 11. Cox and Snell pseudo R ² .34 Equation 13. Pearson Residual .35	Equation 03.Binary Logistic Regression Model	21
Equation 05. Test statistic for the table $3.1.$.25Equation 06. CATREG Standard deviation.28Equation 07. The Deviance Measure.32Equation 08. Akaike Information Criterion.32Equation 09. Bayesian Information Criterion.33Equation 10. McFadden's adjusted R^2 .33Equation 11. Cox and Snell pseudo R^2 .34Equation 12. Nagelkerke pseudo R^{2} .34Equation 13. Pearson Residual.35	Equation 04. Basic form of a Generalized Linear Model	23
Equation 06. CATREG Standard deviation.28Equation 07. The Deviance Measure32Equation 08. Akaike Information Criterion.32Equation 09. Bayesian Information Criterion.33Equation 10. McFadden's adjusted R ² .33Equation 11. Cox and Snell pseudo R ² .34Equation 12. Nagelkerke pseudo R ² .34Equation 13. Pearson Residual.35	Equation 05. Test statistic for the table 3.1	25
Equation 07. The Deviance Measure.32Equation 08. Akaike Information Criterion.32Equation 09. Bayesian Information Criterion.33Equation 10. McFadden's adjusted R ² .33Equation 11. Cox and Snell pseudo R ² .34Equation 12. Nagelkerke pseudo R ² 34Equation 13. Pearson Residual35	Equation 06. CATREG Standard deviation	28
Equation 08. Akaike Information Criterion.32Equation 09. Bayesian Information Criterion.33Equation 10. McFadden's adjusted R2.33Equation 11. Cox and Snell pseudo R2.34Equation 12. Nagelkerke pseudo R2.34Equation 13. Pearson Residual35	Equation 07. The Deviance Measure	32
Equation 09. Bayesian Information Criterion.33Equation 10. McFadden's adjusted R233Equation 11. Cox and Snell pseudo R234Equation 12. Nagelkerke pseudo R234Equation 13. Pearson Residual35	Equation 08. Akaike Information Criterion	32
Equation 10. McFadden's adjusted R ²	Equation 09. Bayesian Information Criterion	33
Equation 11. Cox and Snell pseudo R ²	Equation 10. McFadden's adjusted R ²	33
Equation 12. Nagelkerke pseudo R ²	Equation 11. Cox and Snell pseudo R ²	34
Equation 13. Pearson Residual	Equation 12. Nagelkerke pseudo R ²	34
	Equation 13. Pearson Residual	35
Equation 14. Chronbach's Alpha	Equation 14. Chronbach's Alpha	35
Equation 15. Alternative representation of Chronbach's Alpha	Equation 15. Alternative representation of Chronbach's Alpha	36

List of Abbreviations

- HR Human Resource
- ANOVA Analysis of Variance
- MANOVA Multivariate Analysis of Variance
- CATREG Categorical Regression
- UK United Kingdom
- UGC University Grants Commission
- KMO Test Kaiser-Meyer-Olkin Test
- AIC Akaike Information Criterion
- BIC Bayesian Information Criterion
- IT Information Technolog
- (-2LL) (-2 Log Likelihood)