

WEARABLE SENSOR BASED ACTIVITY

CLASSIFICATION DURING FAST BOWLING IN

CRICKET

Jayamini Susankalpana Ranaweera

(148465E)

Degree of Master of Science

Department of Electronic and Telecommunication Engineering

University of Moratuwa

Sri Lanka

December 2018

WEARABLE SENSOR BASED ACTIVITY

CLASSIFICATION DURING FAST BOWLING IN

CRICKET

Jayamini Susankalpana Ranaweera

(148465E)

Thesis submitted in partial fulfilment of the requirements for the degree

of Master of Science in Electronics and Automation

Department of Electronic and Telecommunication Engineering

University of Moratuwa

Sri Lanka

December 2018

i

DECLARATION, COPYRIGHT STATEMENT AND

STATEMENT OF SUPERVISOR

“I declare that this is my own work and this thesis does not incorporate without

acknowledgment any material previously submitted for a Degree or Diploma in any

other University or Institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgment is made in the text.”

“I also grant University of Moratuwa, Sri Lanka the non-executive right to reproduce

and distribute my thesis, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or

books).”

………………. ………………..

Signature Date

The above candidate has carried out research for the Master’s Thesis under my

supervision.

Name of Supervisor: Dr. Pujitha Silva

………………………….. …………………

Signature of Supervisor Date

ii

ABSTRACT

Inertial Measurement Unit (IMU) data can depict three dimensional rotational angles specific

to a motion. However, either to prevent injuries or to enhance performance based on IMU

data, a specific segment of the total movement cycle needs to be analysed. This requires a

process to segment the total motion into key phases during the complete movement cycle.

The proposed method focuses on the major research question of developing a pattern

recognition model to classify the three main phases (Run Up, Delivery Stride and Follow

Through) of fast bowling action in cricket.

The research focuses on seven fast bowlers delivering a minimum of four deliveries in a

training environment with IMU's to capture motion. Nine-axis IMU’s are selected and

quaternion based three-dimensional motion data are captured and stored. The research

initially focuses on finding the most appropriate sensor position on body among calf, thigh,

trunk and forearm to collect data for activity classification in fast bowling. The classification

performance obtained by Support Vector Machines (SVM) indicate that overall, second and

fourth quaternion on Forearm is the most suitable combination of quaternion and position for

data collection.

Data collected from IMU's on forearm are used to develop a machine learning model to

segment the three key phases of the fast bowling action. Video feedback is also obtained

when defining initial classes for classification. A moving window collects time domain

statistical features, Least Absolute Shrinkage and Selection Operator (LASSO) is used for

feature selection and Principle Component Analysis (PCA) for dimensionality reduction.

Synthetic Minority Over-Sampling Technique (SMOTE) is implemented to overcome class

imbalances. K-Nearest Neighbour (k-NN), Random Forest (RF), Naïve Bayes (NB) and

Support Vector Machines (SVM) are tested as supervised classification methods for activity

classification. Cross validation determines classification model performance based on

accuracy, precision, recall and F-measure values. The results indicate that k-Nearest

Neighbour produces best overall classification accuracy of 82% among the tested supervised

classifiers. Finally, the model is verified against a test sample from one of the bowlers.

iii

ACKNOWLEDGMENT

First I would like to thank my supervisor Dr.Pujitha Silva for mentoring me and

teaching me throughout the course of the research and guiding me in moments of

confusion by showing the correct path towards successful research completion. I also

owe my gratitude to Dr.Upeka Premaratne and Dr.Amal Shehan Perera for all the

advice, guidance and supervision given to me in machine learning aspects of my

research. I am also thankful to course coordinator of the MSc in Electronics and

Automation Prof. Rohan Munasinghe for all the guidance provided throughout the

course of study. I would also like to thank Mr. Damith Kandage for all the timely

assistant on various matters during the study.

Next, I owe my gratitude to Mr. Siva Gawsalyan, Mr. Shehan Deshapriya, Mr.

Rasika Manjujeewa and Mr. Udith Shan for all the timely assistance provided in

manipulating Kairos motion analysis system and obtaining video feedback during the

data gathering phase. I would also like to thank Mr. Samith Danushka from Cric Sri

Lanka for providing testing facilities for data collection including bowlers from the

academy during the data gathering. I also owe my gratitude to all cricketers who

participated in the data gathering.

I would also like to thank General Manager – Autonomation at MAS Intimates (Pvt)

Ltd Dr. Chandika Wickramatillake for providing me necessary leave from work to

participate in matters pertaining to the research. Finally, I would like to thank my

family, friends and colleagues for all encouragement provided during the study.

Jayamini Susankalapana Ranaweera

B.Eng (Hons) (SHU-UK), B.Sc (USJP - SL), MIET

Assistant Manager – Research & Innovation

MAS Intimates (Pvt) Ltd

iv

TABLE OF CONTENTS

DECLARATION, COPYRIGHT STATEMENT AND STATEMENT OF THE

SUPERVISOR i

ABSTRACT ii

ACKNOWLEDGMENT iii

TABLE OF CONTENTS iv

LIST OF FIGURES viii

LIST OF TABLES xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1

1. INTRODUCTION 1

1.1 Background and Motivation 1

1.2 Problem Definition 3

1.2.1 Thesis Definition and Objectives 3

1.2.2 Goals 4

1.3 Limitations 4

1.4 Contributions to Society 5

1.5 Publications based on the Research 6

CHAPTER 2

2. LITERATURE REVIEW 7

2.1 Fast Bowling in Cricket 7

2.1.1 Fast bowling Action Types and Phases 7

2.1.2 Fast Bowling Injuries 8

2.2 Inertial Measurement Unit Selection and Processing 9

2.2.1 Inertial and Magnetic Sensor Specification 9

2.2.2 Sampling Rates 9

2.2.3 Orientation Estimation 10

2.3 On body Sensor Position for Classification 10

2.4 Pattern Recognition and Machine Learning Techniques 11

v

 2.4.1 Activity Classification for Non-Cricket Activities based on IMU 11

 2.4.2 Activity Classification for cricket related activities based on IMU12

2.4.3 Event Detection 12

2.4.4 Feature Selection 13

2.4.5 Feature Extraction 14

2.4.6 Classification 15

2.4.7 Classification Evaluation 16

CHAPTER3

3. On body Sensor Position Selection Methodology 19

3.1 Sensor Positions 20

3.2 Feature Selection 21

 3.2.1 Feature Scaling 22

3.3 Feature Extraction (Dimensionality Reduction) 22

 3.3.1 Principal Component Analysis for Dimensionality Reduction 22

3.4 Classification 23

3.5 Evaluation 24

3.6 Participants 24

3.7 Data Gathering Methodology 25

 3.7.1 Data Types 26

3.8 Madgwick Filter 27

3.9 Drift Compensation 27

CHAPTER4

4. On body Sensor Position Selection Data Analysis and Results 28

4.1 Original Data Plots on Sensor Positions 28

4.2 Definition of Classes 31

4.3 Feature Selection 32

4.3.1 Feature Scaling 35

4.4 Dimensionality Reduction 35

4.5 Classification 36

4.5.1 Training Set Vs Test Set plot 37

vi

4.6 Classification Evaluation 42

4.7 Discussion 43

CHAPTER 5

5. Activity Classification during Fast Bowling in Cricket 44

5.1 Data Collection Methodology 44

5.1.1 Battery Selection for Sensor 44

5.1.2 Wireless Data Transmission 45

5.1.3 Definition of Classes for Classification 46

5.1.4 Data Gathering Participants 48

5.2 Classification Methods 48

5.2.1 Original Data Plots 49

5.2.2 Data Storage 50

5.2.3 Feature Selection 51

5.2.4 Feature Scaling 52

5.2.5 Feature/Dimensionality Reduction 53

5.2.5.1 Least Absolute Shrinkage and Selection Operator (LASSO) 53

5.2.5.2 Dimensionality Reduction with PCA 55

5.2.6 Classification 56

 5.2.6.1 k-Nearest Neighbour (k-NN) 56

 5.2.6.2 Support Vector Machine (SVM) 58

 5.2.6.3 Naïve Bayes (NB) 59

 5.2.6.4 Random Forest (RF) 60

5.3 Classifier Evaluation 61

 5.4 Synthetic Minority Over-Sampling Technique (SMOTE) 61

5.4.1 k-NN Classifier Comparison with SMOTE 62

 5.5 Model Testing on Sample Dataset 65

 5.6 Discussion 66

vii

CHAPTER 6

6. Conclusion and Recommendations 68

6.1 Key Findings 68

6.2 Detailed Findings and Suggestions 69

6.2.1 On Body Sensor Position 69

6.2.2 Quaternions 69

6.2.3 Inertial Measurement Units (IMU’s) and Microcontroller 69

6.2.4 Transmission Control Protocol Vs User Diagram Protocol 70

6.2.5 Classification of Phases in Bowling 70

6.2.5.1 Definition of Classes 70

6.2.5.2 Feature Selection 71

6.2.5.3 Feature Extraction 71

6.2.5.4 Classification and Evaluation 71

6.3 Future Work 72

REFERENCES 74

APPENDIX A 76

APPENDIX B 97

APPENDIX C 102

viii

LIST OF FIGURES

Figure 1: Phases in fast bowling action [2] 2

Figure 2: Quaternion data from an IMU on forearm 3

Figure 3: Three key phases in fast bowling action 7

Figure 4: Wearable sensor placement positions to detect throwing in cricket [8] 10

Figure 5: Random Forest, Naive Bayes, Lazy IBK, Multilayer Perceptron

 response times [18] 17

Figure 6: Proposed system flow chart 19

Figure 7: IMU placement positions on body for data collection 20

Figure 8: Feature selection moving window 21

Figure 9: PC1 and PC2 orthogonality interpretation [23] 23

Figure 10: Second bowler 25

Figure 11: Third bowler 25

Figure 12: Quaternion generation from IMU for movements [10] 26

Figure 13: Quaternion data for full bowling action of first bowler from IMU

 on Calf 28

Figure 14: Quaternion data for full bowling action of first bowler from IMU

 on Forearm 29

Figure 15: Quaternion data for full bowling action of first bowler from IMU

 on Thigh 30

Figure 16: Quaternion data for full bowling action of first bowler from IMU

 on Trunk 30

Figure 17: Delivery Stride – Subject 2 31

Figure 18: Feature plot for q1on Calf 32

Figure 19: Feature plot for q2 on Calf 32

Figure 20: Feature plot for q3 on Calf 33

Figure 21: Feature plot for q4 on Calf 33

Figure 22: Feature plot for q1on Forearm 33

Figure 23: Feature plot for q2 on Forearm 33

Figure 24: Feature plot for q3 on Forearm 33

ix

Figure 25: Feature plot for q4 on Forearm 33

Figure 26: Feature plot for q1on Thigh 34

Figure 27: Feature plot for q2 on Thigh 34

Figure 28: Feature plot for q3 on Thigh 34

Figure 29: Feature plot for q4 on Thigh 34

Figure 30: Feature plot for q1 on Trunk 34

Figure 31: Feature plot for q2 on Trunk 34

Figure 32: Feature plot for q3 on Trunk 35

Figure 33: Feature plot for q4 on Trunk 35

Figure 34: Correlation matrix for feature set 35

Figure 35: Eigenvalues of correlation matrix 36

Figure 36: Eigenvectors of correlation matrix 36

Figure 37: Training set Vs Test set SVM classification data plot for q1 on Calf 37

Figure 38: Training set Vs Test set SVM classification data plot for q2 on Calf 37

Figure 39: Training set Vs Test set SVM classification data plot for q4 on Calf 38

Figure 40: Training set Vs Test set SVM classification data plot for q1 on Forearm 38

Figure 41: Training set Vs Test set SVM classification data plot for q2 on Forearm 39

Figure 42: Training set Vs Test set SVM classification data plot for q3 on Forearm 39

Figure 43: Training set Vs Test set SVM classification data plot for q4 on Forearm 39

Figure 44: Training set Vs Test set SVM classification data plot for q4 on Thigh 40

Figure 45: Training set Vs Test set SVM classification data plot for q1 on Trunk 40

Figure 46: Training set Vs Test set SVM classification data plot for q2 on Trunk 41

Figure 47: Training set Vs Test set SVM classification data plot for q3 on Trunk 41

Figure 48: Training set Vs Test set SVM classification data plot for q4 on Trunk 41

Figure 49: MPU9250 integrated ESP 8266 Wi-Fi module 44

Figure 50: Wearable strap on forearm 44

Figure 51: UDP data collection interface 45

Figure 52: Data transmission connectivity 46

Figure 53: Data collection steps 46

Figure 54: Run Up class visualization for subject 4 47

x

Figure 55: Delivery Stride class visualization for subject 4 47

Figure 56: Follow Through class visualization for subject 4 48

Figure 57: System flow chart 48

Figure 58: Subject 1 original data plot – Quaternion 2 49

Figure 59: Subject 2 original data plot – Quaternion 2 49

Figure 60: Subject 3 original data plot – Quaternion 2 49

Figure 61: Subject 4 original data plot – Quaternion 2 50

Figure 62: Data stored .csv file 50

Figure 63: Run Up, Delivery Stride and Follow Through windows – Subject 2 51

Figure 64: Moving window with 50% overlap 51

Figure 65: Mean Vs Variance feature plot 52

Figure 66: Illustration of coefficients of features 53

Figure 67: Lambda values at λmin and λ1se 54

Figure 68: Principal Component 1 (PC1) Vs Principal Component 2 (PC2) plot 55

Figure 69: Accuracy Vs k number – Fold 1 56

Figure 70: Accuracy Vs k number – Fold 2 56

Figure 71: Accuracy Vs k number – Fold 3 56

Figure 72: Accuracy Vs k number – Fold 4 56

Figure 73: Accuracy Vs k number – Fold 5 57

Figure 74: Average k number 57

Figure 75: k-NN Training Set plot 57

Figure 76: k-NN Test Set plot 57

Figure 77: SVM Training Set plot 58

Figure 78: SVM Test Set plot 58

Figure 79: Naïve Bayes Training Set plot 59

Figure 80: Naïve Bayes Test Set plot 59

Figure 81: Random Forest Training Set plot 60

Figure 82: Random Forest Test Set plot 60

Figure 83: PC1 Vs PC2 data points plot before applying SMOTE 62

Figure 84: PC1 Vs PC2 data points plot after applying SMOTE 62

xi

Figure 85: Accuracy Vs k number – Fold 1 (SMOTE) 63

Figure 86: Accuracy Vs k number – Fold 2 (SMOTE) 63

Figure 87: Accuracy Vs k number – Fold 3 (SMOTE) 63

Figure 88: Accuracy Vs k number – Fold 4 (SMOTE) 63

Figure 89: Accuracy Vs k number – Fold 5 (SMOTE) 63

Figure 90: Maximum k numbers across folds (SMOTE) 63

Figure 91: k-NN Training Set plot after SMOTE 64

Figure 92: k-NN Test Set plot after SMOTE 64

Figure 93: Test dataset plot with marked class boundaries 65

Figure 94: Test dataset plot with marked specific class regions 65

Figure 95: UDP data losses 70

xii

LIST OF TABLES

Table1: Review of studies on accelerometer placement for activity recognition 11

Table 2: Classifier performance evaluation [11] 17

Table 3: Bowlers age, height and weight 25

Table 4: Data sample generation per bowler 25

Table 5: Definition of classes for classification 31

Table 6: Feature data plot with classes 32

Table 7: PC1 and PC2 data after PCA 36

Table 8: Performance parameters of classification 42

Table 9: Data gathering sample set 48

Table 10: Feature Set 52

Table 11: Dimensionally reduced feature data via PCA 55

Table 12: Summary of classifier performance 61

Table 13: Classifier evaluation parameters 64

xiii

LIST OF ABBREVIATIONS

Abbreviation Description

IMU Inertial Measurement Unit

ISB International Society of Biomechanics

BFC Back Foot Contact

FFC Front Foot Contact

DWT Discrete Wavelet Transform

DFT Discrete Fourier Transform

PSD Power Spectral Density

DC Direct Current

PCA Principal Component Analysis

k-NN k Nearest Neighbour

SVM Support Vector Machine

RF Random Forest

NB Naïve Bayes

SLGMM Supervised Learning Gaussian Mixture Model

A-NN Artificial Neural Network

HMM Hidden Markov Model

RMS Root Mean Square

MAD Median Absolute Deviation

IQR Inter Quartile Range

PC1 Principal Component 1

PC2 Principal Component 2

TCP Transmission Control Protocol

UDP User Diagram Protocol

DSLR Digital Single Lens Reflex

SMOTE Synthetic Minority Over-Sampling Technique

LASSO Least Absolute Shrinkage and Selection Operator

1

CHAPTER 1

1. INTRODUCTION

Following research is focused around developing a machine learning model to

classify human activity, specifically on classifying key phases during fast bowling in

cricket. It is a continuation of the work conducted for Design project module for the

Postgraduate Diploma in Electronics and Automation.

1.1 Background and Motivation

Cricket has become one of the key sports in Sri Lanka. Modern cricket is

transforming into a sport embedded with key factors of technology. Developed

countries are relishing upon the usage of technology and biomechanics in cricket.

They have gained a competitive edge over countries like Sri Lanka in most sports by

the usage of modern engineering technologies. This paved way towards exploring the

capabilities of fusing engineering principles into cricket to assist Sri Lankan

cricketers compete more comprehensively with other high-profile cricket playing

countries.

Most modern biomechanics analysis centres rely on the usage of high speed cameras

like VICON Motion Capturing System for motion detection. These systems have

been extensively used by many researchers for cricket related motion analysis.

However, these systems have the following disadvantages,

• Highly expensive to purchase.

• Requires specific laboratory facilities.

• Requires expertise assistance for application and analysis.

These key disadvantages have paved way towards the importance of developing low

cost wearable motion analysis systems which can be easily used by Sri Lankan

cricketers to help enhance their performance levels. And the lack of technological

availability and continuous demonstration of poor performances of Sri Lankan

sportsmen paved way towards the motivation for me to develop a three-dimensional

motion analysis system to Sri Lanka. To accomplish this quest, I needed to solve the

major research question addressed through this research.

2

My previous Design Project work on the Postgraduate Diploma in Electronics &

Automation concentrated on developing a wearable sensor based system for such

applications. Inertial Measurement Units (IMU’s) were used as wearable sensors to

detect the motion of cricketers. However, there were few parameters which needed to

be addressed, for this system to be used as a performance analysis or injury

prevention tool.

One such important parameter is ‘activity classification’. Even with the

implementation of wearable sensors for motion detection it creates a difficulty in

segmenting the different movement phases of the activity for analysis. With the

usage of wearable sensors, it requires other video processing methods to segment the

different phases of the activity. This exact requirement paved way as the main

background to this research and to explore the possibility of applying pattern

recognition and machine learning methods to classify different phases during fast

bowling. The basis is built around fast bowling in cricket, to research the possibility

of applying pattern recognition techniques to IMU data with the objective of

segmenting and understanding the three different phases during fast bowling in

cricket.

Figure 1: Phases in fast bowling action [2]

• Run up

• Delivery stride (Back Foot and Front Foot Contact)

• Follow through

Previous research [1] published on identifying key factors contributing to increasing

bowling speeds in cricket also contributed as a motivating factor to develop a system

capable of identifying these key phases during fast bowling to help Sri Lankan fast

bowlers increase their bowling speeds.

3

1.2 Problem Definition

Nine (9) axis Inertial Measurement Unit based three-dimensional motion capturing

system provided continuous rotational angles during fast bowling. However, this data

alone did not provide enough information to assist in a biomechanical analysis of the

fast bowler. The continuous data once plotted would appear as depicted below,

Figure 2: Quaternion data from an IMU on forearm

The above graph depicts data received in the form of a quaternion collected from an

IMU on the forearm of the bowler. However, it is difficult to determine, by analysing

the above graph if the bowler has an accurate release point during delivery. To

achieve this requirement, the bowling window needs to be segmented from the

continuous dataset. This requirement to segment the key elements of the technique

during fast bowling acted as the main problem identified for this research.

Previous research on applying classification techniques to human movement mainly

concentrated on classifying a complete movement like a jump, walk etc. rather than a

segment of the complete activity as illustrated by following research. Hence the

research problem defined and resolved during this thesis is a unique and novel topic.

1.2.1 Thesis Definition and Objectives

The fundamental objective of the current Master’s research is to develop a machine

learning model based on statistical parameters, derived by data collected from

Inertial Measurement Units (IMU) to classify and segment the three key phases of

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 1000 2000 3000 4000 5000

N
o

rm
al

iz
e

d
 Q

u
at

e
rn

io
n

Sample

Quaternion data on Forearm

4

fast bowling, which can eventually be used as an automated model for activity

segmentation during fast bowling.

1.2.2 Goals

The research work is intended to achieve following goals when presenting an

appropriate solution.

Main Goal

I. Develop a machine learning model based on statistical parameters derived

from data received by Inertial Measurement Units (IMU) placed on body

during fast bowling to classify and segment the three key phases; Run Up,

Delivery Stride and Follow Through during fast bowling in cricket.

Sub Goals

I. Determination of the most appropriate Inertial Measurement Unit (IMU)

placement position on body providing greatest amount of deviation during

fast bowling to assist classification.

II. Analytically identify the best classification method among supervised

classification methods to suit human movement classification in fast bowling.

1.3 Limitations

• Accuracy of Inertial Measurement Unit based three-dimensional motion

capturing needs to be verified in relation to a high-speed camera based

motion capturing system. However, the unavailability of such a system in Sri

Lanka is a limitation during for the verification phase of the research.

• The overall performance of machine learning model can be increased by

including a large pool of data to the model. However, collection of large

volume of data is a challenge due the requirement of testing multiple bowlers.

• Kairos motion analysis system provides a set of processed data in the form of

quaternions. This creates a limitation to study the behaviour of raw data and

its appropriateness to be used for human movement classification during fast

bowling.

5

• The data undergoes multiple stages of processing prior to being sent to a

classifier. This acts as a limitation when reverting to the original dataset to

depict the boundaries of each phase during fast bowling.

1.4 Contributions to Society

This thesis aims at addressing the problem of limited usage of technology into sports

in Sri Lanka. With current trends and technological enhancements, the world is

continuously edging towards further improvements in sports. This has led Sri Lanka

to lag other sporting powerhouses. This thesis aims at acting as a spark to ignite the

usage of modern technology into Sri Lankan sports. Also, it would create an interest

towards more researchers to contribute towards this research area. Further, producing

good fast bowlers has been a challenge for Sri Lankan Cricket. And the latter has

always relied on natural talent to produce good fast bowlers. However, the current

research will act as a catalyst to develop good fast bowlers based on a scientific

approach and help eradicate current injury worries which cloud over Sri Lankan fast

bowlers. Further, the machine learning techniques elaborated through this thesis can

be used as a foundation to be used for other sports like javelin throw, long jump, etc.

This in turn will help to develop a new training culture based around technology in

Sri Lanka.

Apart from competitive sports this thesis can also be used to assist our communities

in health and physical fitness. Many individuals in the modern era have understood

the importance of physical activities and exercises to live a healthy life. Thus, many

new electronic equipment is being developed to assist individuals to stay healthy.

The proposed model can act as a foundation for similar applications in general health

physical fitness equipment.

All these factors would eventually contribute to the society by helping Sri Lankan

sportsmen to complete better in world competitions and eventually in developing a

healthy nation in the long run.

6

1.5 Publication based on the Research

An abstract based on the proposed work was published at the 26th International

Society of Biomechanics (ISB) Congress, 2017 held in Brisbane, Australia from July

23rd to 27th. The abstract was titled ‘INERTIAL MEASUREMENT UNIT BASED ACTIVITY

SEGMENTATION DURING FAST BOWLING IN CRICKET’ and it was included on page

1056 of the full abstract book.

7

CHAPTER 2

2. LITERATURE REVIEW

2.1 Fast Bowling in cricket

2.1.1 Fast Bowling Action Types and Phases

Fast bowling action has been segmented into three key phases [3] with key activities

occurring within those key phases. Below diagram illustrates the key phases

including key activities.

Figure 3: Three key phases in fast bowling action

Previous research has focused around these key phases to understand the contributing

factors towards injury about the phases and how each segment contributes to speed

of delivery.

Fast bowling consists of three main bowling techniques classified by the alignment

of hips and shoulders at either the moment of Back Foot Contact (BFC), Front Foot

Contact (FFC) or Ball Release. Following are the three key techniques with the

largest contribution from Mixed technique.

• Front on

• Side on

• Mixed

Extensive research has been conducted to understand the biomechanics of fast

bowling. A common area of fast bowling analysis is to determine the contributing

factors towards increasing speeds in fast bowling. Thus, the different techniques

8

contributing to this factor has been extensively researched by scholars. Hence

research has highlighted following key factors contributing to increasing bowling

speeds in fast bowlers [1].

• Quicker run up. Bowlers having faster run ups tend to demonstrate greater

bowling speeds.

• Maintaining a straighter knee during front foot contact phase.

• Exhibiting larger amounts of upper trunk flexion up to ball release point.

• Delaying onset of arm circumduction.

These key areas assist coaches in talent identification process and in player

performance development as well.

2.1.2 Fast Bowling Injuries

Another aspect of fast bowling analysis helps in injury prevention. Research has

demonstrated the different types of injuries occurring in each of the key phases

during fast bowling. Run Up and Follow Through have less potential of contributing

to injuries. Most injuries occurring during these phases are external injuries rather

than internal ones [3]. Common injury threats which occur due to running can be

considered in these phases. However, most injuries related to fast bowling occur

during the Delivery Stride. The impact due to Front and Back Foot landing creates a

large injury risk. Research shows that landing creates a ground reaction force up to

six times the weight of the bowler. Most severe injuries created during Delivery

Stride are caused due to excessive loading (which creates spinal column

compression), arching to the spine and the forceful twisting of the trunk around the

spinal column [5]. Another key injury type for fast bowlers is side strain injuries.

Research shows that most side strain injuries effect internal oblique rather than

external oblique [4]. All these factors highlight the importance of segmenting these

three key phases during fast bowling to assist in injury prevention.

9

2.2 Inertial Measurement Unit selection and Processing

2.2.1 Inertial and Magnetic Sensor Specification

Research on activity classification with wearable sensors has focused on using

Inertial Measurement Units (IMU’s) which comprises of three axis accelerometers,

three axis gyroscopes and three axis magnetometers. The ranges of accelerometer,

gyroscope, magnetometer values and resolution depend on the specific application.

IMU’s used for trick classifications [6] during snowboarding uses +/- 16g

accelerometer range, +/- 2000oC gyroscope with 16-bit resolution. When the

movement speed increases accelerometer range needs to increase accordingly. But a

major constraint at present is locating IMU’s with greater accelerometer ranges. In

most IMU based applications magnetometer is also included to help eradicate

drifting errors which are caused due to gyroscope drifting. Magnetometer assists to

provide the horizontal earth’s magnetic field and accelerometer provides the vertical

acceleration due to gravity which acts as the base for drift compensation [7]. Another

key parameter for IMU selection is its physical size. Since most of the IMU based

applications are wearable, most studies have focused on physically smaller IMU’s to

support these applications. IMU developers have managed to reduce the size of the

component while also increasing their performance parameters. Previous research [8]

on classification of legality of bowling actions uses I2C (Inter-Integrated Circuit) for

data communication between IMU’s and microcontroller and Bluetooth to transmit

sensor data to a computer for storage for post processing.

2.2.2 Sampling Rates

For classification of legality of bowling actions [8] sensor sampling rate of 150Hz

has been used. Sampling rate ideally depends on the application. Activity

classification for high speed movement patterns like fast bowling requires greater

sampling rates. A study on [9] Bowler analysis in cricket using centre of mass

inertial monitoring, uses a sampling rate of 200Hz. Such sampling rates may be

suitable for spin bowling analysis. Greater sampling rates will be required for fast

bowling analysis when using IMU based systems. Vision based motion analysis

10

systems (ex: Vicon) have been used in research for fast bowler analysis operating at

300Hz [1]. Typical range of sampling rate has varied from around 200Hz to 500Hz.

2.2.3 Orientation Estimation

Orientation estimation has been used throughout literature on motion analysis system

developments based on IMU’s. Kalman Filter based orientation estimation centred

on inertial and magnetic sensors is one of the most common methods [7]. However,

quaternion based orientation estimation algorithm proposed by Sebastian Madgwick

is used extensively in modern research for orientation estimation based on IMU’s

[10].

2.3 On Body Sensor Position for Classification

Sensor placement for IMU based bowling action legality classification used three

IMU sensors placed as depicted below.

Figure 4: Wearable sensor placement positions to detect throwing in cricket [8]

Most researches have examined the correlation between sensors placed at different

positions on the body for activity classification. A specific position on body has the

possibility of better supporting a certain activity classification [11]. Below Table 1

illustrates the summary [11] of classification performance of different human activity

classification tasks by using accelerometers. It illustrates performance created by

individual and multiple sensors on different body positions.

11

Table1: Review of studies on accelerometer placement for activity recognition [11]

2.4 Pattern Recognition and Machine Learning Techniques

Accelerometer and IMU based systems have been greatly used for applications and

research around automatic activity classification during human movement. Wearable

sensor based systems have been preferred in pattern recognition applications on

humans due to following reasons [12].

• Low cost

• Immune to occlusions & interference

• Self-contained

2.4.1 Activity Classification for Non-Cricket Activities based on IMU’s

Human activity classification based on wearable sensors have been used around

many aspects of research. However, it is unclear to determine if classification models

Waist Wrist Thigh Side Necklace Chest Hip Lower Back Trunk Shanks Ankle Pocket Hand

✓ Long term activities 98

Average

Classification

Accuracy %

Walking, Falling

 Sensor Placement Position on Body

Falling, walking,

sitting, standing,

lying

98.9

90.8

✓

✓

Walking, running,

scrubbing, etc
95

✓ ✓ ✓

✓

Lying, sitting,

walking, rowing, etc

91.5

83.3

Typing, watching

TV, drinking, etc

✓ ✓

92.13

93

Sitting, running,

walking, etc

Lying, sitting,

workingon a

computer, etc

✓ ✓✓

100
Sitting, lying,

standing, walking

speed

✓

✓

✓✓

✓

 -
14 daily living

activities
✓

Siting, lying,

standing, moving
92.25

✓✓ ✓

✓

90.3
Stairs ascend,

descend, walking,

etc

✓

✓

Lying, sitting,

standing, all fours,

etc

91

✓

✓

✓

✓ ✓

Slow walking, fast

walking, running,

etc

91.15✓

✓ 98

89.08
16 daily living

activities
✓

96.4

90.4
Sitting, standing,

walking, lying

✓

Classified

Activity

✓

Standing, sitting,

lying, walking,

transition

✓ ✓ ✓

Walking, running,

sit-to-stand, stand-

to-sit, etc

12

developed around raw data or extracted features yield better results. Pattern

recognition models developed by data obtained from IMU’s have been used to

classify human movements like walking, sitting, standing, etc. [11]. These models

have been extensively used in sports related movement analysis with IMU sensors.

One such application is to understand the patterns generated during golf swing [13].

Sensors mounted on specific body parts generate specific patterns during repetitive

golf swings. Pattern recognition techniques based on IMU data are also used to

classify strong, weak and sideways movements during drumming [14]. IMU sensors

mounted on skateboards have been used to classify different tricks performed [6].

The classification model classifies tricks such as Ollie, Nollie, Kick flip, etc. during

skateboarding. Feature extraction and classification models have also been used to

classify jumps during skiing and skateboarding based on head mounted IMU sensors

[16].

2.4.2 Activity Classification for Cricket Related Activities based on IMU’s

Most common classification related problem for bowling is centred on determining if

a certain bowling action is legal or not. Most research uses vision based systems to

segment the bowling window to analyse if the action is legal or not. However,

modern research has also used wearable sensors to collect three-dimensional

rotational data and used classification techniques such as k-Nearest Neighbour,

Naïve Bayes, Random Forest, etc. to classify the legality of bowling actions [8].

Initial research on usage of wearable sensors in cricket has used inertial sensors

placed at the centre of mass of a ‘Front On’ fast bowler to determine Run Up speed,

Pre-Delivery Stride length and hip rotational angle [9]. Unsupervised classification

methods such as Hidden Markov Models have been used to classify arm rotation

during bowling based on statistical features [16].

For pattern recognition using wearable sensors, the process throughout literature can

be classified into four key areas [12] [6] [17] as depicted below.

2.4.3 Event Detection

In previous studies [6], event detection was used to determine the exact time

intervals that included the required activities. This had reduced the amount of data

13

that was to be processed in subsequent classification. Event detection has been used

by developing data frames around the input sensor data [6] [12]. The data from the

sensors were segmented into windows based on possible timeline of specific

activities. For example, [6] 1s windows with 0.5s overlap was chosen for trick

classification in snowboarding considering length of a trick and its duration. A

certain threshold energy level was also defined allowing it to determine if a trick was

present upon exceeding the threshold level. This has a similar impact on the current

research as the exact starting and ending point of fast bowling will need to be

determined for activity classification during bowling.

2.4.4 Feature Selection

Feature selection is the next key part in the activity classification algorithm. Different

researchers have adopted different strategies for feature extraction. In [6] feature

vectors are calculated for different trick activities. Statistical parameters such as

mean, variance and skewness were included. In other examples [17], discrete

methods were used for feature extraction. The Discrete Wavelet Transform (DWT)

was used to extract discriminative features from accelerometer data. This was

achieved by decomposing the original sensor signal into several scaled and time

shifted versions of a selected mother signal. In [18] Daubechies four wavelet (db4)

wavelet was used as the mother wavelet for the decomposition. But in terms of

relevance to current research features will need to be computed for every window in

the input data.

Research segments features into two main categories [11],

▪ Time domain features – Statistical features such as mean, mode, variance,

skewness, etc. These are used extensively in human activity recognition.

▪ Frequency domain features – The signal or data converted into frequency

domain, mainly by Discrete Fourier Transform (DFT) representation has

triggered a specific set of features. Power Spectral Density (PSD), Peak

frequency, Entropy, DC component, etc. are some of the frequency

domain features used for human activity classification.

14

2.4.5 Feature Extraction

The feature extraction approach consists of detecting and discarding the features that

are demonstrated to minimally help to cause a correct response by the classifier [12].

Usually, the feature extraction step is implemented via sub-optimal search

algorithms, such as, for instance, the branch-and-bound search, the Sequential

Forward-Backward Selection (SFS-SBS) [20]. Including features providing

minimum effect towards classification tends to increase computational time of the

classifier. Hence throughout literature feature extraction methods are used to identify

the most suitable features to be input into the algorithm [11]. There are three main

methods for feature extraction.

o Filter methods

o Wrapper methods

o Hybrid methods

Increase in the number of features corresponds to the ‘curse of dimensionality’. This

creates difficulty in visualization of output from classification. Hence, techniques

have been used by researchers to reduce dimensionality of features. One such method

is Principal Component Analysis (PCA). A study [21] on classifying activities based

on data obtained from a mobile phone accelerometer and gyroscope reveals that PCA

was used to reduce 561 features to 70 principal components. This reduced

computational time of classifier from 658.53s to 128s.

Since many features are required for the classification, the data set in most studies is

divided into two parts. Namely,

o Training Set

o Test Set

Previous research [12] states that ratio between the number of instances available in

the training set and the dimension of the feature-space must be at least ten.

15

2.4.6 Classification

The extracted features act as input to different classification techniques. These

classifiers are mainly divided into two segments [11],

o Supervised classification approaches

o k-Nearest Neighbour (k-NN) – k-NN classifier has been used

extensively for human activity classification. In research [11] to

classify different physical activities such as walking, standing,

running, etc. k-NN algorithm provides the highest accuracy among all

classifiers with an accuracy of 99.25%. For IMU based trick

classification [6] k-NN provided the fastest response time of 5.2s at an

accuracy of 96%. To develop a machine learning model based on

accelerometers on body [12] has used k-NN as a single frame

classifier with a single frame. However, the exact value for ‘k’ as the

number of neighbours has varied from one research to another.

o Support Vector Machines (SVM) – Usage of SVM’s for human

activity classification has demonstrated variable accuracy percentages.

But in most cases, it has reached above 90% accuracy levels [11] [6].

However, in skateboarding trick classification [6] SVM is the slowest

among the classifiers with a classification time of 37.2s.

o Random Forest (RF) – An algorithm based around the combination of

multiple decision trees is also used in many research topics related to

human activity recognition. In a research [22] on developing a

machine learning model to classify hand movement during dumbbell

based exercise uses a RF with 99.97% accuracy of classification.

Also, a research [11] on human movement classification uses a RF at

98.95% accuracy to classify movements such as walking, standing,

running, etc.

o Naïve Bayes (NB) – NB is also used [12] as a single frame classifier to

classify common human movements such as walking, running etc. In

skateboarding trick classification [6] NB provides 97.8% accurate

16

classification at a computational time 6.2s. This shows that NB is a

very effective classifier.

Other supervised classification techniques such as Supervised Learning Gaussian

Mixture Models (SLGMM), A-NN etc. are also used for human activity

classification. However, the general approach is to use few different classifiers for

the same task and compare their accuracy. But the approaches to develop specific

classes for the training set used for supervised classification are not clearly

documented in literature.

o Unsupervised classification approaches

o k-Means – In comparison to supervised methods k-Means

demonstrates low accuracy rates for human activity classification. It

reaches around 72.95% accuracy in classification [11]. But research

doesn’t demonstrate enough details about setting the cluster centre

points.

o Hidden Markov Models (HMM) – HMM’s demonstrate the best

classification accuracy among unsupervised classifiers [11]. This is

demonstrated throughout literature.

o Gaussian Mixture Models (GMM)

Unsupervised classification approaches have been mainly used in situations where

development of classes for training set becomes difficult in human activity

classification.

2.4.7 Classification Evaluation

Evaluation of activity classification algorithms have been carried out in few different

ways in research. One key aspect is to evaluate the classifiers. In [6] sensitivity and

specificity for the detection of trick events were calculated in relation to the number

of all segmented windows. In this early stage of the project, the evaluation of the

classification was only based on correctly detected trick events. For the above

classification evaluation was based upon leave-one-subject-out cross-validation.

Evaluation of classifiers is a key activity in most human movement activity

17

classification research. Below table depicts the response time of four classifiers used

in automatic activity classification [18].

Classifiers RF NB Lazy IBK MP

Testing Time (s) 0 0.15 0.38 0.08

Training Time (s) 0.38 0.1 0 538.9

Figure 5: Random Forest, Naive Bayes, Lazy IBK, Multilayer Perceptron response

times [18]

The key method for evaluation in most research based on human activity

classification is to develop cross validation methods. For human activity

classification, such as walking, running, etc. 10-fold cross validation is used [11].

But throughout literature validation of human activity classification is developed

around below statistical verification parameters.

o Accuracy

o F-Measure

o Precision

o Recall

o Specificity

Table 2: Classifier performance evaluation [11]

Performance of Supervised Algorithms

Classifier
Accuracy +/- std

(%)

F-Measure

(%)

Recall

(%)

Precision

(%)

Specificity

(%)

k-NN 96.53 +/- 0.20 94.6 94.57 94.62 99.67

RF 94.89 +/- 0.57 82.87 82.28 83.46 99.43

SVM 94.22 +/- 0.28 90.66 90.98 90.33 99.56

SLGMM 94.22 +/- 0.28 69.94 69.99 69.88 98.39

Performance of Unsupervised Algorithms

Classifier
Accuracy +/- std

(%)

F-Measure

(%)

Recall

(%)

Precision

(%)

Specificity

(%)

HMM 80 +/- 2.10 67.67 65.02 66.15 97.68

K-means 68.42 +/- 5.05 49.89 48.67 48.55 93.21

GMM 73.6 +/- 2.32 57.68 57.54 58.82 96.45

Another evaluation parameter on similar research is the [6] correlation coefficients

between each pair of accelerometer signals. They are obtained by computing the dot

18

product of pairs of frame vectors, normalised to their length, and are highly helpful

in discriminating activities that involve motions of several body parts.

However, research has concentrated on other validation methods like cross checking

the results with a secondary system such as an optical system. The activity

classifications obtained by the algorithms were checked against results obtained by a

system like a ‘VICON system’. This has helped to improve the overall effectiveness

of those researches.

19

CHAPTER 3

3. ON BODY SENSOR POSITION SELECTION METHODOLOGY

This thesis uses Kairos 3-D motion analysis system for data collection. Kairos uses

Inertial Measurement Units to provide quaternion based 3-dimensional motion data

during movement. The first step in the research was to determine the most

appropriate sensor position on body that would provide the best accuracy for

classification of the three key phases during fast bowling.

The methodology adopted to determine the best body location and quaternion

number for classification was to fit the data into a classifier and determine its

accuracy for each position and quaternion. The position which has the highest

accuracy factor can be considered as the suitable location for final data collection for

segmentation of key three phases in fast bowling by using an IMU sensor. Therefore,

a pattern recognition algorithm is developed initially to determine the best sensor on

body sensor position for the study.

Figure 6: Proposed system flow chart

Pattern

Recognition

.csv File

Moving Window

Time domain

Feature Selection

Dimensionality

Reduction

Classification

Evaluation

Thigh

Forearm

Calf

Trunk

 q1,q2,q3,q4

q1,q2,q3,q4

q1,q2,q3,q4

q1,q2,q3,q4

Sensor Position

20

3.1 Sensor Positions

Figure 7: IMU placement positions on body for data collection

Four positions on the body were considered as potential sensor placement areas.

• Thigh – Sensors were placed on the front leg (left leg for right arm bowlers

and vice versa).

• Forearm – Sensors were placed on the bowling arm (right arm for bowlers

delivering with right arm and vice versa)

• Trunk – Sensors were placed on the upper trunk.

• Calf – Sensors were placed on the front leg (same as the thigh).

Trunk Forearm

Calf Thigh

21

3.2 Feature Selection

As discussed previously in literature, various feature selection methodologies have

been used previously to determine best features for similar applications. Therefore,

as used in most cases a moving window is used for obtaining the features. Each

window comprises of 20 samples and a window overlap of 50%. This was done

independently for every quaternion on each body sensor position. Following were the

calculated features,

Figure 8: Feature selection moving window

Among the three types of features, time domain features were used for this analysis.

Hence, eight-time domain features were calculated for each sliding window.

 Median (Y) = Y(N+1)/2 if N is odd

 Y = (Y(N/2) + Y(N/2) +1) if N is even

 2

 n

 Skewness = Σ (Yi - Y)3 S is Standard Deviation

 i = 1

 (n-1) x S3

n

 Kurtosis = Σ (Yi - Y)4 S is Standard Deviation

 i =1

 (n-1) x S4

50% overlap

20 samples/window
Samples

 N

Mean (Y) = Σ Yi / N

 i = 1

 n

Variance (S2) = Σ (Yi - Y)2

 i = 1

 (N-1)

22

Apart from above features Root Mean Square (RMS), Median Absolute Deviation

(MAD) and Inter Quartile Range (IQR) were also used as features for the study.

3.2.1 Feature Scaling

Once the features were selected it was observed that certain features were out of

scale. Hence a standardization step was required prior to dimensionality reduction. In

this approach the mean and standard deviation of entire feature vector was

calculated. The dataset was scaled by subtracting every element by the mean and

dividing by the standard deviation.

3.3 Feature Extraction (Dimensionality Reduction)

The next step was to reduce dimensionality of the features. Various techniques have

been used previously for the task of dimensionality reduction. Backward

Elimination was used as the first method for feature extraction. However, through

this method certain datasets reduced to more than three features. This method

produced a visualization difficulty of the data since some cases represented more

than two or three features. Hence, Principal Component Analysis (PCA) was used as

a dimensionality reduction technique.

3.3.1 Principal Component Analysis (PCA) for Dimensionality Reduction

To minimize over fitting and for visualization purposes PCA was used for

dimensionality reduction. PCA transforms the original variables into a new set of

small variables without losing the most important information of the original data.

Owing to requirements of visualization in this study the original dataset was

transformed into two principal components. This is achieved by assuming directions

with largest variances as the most important. In this instance PC1 (First Principal

Component) and PC2 (Second Principal Component) are generated and they are

orthogonal to each other with PC1 acting as the most important direction.

23

Figure 9: PC1 and PC2 orthogonality interpretation [23]

3.4 Classification

Support Vector Machines (SVM) have been used for both classification and

regression tasks. Throughout literature SVM’s have been used for human movement

classification as a supervised classifier. However, in most instances k-NN have

performed better in human movement classification compared to SVM’s. But in this

scenario, it required one classifier to compare different sets of data. In k-NN

selecting correct ‘k’ number across all datasets was challenging. Hence a SVM was

more suitable in this instance. Following characteristics in SVM were also

considered for its selection.

• Suitable for instances with less number of classes. In this instance, there were

three classes (ideally two classes).

• Suits classification with higher number of features. Current classification

consisted of eight features.

• When there is non-uniform weighing among features.

In SVM’s features are mapped into high dimensions and a corresponding hyper plane

is selected to best classify the results. However, it is worthwhile to that application of

PCA reduces dimensionality prior to classification. Therefore, a linear ‘kernel’ was

used for the SVM for classification.

24

3.5 Evaluation

10-fold Cross Validation was used to evaluate every model. The dataset was divided

into ten folds where one sample acted as the test set and the others as training set. For

each fold Accuracy, Precision and Recall were calculated. This was repeated 10

times and the average of each parameter was considered as the final value. And

finally, F-measure was calculated from the averages of Precision and Recall. On-

body sensor position and quaternion providing the best values among the evaluation

parameters were selected as the suitable quaternion and on body sensor position for

final data gathering for fast bowling phases classification.

Accuracy = Tp + Tn Precision = Tp Recall = Tp

 Tp + Tn +Fp +Fn Tp+ Fp Tp+Fn

F – Measure = 2 x (Average Precision x Average Recall)

 (Average Precision + Average Recall)

Where, Tp= True Positive Fp= False Positive

 Fn= False Negative Tn= True Negative

These parameters were derived based on the confusion matrix generated for each

classification. Below is an example 3x3 confusion matrix. Where, Accuracy would

be indicated by sum of number diagonal items divided by total instances.

y_pred: 1 2 3

 1 13 0 1

 2 6 31 1

 3 9 0 27

Precision would be defined from the confusion matrix as the ratio of number of

correctly classified instance per class to the number of predictions per class. Whereas

Recall would be ratio of number of correctly classified instance per class to the

number of instances per class.

3.6 Participants

Three participants were selected for the initial data gathering to determine sensor

position on body that would provide best accuracy results for classification. All

25

participants belonged to ‘Mixed type’ fast bowling action type. All three participants

were active cricketers. Official consent was obtained from each participant to

participate in the data gathering and to take photos and videos during the session.

Table 3: Bowlers age, height and weight

Bowler Number Age Height (cm) Weight (Kg)

1 27 164 63

2 17 172 60

3 17 170 65

3.7 Data Gathering Methodology

Initial data gathering was conducted at Cric Sri Lanka indoor cricket nets. Sensors

mounted using Velcro straps were placed on specific positions on body and the

subjects were requested to bowl with the sensors.

Each subject delivered five deliveries. One critical parameter for the classification

model was to derive the separate classes for Run up, Delivery Stride and Follow

through. Therefore, data gathering was conducted separately for each class.

Table 4: Data sample generation per bowler

Class Number of Iterations

Full bowling action 5

Run up 4

Delivery stride 4

Follow through 4

 Figure 10: Second bowler Figure 11: Third bowler

26

3.7.1 Data Types

To reduce the number of repetitions, data were gathered in combination of sensor

positions. Prior to initiating each delivery, the bowler maintained a stationary

position to assist initial sensor calibration. A clapper was used as a benchmark to

initiate movement and data storage. When data were collected for the classes, bowler

conducted Run Up, Delivery Stride and Follow Through separately. These acted as

the data for each class of classification.

The orientation estimation was based around Madgwick’s orientation estimation

filter [10]. This filer is a quaternion based filter. Hence each data sample provided

four quaternion values. Each of these four quaternion values were normalized and

stored as data, where each of the quaternions was examined to determine accuracy of

classification. A quaternion has four parts. It is like a complex number with one real

component (q0) and three complex components (q1, q2, q3) which can be used to

represent a 3D rotation. A quaternion can be considered as a hypercomplex number.

q = q0 + q1i
 + q2j + q3k = [q0, q1, q2, q3]

Where,

q0 = quaternion real component

q1, q2, q3 = quaternion imaginary components

i,j,k = imaginary basis vectors with i2 = j2 = k2 = -1

By visualization it will be easier to understand a quaternion in reference to the

rotation created by rotating frame B to A as illustrated below. In a nutshell it

represents the orientation of frame B in reference to frame A.

Figure 12: Quaternion generation from IMU for movements [10]

27

q0 = cos(θ/2)

q1 = nx sin(θ/2)

q2 = ny sin(θ/2)

q3 = nz sin(θ/2)

Where,

 q0 = quaternion real component

q1, q2, q3 = quaternion imaginary components

 θ = rotation angle

 nx, ny, nz = rotation axis components

In the quaternion number, scalar component represents rotation angle and others

represent direction of rotation. All these values were stored in .csv file for post

processing. Each .csv file contained Run Up, Delivery Stride and Follow Through

per quaternion. And the class number was stored per each class along with the data

sample.

3.8 Madgwick Filter

• It is specially designed to be used for inertial based sensors.

• It has the capability of reaching the accuracy obtained by a Kalman Filter

with less mathematical complexity.

• Suitable for operations with high sampling rates.

Due to the above reasons this filter was selected as the orientation estimation filter to

be used in this system. Below are the generalized operational points of the filter.

o Accelerometer, Gyroscope and Magnetometer Normalization.

o Finding reference direction of earth’s magnetic field.

o Gradient descent algorithm as a corrective step.

o Rate of change of quaternion calculation.

o Integrate to yield quaternion.

o Quaternion normalization.

3.9 Drift Compensation

In the current design an initial magnetometer calibration was conducted. This was

performed to compensate for the gyroscope drifting by considering magnetometer

reading as a reference.

28

CHAPTER 4

4 ON BODY SENSOR POSITION SELECTION DATA

ANALYSIS AND RESULTS

Initial step in the analysis was to visualize the output obtained from each sensor

position. Below diagrams represent data variation during full bowling action for

subject 1.

4.1 Original Data Plots on Sensor Positions

All data plots pertaining to subject 1 has been plotted.

Subject 1

Calf

Figure 13: Quaternion data for full bowling action of first bowler from IMU on Calf

The initial graphs developed from the sensor on the Calf demonstrated consistent

fluctuations among all quaternions. However, q1, q2 and q3 showed consistent

deviations and q4 showed variations through the graph, which may indicate

boundaries for different classes of movement.

29

Forearm

Figure 14: Quaternion data for full bowling action of first bowler from IMU on

Forearm

In comparison to the data plot from Calf all quaternion data from Forearm

demonstrated higher fluctuations/variations throughout the plot. Third quaternion

depicts least inter class deviations.

Thigh

30

Figure 15: Quaternion data for full bowling action of first bowler from IMU on

Thigh

Graphed data plot from Thigh demonstrated similarities to the data from the Calf.

Only q4 demonstrates higher variations in the plot which can indicate possibility of

the existence of class boundaries.

Trunk

Figure 16: Quaternion data for full bowling action of first bowler from IMU on

Trunk

31

From the sets of data received (plot) from the Trunk q3 and q4 demonstrated higher

variations. This suggested the existence of observable boundaries for the classes,

whereas q1 and q2 represented less likelihood of clear boundaries for the classes.

Note

Overall, in all data sets q2 and q4 represented best observable boundaries for classes.

And among the datasets, data from the forearm showed best suitability for

classification.

4.2 Definition of Classes

To define classes, all subjects performed deliveries in below sequence. Data

collection was initiated and ended visually at below specified positions for each

class.

• Full delivery

• Run Up

• Delivery Stride

• Follow Through

Table 5: Definition of classes for classification

Segment Beginning End

Run Up First Clap Pre-delivery stride end

Delivery Stride Mid Bound Beginning Ball Release

Follow Through Ball Release Final Clap

Delivery Stride Class – Subject 2

Figure 17: Delivery Stride – Subject 2

32

4.3 Feature Selection

As discussed previously eight-time domain features were calculated for every sliding

window. R Studio was used as the machine learning software tool for the analysis.

Table 6: Feature data plot with classes

When time domain features were obtained, it was observed that few features were

out of scale. Hence a feature scaling step was necessary prior to classification.

Comparison between multiple features

Calf

Figure 18: Feature plot for q1 on Calf Figure 19: Feature plot for q2 on Calf

33

Figure 20: Feature plot for q3 on Calf Figure 21: Feature plot for q4 on Calf

Forearm

Figure 22: Feature plot for q1 on Forearm Figure 23: Feature plot for q2 Forearm

Figure 24: Feature plot for q3 on Forearm Figure 25: Feature plot for q4 Forearm

34

Thigh

 Figure 26: Feature plot for q1 on Thigh Figure 27: Feature plot for q2 on Thigh

 Figure 28: Feature plot for q3 on Thigh Figure 29: Feature plot for q4 on Thigh

Trunk

Figure 30: Feature plot for q1 on Trunk Figure 31: Feature plot for q2 on Trunk

35

Figure 32: Feature plot for q3 on Trunk Figure 33: Feature plot for q4 on Trunk

4.3.1 Feature Scaling

Features which were not scaled, tend to have less significance in the classification

model. It was observed in the original feature set that some of the features were not

scaled. For example, variance and median average deviation observe to be non-

scaled. Hence a feature scaling step was conducted to scale all the features.

4.4 Dimensionality Reduction

Dimensionality reduction was conducted using Principal Component Analysis. The

dataset was transformed into two main components (PC1 and PC2). Following data

were generated for data from q1 of forearm sensor.

• Generating correlation matrix

Figure 34: Correlation matrix for feature set

36

• Generating Eigenvalues and Eigenvectors

Figure 35: Eigenvalues of correlation matrix

Figure 36: Eigenvectors of correlation matrix

• Compute new data set

All above steps were performed in few lines of code in R Studio. Hence PCA

transformation yielded below specified new dataset.

Table 7: PC1 and PC2 data after PCA

4.5 Classification

A linear kernel based Support Vector Machine (SVM) classifier was used to classify

each quaternion on every different on body position. For every instance the training

set and test set were plotted and eventually a matrix comprising of evaluation

parameters was developed to evaluate the model.

37

4.5.1 Training Set Vs Test Set Plot

Datasets classified using SVM, were evaluated using Ten-fold Cross Validation and

they were plotted for visualization and analysis. The fold providing best accuracy

was plotted for visualization. In every instance the Training Set and its corresponding

Test Set was plotted.

Calf

Quaternion 1

Figure 37: Training set Vs Test set SVM classification data plot for q1 on Calf

Quaternion 2

Figure 38: Training set Vs Test set SVM classification data plot for q2 on Calf

38

Quaternion 4

Figure 39: Training set Vs Test set SVM classification data plot for q4 on Calf

The regions for all three classes have been defined in all the quaternions. However,

in the training sets all data points depict to be clustered together. In the test sets,

majority of Run Up data were correctly classified, however Delivery Stride and

Follow Through data showed incorrect classifications. q4 showed the best

classification results from the plots and q3 provided correct decision regions only for

Run Up data, hence q3 plot wasn’t included.

Forearm

Quaternion 1

Figure 40: Training set Vs Test set SVM classification data plot for q1 on Forearm

39

Quaternion 2

Figure 41: Training set Vs Test set SVM classification data plot for q2 on Forearm

Quaternion 3

Figure 42: Training set Vs Test set SVM classification data plot for q3 on Forearm

Quaternion 4

Figure 43: Training set Vs Test set SVM classification data plot for q4 on Forearm

40

Data received from the forearm, once plotted demonstrated improved results in

comparison to the results obtained from Calf. However, in Quaternion 1 Run Up and

Follow Through decision regions demonstrated to be overlapped. Hence, a clear

decision region was not defined for Follow Through. But all other Quaternion plots

show improved results.

Thigh

Quaternion 4

Figure 44: Training set Vs Test set SVM classification data plot for q4 on Thigh

Among all quaternions for data received from the Thigh only fourth quaternion

showed correctly defined decision boundaries. However, the fourth quaternion plot

from Thigh showed less performance in comparison to previous plots.

Trunk

Quaternion 1

Figure 45: Training set Vs Test set SVM classification data plot for q1 on Trunk

41

Quaternion 2

Figure 46: Training set Vs Test set SVM classification data plot for q2 on Trunk

Quaternion 3

Figure 47: Training set Vs Test set SVM classification data plot for q3 on Trunk

Quaternion 4

Figure 48: Training set Vs Test set SVM classification data plot for q4 on Trunk

42

Graphs plotted for all instances of data for datasets from Trunk showed similar

illustrations to plots from Forearm. In first quaternion Delivery Stride (Bowling) and

Follow Through decision regions demonstrated to be overlapped. Hence, Delivery

Stride decision region was not clearly depicted in the plot. But all other quaternion

plots illustrated clear classification results, with third quaternion illustrating best

visual results.

In all plots second and fourth quaternion demonstrated best defined decision regions

and corresponding classification points with data from Forearm and Trunk showing

overall best classification visualization results.

4.6 Classification Evaluation

Table 8: Performance parameters of classification

Parameter

Calf Forearm
SVM SVM

Q1

(%)

Q2

(%)

Q3

(%)

Q4

(%)

Q1

(%)

Q2

(%)

Q3

(%)

Q4

(%)

Accuracy 83 81 78 92 82 89 89 90

Precision 94 99 99 97 99 97 99 99

Recall 92 82 78 95 82 93 95 98

F-Measure 93 90 87 96 90 95 97 99

Parameter

Trunk Thigh
SVM SVM

Q1

(%)

Q2

(%)

Q3

(%)

Q4

(%)

Q1

(%)

Q2

(%)

Q3

(%)

Q4

(%)

Accuracy 86 89 86 87 74 74 75 86

Precision 98 99 96 99 99 99 99 99

Recall 97 94 93 92 74 74 75 89

F-Measure 98 97 94 95 85 85 85 94

The above tables demonstrate the performance of each classification. As discussed

previously Accuracy, Precision, Recall and F-measure were considered as classifier

performance evaluation parameters. It was observed that all quaternions, on every

considered body positions demonstrated accuracy levels above 74%. The best

accuracy percentage of 92% was achieved for fourth quaternion dataset classification

on Calf. It was also evident that fourth quaternion for each position yielded best

accuracy of classification except for data collected on Trunk.

43

4.7 Discussion

It was observed that classification conducted by data received from Forearm yielded

the best overall Accuracy percentage. Best Precision was obtained for data classified

by sensors on Thigh followed by Forearm. Best percentages for Recall and F-

Measure were obtained by data classified from sensors on Trunk and Forearm.

Due to high Accuracy percentage (90%) and high-performance values scored for

Precision, Recall and F-measure sensor data received from Forearm was considered

best for classification. Therefore, Forearm was selected as the best position to collect

data for classification of different phases of fast bowling action. Further, sensors

placed on Forearm provided least disturbances during data collection and developing

a mechanism to hold sensors on Forearm was easier than placing sensors on other

locations on the body.

Among the four quaternions of data on Forearm the fourth quaternion provided the

best results for all performance parameters of evaluation (90%). This feature was

observed for evaluation parameters on Thigh (86%), Trunk (87%) and Calf (92%)

except for the Accuracy parameter on Trunk. This decision also emphasises the

previous observations on Training Set Vs Test Set plots and Mean vs Variance

feature plots. The second quaternion also yielded good results (89% Accuracy on

Forearm). Hence second and fourth quaternion data obtained by sensors on Forearm

was selected as the quaternion number and body position for next data collection.

It should also be noted that Run Up class had greater weight (more data points) in

comparison to other two classes. Hence the classification performance parameters

tend to be biased towards the performance generated from Run Up class. As a result,

high performance parameter percentages were observed in the results.

Above results, when compared with those obtained for human activity classification

by sensors on different locations [26] indicate that hand movements are best

classified by sensors on Wrist. Results from current research indicate similar results

where Delivery Stride, which includes considerable amount of hand movements is

best classified when sensor is placed on the Forearm. However, as in former study

the effect of using combination of sensors is not analysed in current research.

44

CHAPTER 5

5 ACTIVITY CLASSIFICATION DURING FAST BOWLING IN

CRICKET

From the previous data gathering and analysis it was concluded that best on body

position for activity classification during fast bowling was the Forearm. Further,

second and fourth quaternion values yielded best accuracy for classification. Hence

the second set of data collection was conducted with an IMU sensor placed on the

forearm with second quaternion acting as the measurement to be analysed.

5.1 Data Collection Methodology

The same 9 axis inertial measurement unit which was used in the previous step was

used to gather relevant data. A special strap on unit was designed using leather and

Velcro straps to hold the sensor during bowling.

Figure 49: MPU9250 integrated ESP 8266 Wi-Fi module

Figure 50: Wearable strap on forearm

5.1.1 Battery Selection for Sensor

The IMU sensor (MPU9250) was incorporated with an ESP-8266MOD module for

wireless data transmission. As a result, the sensor was relatively small. It was

observed that the setup consumed a maximum of 80mA to 100mA during data

45

transmission through Wi-Fi. Hence a Lithium Polymer battery of 180mAh was

selected for the operation.

5.1.2 Wireless Data Transmission

With the use of an ESP-8266 module it was possible to transmit data wirelessly

during motion. A Python socket programming script was written to collect the data

transmitted through Wi-Fi.

Figure 51: UDP data collection interface

At the first step four quaternion values and corresponding timestamps were sent

using Transmission Control Protocol (TCP). However, it was not possible to reach

sampling rates beyond 50 Hz using TCP. Fast sampling rates of more than 300Hz

was achieved when data were buffered and transmitted. However, there was a data

loss (100ms) during data transmission of the buffered data packets.

This issue in data rate loss was eradicated using User Diagram Protocol (UDP). With

UDP, sampling rates beyond 300Hz was achieved during data transmission.

However, there was a general tendency to lose certain data packets when transmitting

data using UDP (Please refer to section 6.2.4). Data transmission began once a

character sent by Python script was received by ESP module. The received data were

stored in .csv file for processing.

46

Figure 52: Data transmission connectivity

5.1.3 Definition of Classes for Classification

Definition of classes for classification was one of the key requirements for a

supervised classification task. Defining these classes correctly was one of the key

challenges for this study. Three key phases in fast bowling were defined as the three

main classes for this activity classification.

• Class 1 – Run up

• Class 2 – Delivery Stride (Bowling)

• Class 3 – Follow Through

Video feedback received from a camera synchronized with sensor data was used as

the method for definition of classes. Canon EOS 1300D DSLR camera was used to

obtain video feedback to define the classes. Movie size was set to 1280 x 720 to

obtain a frame rate of 50 frames per second. All participants were advised to perform

each delivery in below routine.

Figure 53: Data collection steps

Clap (Sensor data

collection ON)
Raise bowling

hand
 Bowling Clap (Sensor data

collection OFF)

Received data are

stored in a .csv file

Python program sends

initial character for data

transmission

ESP joined to

router through wifi

47

Sensor initiates data collection at the first clap and ends data at final clap. The audio

peaks generated during the claps were used to sync video with sensor data. Raising

of hand generated a secondary point to determine accuracy of data syncing. A factor

to be noted was the difference in sensor and video sampling rates.

Once both sensor and video were synced the three classes were segmented using

video feedback for beginning and ending of each class. Relevant data samples were

divided into each class accordingly.

Class 1 – Run Up

Run up beginning position Run up end position

Figure 54: Run Up class visualization for subject 4

Class 2 – Delivery Stride

Delivery Stride start position Delivery Stride end position

Figure 55: Delivery Stride class visualization for subject 4

48

Class 3 – Follow Through

Follow Through start position Follow Through end position

Figure 56: Follow Through class visualization for subject 4

5.1.4 Data Gathering Participants

Four participants were selected for the data gathering. The consent of each

participant was obtained to video their relevant bowling actions. Below table depict

the details of relevant samples.

Table 9: Data gathering sample set

Bowler Number Age Height (cm) Weight (Kg) Number of samples

1 28 164 63 8

2 28 173 83 8

3 28 175 65 8

 4 36 173 70 8

5.2 Classification methods

Figure 57: System flow chart

Pattern

Recognition

.csv File

Moving Window

Time domain Feature

Selection

Dimensionality

Reduction

Classification

Forearm

q1,q2,q3,q4

Evaluation

49

5.2.1 Original Data Plots

Figure 58: Subject 1 original data plot – Quaternion 2

Figure 59: Subject 2 original data plot – Quaternion 2

Figure 60: Subject 3 original data plot – Quaternion 2

-1

-0.5

0

0.5

1

94000 96000 98000 100000 102000 104000 106000

N
o

rm
al

iz
ed

 Q
u

at
er

n
io

n

Time (Millis)

Subject 1

-1

-0.5

0

0.5

1

180000 182000 184000 186000 188000 190000 192000 194000

N
o

rm
al

iz
ed

 Q
u

at
er

n
io

n

Time (Millis)

Subject 2

-1.5

-1

-0.5

0

0.5

1

1.5

252000 254000 256000 258000 260000 262000

N
o

rm
al

iz
ed

 Q
u

at
er

n
io

n

Time (Millis)

Subject 3

50

Figure 61: Subject 4 original data plot – Quaternion 2

5.2.2 Data Storage

As in the previous scenario data received from the sensor during motion were stored

in a .csv file for processing.

Figure 62: Data stored .csv file

-1

-0.5

0

0.5

1

506000 508000 510000 512000 514000 516000

N
o

rm
al

iz
ed

 Q
u

at
er

n
io

n

Time (Millis)

Subject 4

51

5.2.3 Feature Selection

As in the previous scenario, a moving window was used to obtain relevant time

domain statistical features. A moving window of 400 samples per window with 50%

overlap was selected. This sample range was selected to overcome similarities

created between classes due to small window sizes.

Figure 63: Run Up, Delivery Stride and Follow Through windows – Subject 2

Figure 64: Moving window with 50% overlap

Eight-time domain features were selected as relevant features for the analysis.

• Mean

• Median

• Variance

• Skewness

• Kurtosis

• Root Mean Square (RMS)

• Inter-Quartile Range (IQR)

• Median Absolute Deviation (MAD)

50% overlap

400 samples/window
Samples

52

Table 10: Feature Set

 Figure 65: Mean Vs Variance feature plot

5.2.4 Feature Scaling

It was observed that selected features were out of scale. This situation had the risk of

certain features depicting to contribute more towards the classifiaction model than

their actual relevance. Hence, a feature scaling step was conducted prior to

dimentionality reduction.

53

5.2.5 Feature/Dimensionality Reduction

5.2.5.1 Least Absolute Shrinkage and Selection Operator (LASSO)

In machine learning LASSO [25] is used mainly as a regularization and feature

selection tool. Hence, in this research LASSO was used to reduce the feature set

before classification. It was used to reduce the number of features to decrease

operational complexity and eradicate overfitting of the classifier. LASSO would

eradicate features whose coefficients become zero when the optimization problem is

minimized.

• As an initial step the behaviour of each feature on the model was plotted. This

would illustrate the significance of each feature to the model based on

coefficient values.

 Figure 66: Illustration of coefficients of features

• The next challenge was to select relevant λ value that best selects relevant

features. It was important to choose correct value since too high or low value

would result in inaccuracies to the model. Cross validation was used for this

purpose and corresponding features within one standard error of minimum

mean cross validation error were selected to be included into the model.

54

• Coefficients which become zero at minimum mean cross validation error

(λmin) were calculated. It was observed that none of the coefficients of

features reached zero. Relevant console output is illustrated below.

> as.matrix(coef(c, c$lambda.min))

 1

(Intercept) 2.023809524

Mean 1.531942043

Median -1.193537459

Variance 0.218492424

IQR 0.081845677

Skewness 0.233842144

Kurtois 0.005370676

RMS -0.581196732

MAD -0.220137127

• Finally, coefficients of features which become zero at largest value of lambda

such that error is within one standard error of the minimum were calculated

(λ1se). It was observed that coefficients of Kurtosis and Median Absolute

Deviation (MAD) reached zero. Hence, they were not included into the

classifier.

> as.matrix(coef(c, c$lambda.1se))

 1

(Intercept) 2.02380952

Mean 0.20757431

Median -0.09079894

Variance -0.13095438

IQR -0.02874632

Skewness 0.30759359

Kurtosis 0.00000000

RMS -0.29955691

MAD 0.00000000

 Figure 67: Lambda values at λmin and λ1se

55

5.2.5.2 Dimensionality Reduction with PCA

To reduce calculation complexity to the classification algorithm and for visualization

purposes the feature set (six features) was reduced to two components using

Principal Component Analysis. Principal Component 1 (PC1) and Principal

Component 2 (PC2) were calculated.

Table 11: Dimensionally reduced feature data via PCA

Figure 68: Principal Component 1 (PC1) Vs Principal Component 2 (PC2) plot

56

5.2.6 Classification

The principal classification methods used were supervised classification models.

Four models were used to compare performance among them and to determine best

classifier for such applications.

5.2.6.1 k- Nearest Neighbour (k-NN)

k-NN classifier was used as the first classifier. The first step was to determine best k

number for classification. For evaluation purposes 5-fold cross validation was used.

Hence, for every fold k number was varied from 1 to 100 and the corresponding

accuracy was calculated for every k number. The k number providing best accuracy

for corresponding fold was selected as relevant k number for classification.

Figure 69: Accuracy Vs k number – Fold 1 Figure 70: Accuracy Vs k number – Fold 2

Figure 71: Accuracy Vs k number – Fold 3 Figure 72: Accuracy Vs k number – Fold 4

57

Figure 73: Accuracy Vs k number – Fold 5 Figure 74: Maximum k numbers

Hence 11 was selected as the k number for classification using k-NN classifier.

Training Set

 Figure 75: k-NN Training Set plot

Training model was plotted depicting results from the fold which provided best

average accuracy. It was observable that Run Up and Follow Through classes show

an overlap when fitting into their specific regions.

Test Set

 Figure 76: k-NN Test Set plot

58

The Test set visualization demonstrated that the major inaccuracies were caused due

to incorrect classification of Run Up and Follow Through classes. The corresponding

Test set of the fold that was used for the Training set was used for classification of

the Test set.

5.2.6.2 Support Vector Machine (SVM)

A linear kernel based SVM was used as the second classifier for classification. 5-fold

cross validation was used to create folds and corresponding Training and Test sets.

Fold with best accuracy was selected for visualization and analysis.

Training Set

 Figure 77: SVM Training Set plot

In the Training set it was evident that certain amounts of Run Up and Follow

Through classes were classified incorrectly.

Test Set

 Figure 78: SVM Test Set plot

59

In the Test set classification, it was clear that majority of Delivery Stride class was

correctly classified. However, a certain portion of Run Up and Follow Through

classes were incorrectly classified.

5.2.6.3 Naïve Bayes

Naïve Bayes was used as the third supervised classification model. It has been used

throughout literature for similar instances for human activity classification.

Training Set

 Figure 79: Naïve Bayes Training Set plot

Test Set

 Figure 80: Naïve Bayes Test Set plot

60

5.2.6.4 Random Forest

The final classification model compared was Random Forest classifier. It was also

used as a supervised classification model. It is based around developing multiple

decision trees at training instance. The number of trees were selected at 5000 after

multiple cycles with comparison against accuracy.

Training Set

 Figure 81: Random Forest Training Set plot

Test Set

Figure 82: Random Forest Test Set plot

61

5.3 Classifier Evaluation

Five-Fold Cross Validation was used as the primary evaluation method for above

classification. Five folds were selected due to reduced number of instances in the

data set. As used throughout literature for similar research, below evaluation

parameters were used for evaluation.

• Accuracy

• Precision

• Recall

• F Measure

Accuracy, Precision and Recall were calculated for each fold and the mean value

across all folds was calculated as the final value. F-Measure was calculated from

mean values of Precision and Recall.

Table 12: Summary of classifier performance

Parameter SVM (%) k-NN (%) Naïve Bayes (%) Random Forest (%)

Accuracy 73 77 74 75

Deviation +/- 1 +/- 2 +/- 3 +/- 4

Precision 74 79 77 73

Recall 58 65 57 70

F - measure 65 71 66 71

5.4 Synthetic Minority Over-Sampling Technique (SMOTE)

It was observed that there was an imbalance in between the classes. Run Up and

Follow Through classes exhibited similar size of samples represented in the classes.

However, the sample size of Delivery Stride class was very less in comparison to

other two classes. As a result, the weight of classification accuracy was governed by

Run Up and Follow Through classes. This effect was overcome using SMOTE

algorithm. SMOTE creates more samples around the minority class and reduces

certain samples from majority class to balance out the sample distribution among the

classes.

62

5.4.1 k-NN Classifier Comparison with SMOTE

As specified in the original SMOTE [24] documentation. SMOTE needs to be

applied with a feature selection algorithm. In below instance, SMOTE was applied

on the data obtained after dimensionality reduction via PCA to a k-NN classifier

since it produced best results among the tested classifiers. The Delivery Stride

(Bowling) class was over sampled in relation to Run Up class.

 Figure 83: PC1 Vs PC2 data points plot before applying SMOTE

 Figure 84: PC1 Vs PC2 data points plot after applying SMOTE

As illustrated in the diagrams, Delivery Stride class was populated with more data

points without affecting the nature of original data points distribution.

63

k – Number Selection

5 – Fold Cross Validation was used to evaluate the effect of applying SMOTE prior

to classification. As discussed previously, k number for k-NN algorithm was selected

by varying k from 1 to 100 among each fold and by detecting fold and k number

providing best accuracy.

Figure 85: Accuracy Vs k number – Fold 1 Figure 86: Accuracy Vs k number – Fold 2

Figure 87: Accuracy Vs k number – Fold 3 Figure 88: Accuracy Vs k number – Fold 4

Figure 89: Accuracy Vs k number – Fold 5 Figure 90: Maximum k numbers across folds

Hence, k = 9 was selected as the suitable k number to be used in k-NN algorithm.

64

Training Set

 Figure 91: k-NN Training Set plot after SMOTE

Test Set

 Figure 92: k-NN Test Set plot after SMOTE

Classifier Performance

Table 13: Classifier evaluation parameters

Parameter k-NN (%)

Accuracy 82

Standard Deviation +/- 4

Precision 80

Recall 60

F-Measure 68

65

5.5 Model Testing on Sample Dataset

The final step was to test the classification model on a sample dataset. For this

requirement 5th dataset of second subject was selected.

Figure 93: Test dataset plot with marked class boundaries

Above sample set was inserted into the model as a Test set and coloured vertical

dotted lines were plotted on the graph to mark the different phases classified by the

model. k-NN classifier demonstrated best accuracy results. Hence, it was used for

this classification.

Figure 94: Test dataset plot with marked specific class regions

66

The main challenge for above plot was to revert to original data from the extracted

feature set. However, a pattern was demonstrated in the moving window which could

help to revert to original dataset.

Window 1 = Sample [0:400]

Window 2 = Sample [200:600]

Window 3 = Sample [400:800]

Window 4 = Sample [600:1000]

Window 5 = Sample [800:1200]

……….

Hence lower data point of a specific window can be linked to original dataset as,

Window_Lower [n] = (n x 200) – 200 for n=1,2, 3...

Upper data point of a specific window can be linked to original dataset as,

Window_Upper [n] = (n x 200) + 200 for n=1,2, 3...

5.6 Discussion

The classification indicates that Support Vector Machines (SVM) and Naïve Bayes

Test set plots showed similar classification regions. Overall, k-NN provided best

classification accuracy of 77% with a k number of 11. But it was improved to 82%

with k number as 9 when SMOTE was used. All supervised classifiers used,

demonstrated standard deviations of 1% to 4%. When other classification parameters

were considered, best Precision rate of 79% and F-Measure of 71% was obtained by

k-NN algorithm. However, best Recall measure of 70% was achieved by Random

Forest algorithm. Hence, it was evident that k-Nearest Neighbour could be regarded

as the best supervised classifier among the ones used of this human movement

classification problem. But overall higher accuracies haven’t been reached due to

less number of data samples.

With the application of SMOTE to balance the sizes of three classes it was observed

that k-NN classifier increased classification accuracy from 77% to 82% and

Precision was improved from 79% to 80%. However, the results indicated a

reduction in the performance parameters of Recall and F-Measure.

67

When the model was tested against a sample dataset it was observed that most of the

data windows were represented to be classified accurately. However, few dataset

windows were incorrectly classified.

The final accuracy of 82% obtained from k-NN classification (after SMOTE)

indicates similarities to the results obtained for human activity classification by

having accelerometers on the wrist [26]. In latter [26] study, accelerometers on the

wrist classifies running at 80% accuracy by using a Hidden Markov Model.

However, the results from the study [26] indicate a rapid increase (18%) in accuracy

when a second sensor is added on the hip for classification. This trend of increase in

classification accuracy continues when all three sensors are used for classification.

Although the latter study uses an unsupervised classification method, there is a

definite case to add a secondary sensor to increase classification accuracy of the

discussed model in the current research. The results summarised on Table 8

illustrates acceptable accuracies for sensors placed on Trunk and Calf. Therefore,

using multiple secondary sensors could improve classification accuracy of the model

proposed from current research.

Research [27] further indicates that bowling technique is a major contributing factor

towards back injuries in fast bowlers. Mixed bowling action type is considered to

lead higher incidence of back injuries due to excessive lumbar spine extension and

rotation during ball release and resulting in increased counter rotation during

Delivery Stride. These effects have been identified to be minimal on Side-on

technique of fast bowlers. Therefore, the proposed method from current research can

be used to classify the back rotation and extension during Delivery Stride to correct a

Mixed type fast bowling technique in a bowler towards a Side-on action type without

affecting key performances of the bowler based on wearable sensors.

Further, the proposed model can be used in other similar throwing sports such as

javelin throw. Research [28] indicates that Run Up speed has a direct correlation to

the success of javelin throw. Hence, the proposed method can be used to classify the

Run Up and other key activities in javelin throw to assist performance enhancement

by using wearable sensors.

68

CHAPTER 6

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Key Findings

• The results of the initial experiment conducted to determine best on body

sensor position for activity classification during fast bowling in cricket

suggested that ‘Forearm’ is the best position to place Inertial Measurement

Units (IMU’s) to gather data for such classification problems.

• Second and Fourth Quaternions provided best overall performance for the

classifiers during the study to determine best on body sensor position for data

collection.

• Accuracy measures obtained by Support Vector Machine (SVM) during the

study to determine best on body sensor position suggests that comparatively

high accuracy rates were achieved due to large variation in sample size

among the classes. Hence, the results of confusion matrices were governed by

the two large classes of Run Up and Follow Through. This issue was

eradicated by the usage of Synthetic Minority Over-Sampling Technique to

data processed after LASSO and PCA to increase the number of data points

on minority classes.

• It is important to use a secondary camera to assist in defining the boundary

points of the classes. It will be best if the frame rate of camera can reach the

sampling rate of sensor to increase accuracy of boundary points.

• User Diagram Protocol (UDP) could transmit data beyond the expected rate

of 350Hz during data collection. However, it was observable that when UDP

was used, small amounts of data packets were lost during transmission.

• k-Nearest Neighbour classifier provided the best results for activity

classification in fast bowling in cricket among other supervised classifiers

like Naïve Bayes, Random Forest and Support Vector Machine.

• The classification model can be improved further by adding more data and it

was demonstrated that it can now be used to analyse a fast bowler for

69

performance enhancement or injury prevention related parameter in either

Run Up, Delivery Stride or Follow Through regions.

6.2 Detailed Findings and Suggestions

6.2.1 On Body Sensor Position

The results have suggested that using an IMU on the forearm is the best position

when gathering data to classify different phases in fast bowling. However, it will be

important to determine the effect on the model if sensors were used in multiples to

determine classification accuracy. For example, the effect of sensors on Forearm and

Calf at the same instance of data gathering could be analysed as next steps. Further,

to increase model accuracy more samples need to be added into the model.

6.2.2 Quaternions

Quaternions were used as the main data for classification in the research. Second and

Fourth quaternions demonstrated better results in comparison to other two

Quaternions. However, there is an opportunity to investigate the effect of using raw

three axis accelerometer, gyroscope and magnetometer data in the model. It will also

be important to determine the effect of using a more derived data from the

Quaternions (Ex: Rotational angle, yaw, pitch, etc) on the classification models.

6.2.3 Inertial Measurement Units (IMU’s) and Microcontroller

Since fast bowling in cricket consists of fast movements, a minimum sampling rate

of 300Hz was required. However, it was observed that on certain cycles the

maximum accelerometer range of 16g in MPU 9250 was not sufficient to absorb

these movements. Data inversions were observed. This had a minimum effect on the

research since the effect was translated to all data collection cycles. However, it is

best to move towards greater accelerometer ranges (multiple ranges) for future

similar fast movement activity classifications.

ESP 8266 Wi-Fi module was used in this research. When TCP was used as the data

transmission protocol, it was not possible to send data at rates beyond 50Hz.

However, when buffered data were sent the microcontroller did not have the

70

capability of processing new data. Hence, User Diagram Protocol (UDP) with the

risk of losing data packets was used as the data transmission protocol. However, if a

microcontroller with multiple cores was used there is a possibility of using TCP to

send data beyond 300Hz.

6.2.4 Transmission Control Protocol (TCP) Vs User Diagram Protocol

As discussed previously, due to limited data rate achieved based on limitations in the

Wi-Fi module when using TCP as data transmission protocol, UDP was introduced

as corresponding data transmission protocol. However, when using UDP data losses

were observed on certain instances.

Figure 95: UDP data losses

6.2.5 Classification of Phases in Bowling

It was more appropriate to use supervised classification models over unsupervised

classifiers to the existence of limited number of sample sets (32 sample sets).

However, when the sample set is increased further unsupervised methods can also be

analysed for performance.

6.2.5.1 Definition of Classes

The first method to define classes by doing data collection of different phases

separately demonstrated overlapping of data in the specific regions. However, this

was eradicated when a reference video feedback synced with sensor data was used to

71

define the classes in the second method. Even this method created an error since the

frame rate of camera (50 fps) was less in comparison to the sensor sampling rate

(300Hz). However, it can be improved further by using a camera with the same

frame rate as sensor sampling rate to define the classes.

6.2.5.2 Feature Selection

In this research eight-time domain features were considered as corresponding

features for classification algorithm. There is a possibility of increasing the number

of features and analysing classification accuracy. Further, the effect of using

frequency domain and derived features can also be analysed in future.

6.2.5.3 Feature Extraction

LASSO and Principal Component Analysis (PCA) were used as the methods to

reduce dimensionality of the feature set. However, other methods such as Backward

Elimination and Ridge Regression can be tested in future.

6.2.5.4 Classification and Evaluation

As specified previously, supervised classifiers were used for classification. Best

overall accuracy of 82% was achieved by k-NN classifier. All other evaluation

parameters (Precision, Recall and F-Measure) have scored more than 50% rates.

Hence, the model can be accepted. However, none of the evaluation parameters have

reached levels beyond 82%. The model performance can be improved further by

increasing number of samples. Overall, k-NN algorithm was the most suitable

classifier for classification of different phases in fast bowling. However, the key

challenge was to determine the best k number for the classifier.

Five-Fold Cross Validation was used as the evaluation method in the study.

However, Run-Up and Follow Through classes illustrated more data points in

comparison to Delivery Stride class. Hence, the results are dominated by former two

classes. This effect and the effectiveness of cross validation can be improved further

by increasing number of data sets for classification and by using SMOTE to balance

the classes.

72

6.3 Future Work

This study concentrated on the classification of the three key phases in fast bowling.

However, there are other phases within the main phases that need to be classified in

future.

• Run Up

o Pre-Delivery Stride

• Delivery Stride

o Mid-bound

o Back Foot Contact (BFC)

o Front Foot Contact (FFC)

o Ball Release

• Follow Through

Based on classification of phases in fast bowling, the action of a bowler can be

adjusted (about a base line) in future to increase his or her bowling speed or prevent

injuries due to incorrect postures during bowling.

Research [1] illustrates four key parameters that can be considered to assist bowl

faster in cricket.

• Run Up speed

• Knee angle at Ball Release

• Upper trunk flexion (First Foot Contact to Ball Release)

• Shoulder angle at First Foot Contact

The study indicates that fastest bowlers have a quicker Run Up. With the addition of

another relevant sensor to capture running speed, the results of current study can be

used to classify the Run Up of a bowler and study his or her Run Up speed to be

adjusted to help greater bowling speeds during delivery.

Further, the study can be refined more by allocating all the subjects to deliver a

similar kind of delivery and determine the effects during each phase to bowling

speed. This experiment cannot be conducted at this phase since delivery speed is not

captured. However, it can be included for future work.

73

It will also be important to study the variability within classes for different bowlers

when the same type of delivery is delivered. Hence, the study can be improved

further by allocating all subjects the same type of delivery and studying the

variability within each class on an outcome such as speed.

74

REFERENCES

[1] Worthington, P.J., King, M.A. and Ranson, C.A., Relationships between fast

bowling technique and ball release speed in cricket. Journal of Applied

Biomechanics, 29 (1), pp. 78 –84, 2013.

[2] Worthington, P.J., A biomechanical analysis of fast bowling in cricket. PhD

Thesis, Loughborough University, UK, 2010.

[3] Craig. The Bowler’s Back. Internet:

https://biomechanics101.wordpress.com/2013/12/06/the-bowlers-back/,

Dec.25, 2013

[4] Kathleen Shorter, Andrew Nealon, Neal Smith and Mike Lauder. CRICKET

SIDE STRAIN INJURIES: A DESCRIPTION OF TRUNK

MUSCLEACTIVITY AND THE POTENTIAL INFLUENCE OF BOWLING

TECHNIQUE, 29th International Conference on Biomechanics in Sports,

Porto, Portugal, 2011.

[5] Burnett A.F., Barrett C.J., Marshall R.N., Elliott B.C. and Day R.E..Three-

dimensional measurement of lumbar spine kinematics for fast bowlers in

cricket. Clinical Biomechanics, vol. 18, issue 8, pp. 574-583, Dec. 1998.

[6] Benjamin H. Groh, Thomas Kautz, Dominik Schuldhaus and Bjoern M.

Eskofier. IMU-based Trick Classification in Skateboarding. KDD Workshop on

Large-Scale Sports Analytics, Sydney, Australia, 2015.

[7] Daniel Roetenberg. Inertial and Magnetic Sensing of Human Motion. PhD

Thesis, University of Twente, Netherlands, Page 15, 2006.

[8] Muhammad Salman, Saad QaisarAli and Mustafa Qamar. Classification and

legality analysis of bowling action in the game of cricket, Data Mining and

Knowledge Discovery, vol. 31, issue 6, pp. 1706-1734, Nov. 2017.

[9] David Rowlands, Daniel Arthur James and David Thiel. Bowler analysis in

cricket using centre of mass inertial monitoring. Sports Technology, Volume 2,

pp. 39-42, 2009.

[10] Sebastian O.H. Madgwick. An efficient orientation filter for inertial and

inertial/magnetic sensor arrays. April 2010.

[11] Ferhat Attal,Samer Mohammed, Mariam Dedabrishvili, Faicel Chamroukhi,

Latifa Oukhellou andYacine Amirat.Physical Human Activity Recognition

Using Wearable Sensors, Sensors, vol. 15, issue 12, 31314–31338, 2015.

[12] Andrea Mannini and Angelo Maria Sabatini. Machine Learning Methods for

Classifying Human Physical Activity from On-Body Accelerometers.

Instrumentation, Signal Treatment and Uncertainty Estimation in Sensors,

Sensors, vol. 10, issue 2, 1154-75, 2010.

[13] Warangkhana Kimpan1, Natee Rientrakulchai and Wisan Tangwongcharoen.

Pattern Analysis of Golf Swing using Motion Sensors, in Proc. ICCEB, 2013,

pp. 44-48.

[14] Takashi Aoki, Gentiane Venture, Dana Kulic. Segmentation of Human Body

Movement using Inertial Measurement Unit, in Proc. 2013 IEEE International

Conference on Systems, Man, and Cybernetics, pp. 1181 – 1186.

[15] Worthington, P.J., King, M.A. And Ranson, C.A. Relationships between fast

bowling technique and ball release speed in cricket. Journal of Applied

Biomechanics, vol. 29, issue 1, pp. 78 – 84, 2013

https://www.ncbi.nlm.nih.gov/pubmed/?term=Burnett%20AF%5BAuthor%5D&cauthor=true&cauthor_uid=11415836
https://www.ncbi.nlm.nih.gov/pubmed/?term=Barrett%20CJ%5BAuthor%5D&cauthor=true&cauthor_uid=11415836
https://www.ncbi.nlm.nih.gov/pubmed/?term=Marshall%20RN%5BAuthor%5D&cauthor=true&cauthor_uid=11415836
https://www.ncbi.nlm.nih.gov/pubmed/?term=Elliott%20BC%5BAuthor%5D&cauthor=true&cauthor_uid=11415836
https://www.ncbi.nlm.nih.gov/pubmed/?term=Day%20RE%5BAuthor%5D&cauthor=true&cauthor_uid=11415836
http://www.mdpi.com/search?authors=Ferhat%20Attal&orcid=
http://www.mdpi.com/search?authors=Samer%20Mohammed&orcid=
http://www.mdpi.com/search?authors=Mariam%20Dedabrishvili&orcid=
http://www.mdpi.com/search?authors=Faicel%20Chamroukhi&orcid=
http://www.mdpi.com/search?authors=Latifa%20Oukhellou&orcid=
http://www.mdpi.com/search?authors=Yacine%20Amirat&orcid=
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Takashi%20Aoki.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Gentiane%20Venture.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Dana%20Kulic.QT.&newsearch=true

75

[16] Saad Qaisar , Sahar Imtiaz, Fatima Farooq, Sungyoung Lee. A Hidden Markov

Model For Detection And Classification Of Arm Action In Cricket Using

Wearable Sensors,Journal of Mobile Multimedia, vol. 9, pp. 128-144, 2013.

[17] Amin Ahmadi, Edmond Mitchell, Chris Richter, Francois Destelle, Marc

Gowing, Noel E. O’Connor and Kieran Moran. Towards automatic activity

classification and movement assessment during a sports training session, IEEE

Internet of Things, vol. 2, issue 1, pp. 23-32, 2014.

[18] Edmond Mitchell, David Monaghan, and Noel E. O'Connor. Classification of

Sporting Activities Using Smartphone Accelerometers, Sensors, vol. 13, issue

4, 5317–5337, 2013.

[19] Ludovic Seifert, et.al. Pattern recognition in cyclic and discrete skills

performance from inertial measurement units, Procedia Engineering, vol. 72,

pp. 196-201, 2014.

[20] Pasi Saari. Feature Selection for Classification of Music According to

Expressed Emotion, Master’s Thesis, University of Jyväskylä, Finland, 2009.

[21] Kishor Walse, Rajiv Vasantrao Dharaskar, V. M. Thakare. PCA Based

Optimal ANN Classifiers for Human Activity Recognition Using Mobile

Sensors Data, in Proc. First International Conference on Information and

Communication Technology for Intelligent Systems, 2015, vol.1, pp. 429-436.

[22] Prasnthi Mandha, G.LavanyaDevi, S. Viziananda Row. A Random Forest

based Classification Model for Human Activity Recognition, International

Journal of Advanced Scientific Technologies, Engineering and Management

Sciences, vol.3, special issue 1, 2017.

[23] Statistical Tools for High-throughput Data Analytics, Internet:

http://www.sthda.com/english/wiki/print.php?id=206, 2013.

[24] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, W. Phillip

Kegelmeyer. SMOTE: Synthetic Minority Over – sampling Technique, Journal

of Artificial Intelligence Research, vol 16, pp. 321-357, 2002.

[25] Valeria Fonti, Eduard Belister, Feature Selection using LASSO, Vrije

Universiteit, Netherlands, 2017.

[26] Daniel Olguin Olguin, Alex Pentland, Human Activity Recognition: Accuracy

across Common Locations for Wearable Sensors, IEEE 10th International

Symposium on Wearable Computers, Montreaux, Switzerland, 2006.

[27] Manit Arora, Justin A Paoloni, P. Kandwal, A. D. Diwan, Are Fast-Bowlers

Prone to Back Injuries? Prevalence of Lumbar Spine Injuries in Fast-Bowlers:

Review of MRI-Based Studies, Asian Journal of Sports Medicine, vol. 5, issue

4, 2014.

[28] Žuvela Frane, Slađana Borović, Nikola Foretić, THE CORRELATION OF

MOTOR ABILITIES AND JAVELIN THROWING RESULTS DEPENDS

ON THE THROWING TECHNIQUE, Physical Education and Sport, Vol. 9,

No 3, pp. 219 – 227, 2011.

https://www.researchgate.net/profile/Saad_Qaisar
https://www.researchgate.net/scientific-contributions/2028608120_Sahar_Imtiaz
https://www.researchgate.net/scientific-contributions/2028598790_Fatima_Farooq
https://www.researchgate.net/profile/Sungyoung_Lee
https://www.researchgate.net/journal/1550-4646_Journal_of_Mobile_Multimedia
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mitchell%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23604031
https://www.ncbi.nlm.nih.gov/pubmed/?term=Monaghan%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23604031
https://www.ncbi.nlm.nih.gov/pubmed/?term=O%27Connor%20NE%5BAuthor%5D&cauthor=true&cauthor_uid=23604031
https://www.researchgate.net/profile/Ludovic_Seifert
https://www.researchgate.net/profile/Kishor_Walse
https://www.researchgate.net/profile/Rajiv_Dharaskar
https://www.researchgate.net/profile/Thakare

76

APPENDIX A

MPU 9250 Sensor Data Collection and Transmission by using ESP 8266

#include <ESP8266WiFi.h>

//#include <WiFiUDP.h>

//#include <WiFiUdp.h>

#include <Wire.h>

#include "MPU9250.h"

char incomingPacket[255];

IPAddress ip(192, 168, 8, 240);

IPAddress gateway(192, 168, 8, 1);

IPAddress subnet(255, 255, 255, 0);

// wifi connection variables

char *total = "";

char *q0_char = "";

char *q1_char = "";

char *q2_char = "";

char *q3_char = "";

//int countx = 0;

const char* ssid = "J-4G";

const char* password = "xxxxx";

boolean wifiConnected = false;

// UDP variables

unsigned int localPort = 12345;

WiFiUDP UDP;

boolean udpConnected = false;

char packetBuffer[UDP_TX_PACKET_MAX_SIZE]; //buffer to hold incoming packet,

char ReplyBuffer[] = "1.0,0.345,0.456,0.567"; // a string to send back

77

#define MPU9250_ADDRESS 0x68

#define MAG_ADDRESS 0x0C

//Magnetometer Registers

#define AK8963_ADDRESS 0x0C

#define WHO_AM_I_AK8963 0x00 // should return 0x48

#define INFO 0x01

#define AK8963_ST1 0x02 // data ready status bit 0

#define AK8963_XOUT_L 0x03 // data

#define AK8963_XOUT_H 0x04

#define AK8963_YOUT_L 0x05

#define AK8963_YOUT_H 0x06

#define AK8963_ZOUT_L 0x07

#define AK8963_ZOUT_H 0x08

#define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2

#define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-

test (1000) and Fuse ROM (1111) modes on bits 3:0

#define AK8963_ASTC 0x0C // Self test control

#define AK8963_I2CDIS 0x0F // I2C disable

#define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value

#define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value

#define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value

#define GYRO_FULL_SCALE_250_DPS 0x00

#define GYRO_FULL_SCALE_500_DPS 0x08

#define GYRO_FULL_SCALE_1000_DPS 0x10

#define GYRO_FULL_SCALE_2000_DPS 0x18

#define ACC_FULL_SCALE_2_G 0x00

#define ACC_FULL_SCALE_4_G 0x08

#define ACC_FULL_SCALE_8_G 0x10

#define ACC_FULL_SCALE_16_G 0x18

// Set initial input parameters

enum Ascale {

 AFS_2G = 0,

78

 AFS_4G = 1,

 AFS_8G = 2,

 AFS_16G = 3

};

enum Gscale {

 GFS_250DPS = 0,

 GFS_500DPS = 1,

 GFS_1000DPS = 2,

 GFS_2000DPS = 3

};

enum Mscale {

 MFS_14BITS = 0, // 0.6 mG per LSB

 MFS_16BITS // 0.15 mG per LSB

};

int magRead = 20;

// Specify sensor full scale

uint8_t Gscale = GFS_2000DPS;

uint8_t Ascale = AFS_16G;

uint8_t Mscale = MFS_14BITS; // Choose either 14-bit or 16-bit magnetometer resolution

uint8_t Mmode = 0x02; // 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read

float aRes, gRes, mRes; // scale resolutions per LSB for the sensors

int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output

int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output

int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output

float magCalibration[3] = {1, 1, 1}, magbias[3] = {0, 0, 0}; // Factory mag calibration and

mag bias

float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and

accelerometer

int16_t tempCount; // temperature raw count output

float temperature; // Stores the real internal chip temperature in degrees Celsius

float SelfTest[6]; // holds results of gyro and accelerometer self test

// global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System)

79

float GyroMeasError = PI * (40.0f / 180.0f); // gyroscope measurement error in rads/s (start

at 40 deg/s)

float GyroMeasDrift = PI * (0.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start

at 0.0 deg/s/s)

float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta

float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in

the Madgwick scheme usually set to a small or zero value

#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion

scheme, Kp for proportional feedback, Ki for integral

#define Ki 0.0f

uint32_t delt_t = 0; // used to control display output rate

uint32_t count = 0, sumCount = 0; // used to control display output rate

float pitch, yaw, roll;

float deltat = 0.0f, sum = 0.0f; // integration interval for both filter schemes

uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval

uint32_t Now = 0; // used to calculate integration interval

float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values

float cal_gx, cal_gy, cal_gz;

float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion

float eInt[3] = {0.0f, 0.0f, 0.0f};

// This function read Nbytes bytes from I2C device at address Address.

// Put read bytes starting at register Register in the Data array.

void I2Cread(uint8_t Address, uint8_t Register, uint8_t Nbytes, uint8_t* Data) {

 // Set register address

 Wire.beginTransmission(Address);

 Wire.write(Register);

 Wire.endTransmission()

 // Read Nbytes

 Wire.requestFrom(Address, Nbytes);

 uint8_t index = 0;

 while (Wire.available())

 Data[index++] = Wire.read();

80

}

// Write a byte (Data) in device (Address) at register (Register)

void I2CwriteByte(uint8_t Address, uint8_t Register, uint8_t Data) {

 // Set register address

 Wire.beginTransmission(Address);

 Wire.write(Register);

 Wire.write(Data);

 Wire.endTransmission();

}

// Initial time

long int ti;

volatile bool intFlag = false;

// Initializations

void setup()

{

 // Arduino initializations

 Wire.begin(0, 2);

 Wire.setClock(400000L);

 Serial.begin(115200);

 //mySerial.begin(115200);

 wifiConnected = connectWifi();

 // only proceed if wifi connection successful

 if (wifiConnected) {

 udpConnected = connectUDP();

 if (udpConnected) {

 Serial.println("udpConnected ...");

 }

 }

 // Set accelerometers low pass filter at 5Hz

 I2CwriteByte(MPU9250_ADDRESS, 29, 0x06);

 // Set gyroscope low pass filter at 5Hz

 I2CwriteByte(MPU9250_ADDRESS, 26, 0x06);

81

 // Configure gyroscope range

 I2CwriteByte(MPU9250_ADDRESS, 27, GYRO_FULL_SCALE_2000_DPS);

 // Configure accelerometers range

 I2CwriteByte(MPU9250_ADDRESS, 28, ACC_FULL_SCALE_16_G);

 // Set by pass mode for the magnetometers

 I2CwriteByte(MPU9250_ADDRESS, 0x37, 0x02);

 // Request continuous magnetometer measurements in 16 bits

 I2CwriteByte(MAG_ADDRESS, 0x0A, 0x16);

 // Get magnetometer calibration from AK8963 ROM

 //initAK8963(magCalibration); Serial.println("AK8963 initialized for active data

mode...."); // Initialize device for active mode read of magnetometer

 //pinMode(13, OUTPUT);

 //Timer1.initialize(10000); // initialize timer1, and set a 1/2 second period

 //Timer1.attachInterrupt(callback); // attaches callback() as a timer overflow interrupt

 getGres();

 getAres();

 getMres();

 mRes = 10 * 0.6; //conversion from 1229 microTesla full scale 4096 to 12.29 Gauss full

scale

 Gyro_cal();

 magbias[0] = -786; // User environmental x-axis correction in milliGauss, should be

automatically calculated

 magbias[1] = -396; // User environmental x-axis correction in milliGauss

 magbias[2] = 1497; // User environmental x-axis correction in milliGauss

 // Store initial time

 ti = millis();

 firstUpdate = micros();

}

// Counter

long int cpt = 0, magcpt = 0;

void Gyro_cal() {

 uint8_t Buf[14];

 for (int i = 0; i < 100 ; i++) {

82

 I2Cread(MPU9250_ADDRESS, 0x3B, 14, Buf);

 }

 cal_gx = 0; cal_gy = 0; cal_gz = 0;

 for (int i = 0; i < 50 ; i++) {

 I2Cread(MPU9250_ADDRESS, 0x3B, 14, Buf);

 gyroCount[0] = -(Buf[8] << 8 | Buf[9]);

 gyroCount[1] = -(Buf[10] << 8 | Buf[11]);

 gyroCount[2] = Buf[12] << 8 | Buf[13];

 // Calculate the gyro value into actual degrees per second

 gx = (float)gyroCount[0] * gRes; // - .664; // get actual gyro value, this depends on scale

being set

 gy = (float)gyroCount[1] * gRes; // - (-0.221);

 gz = (float)gyroCount[2] * gRes;

 delay(1);

 cal_gx += gx; cal_gy += gy; cal_gz += gz;

 }

 cal_gx /= 50.; cal_gy /= 50.; cal_gz /= 50.;

}

// Main loop, read and display data

void loop() {

 if (wifiConnected) {

 if (udpConnected) {

 if (getUdpData() == 1) {

 uint8_t Buf[14];

 I2Cread(MPU9250_ADDRESS, 0x3B, 14, Buf);

 // Create 16 bits values from 8 bits data

 // Accelerometer

 accelCount[0] = -(Buf[0] << 8 | Buf[1]);

 accelCount[1] = -(Buf[2] << 8 | Buf[3]);

 accelCount[2] = (Buf[4] << 8 | Buf[5]);

83

 ax = (float)accelCount[0] * aRes; // - accelBias[0]; // get actual g value, this depends on

scale being set

 ay = (float)accelCount[1] * aRes; // - accelBias[1];

 az = (float)accelCount[2] * aRes; // - 0.490; // - accelBias[2];

 // Gyroscope

 gyroCount[0] = -(Buf[8] << 8 | Buf[9]);

 gyroCount[1] = -(Buf[10] << 8 | Buf[11]);

 gyroCount[2] = (Buf[12] << 8 | Buf[13]);

 // Calculate the gyro value into actual degrees per second

 gx = (float)gyroCount[0] * gRes - cal_gx; // - .664; // get actual gyro value, this

depends on scale being set

 gy = (float)gyroCount[1] * gRes - cal_gy; // - (-0.221);

 gz = (float)gyroCount[2] * gRes - cal_gz; // - 0.031;

 magcpt++;

 if (magcpt / magRead == 1) {

 magcpt = 0;

 // Read register Status 1 and wait for the DRDY: Data Ready

 uint8_t ST1;

 do

 {

 I2Cread(MAG_ADDRESS, 0x02, 1, &ST1);

 } while (!(ST1 & 0x01));

 // Read magnetometer data

 uint8_t Mag[7];

 I2Cread(MAG_ADDRESS, 0x03, 7, Mag);

 // Create 16 bits values from 8 bits data

 // Magnetometer

 magCount[0] = -(Mag[3] << 8 | Mag[2]);

 magCount[1] = -(Mag[1] << 8 | Mag[0]);

 magCount[2] = -(Mag[5] << 8 | Mag[4]);

 }

 mx = (float)magCount[0] * mRes - magbias[0]; // get actual magnetometer value, this

depends on scale being set

84

 my = (float)magCount[1] * mRes - magbias[1];

 mz = (float)magCount[2] * mRes - magbias[2];

 Now = micros();

 deltat = ((Now - lastUpdate) / 1000000.0f); // set integration time by time elapsed since

last filter update

 lastUpdate = Now;

 if ((lastUpdate - firstUpdate) > 10000000)

 {

 //beta = 0.004;

 beta = 0.04;

 zeta = 0.015;

 }

 sum += deltat; // sum for averaging filter update rate

 sumCount++;

 MadgwickQuaternionUpdate(ax, ay, az, gx * PI / 180.0f, gy * PI / 180.0f, gz * PI /

180.0f, mx, my, mz);

 //countx++;

 //UDP.beginPacket(ip, localPort);

 UDP.beginPacket(UDP.remoteIP(), UDP.remotePort());

 UDP.print("$");

 UDP.print(String(millis()));

 UDP.print(",");

 dtostrf(q[0], 5, 4, q0_char);

 UDP.write(q0_char);

 UDP.write(",");

 dtostrf(q[1], 5, 4, q1_char);

 UDP.write(q1_char);

 UDP.write(",");

 dtostrf(q[2], 5, 4, q2_char);

 UDP.write(q2_char);

 UDP.write(",");

 dtostrf(q[3], 5, 4, q3_char);

 UDP.write(q3_char);

85

 UDP.println("#");

 UDP.endPacket();

 count = millis();

 sumCount = 0;

 sum = 0;

 }

 }

 }

}

void getMres() {

 switch (Mscale) {

 // Possible magnetometer scales (and their register bit settings) are:

 // 14 bit resolution (0) and 16 bit resolution (1)

 case MFS_14BITS:

 mRes = 10.*4912. / 8190.; // Proper scale to return milliGauss

 break;

 case MFS_16BITS:

 mRes = 10.*4912. / 32760.0; // Proper scale to return milliGauss

 break;

 }

}

void getGres() {

 switch (Gscale) {

 // Possible gyro scales (and their register bit settings) are:

 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).

 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:

 case GFS_250DPS:

 gRes = 250.0 / 32768.0;

 break;

 case GFS_500DPS:

 gRes = 500.0 / 32768.0;

86

 break;

 case GFS_1000DPS:

 gRes = 1000.0 / 32768.0;

 break;

 case GFS_2000DPS:

 gRes = 2000.0 / 32768.0;

 break;

 }

}

void getAres() {

 switch (Ascale) {

 // Possible accelerometer scales (and their register bit settings) are:

 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).

 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:

 case AFS_2G:

 aRes = 2.0 / 32768.0;

 break;

 case AFS_4G:

 aRes = 4.0 / 32768.0;

 break;

 case AFS_8G:

 aRes = 8.0 / 32768.0;

 break;

 case AFS_16G:

 aRes = 16.0 / 32768.0;

 break;

 }

}

void initAK8963(float * destination) {

 // First extract the factory calibration for each magnetometer axis

 uint8_t rawData[3]; // x/y/z gyro calibration data stored here

 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer

87

 delay(10);

 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode

 delay(10);

 readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and

z-axis calibration values

 destination[0] = (float)(rawData[0] - 128) / 256. + 1.; // Return x-axis sensitivity

adjustment values, etc.

 destination[1] = (float)(rawData[1] - 128) / 256. + 1.;

 destination[2] = (float)(rawData[2] - 128) / 256. + 1.;

 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer

 delay(10);

 // Configure the magnetometer for continuous read and highest resolution

 // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,

 // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110

for 100 Hz sample rates

 writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set

magnetometer data resolution and sample ODR

 delay(10);

}

// Implementation of Sebastian Madgwick's "...efficient orientation filter for...

inertial/magnetic sensor arrays"

// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)

// which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-

based estimate of absolute

// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing

quadcopters, etc.

// The performance of the orientation filter is at least as good as conventional Kalman-based

filtering algorithms

// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini

operating at 8 MHz!

void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float

mx, float my, float mz) {

 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability

 float norm;

 float hx, hy, _2bx, _2bz;

 float s1, s2, s3, s4;

88

 float qDot1, qDot2, qDot3, qDot4;

 // Auxiliary variables to avoid repeated arithmetic

 float _2q1mx;

 float _2q1my;

 float _2q1mz;

 float _2q2mx;

 float _4bx;

 float _4bz;

 float _2q1 = 2.0f * q1;

 float _2q2 = 2.0f * q2;

 float _2q3 = 2.0f * q3;

 float _2q4 = 2.0f * q4;

 float _2q1q3 = 2.0f * q1 * q3;

 float _2q3q4 = 2.0f * q3 * q4;

 float q1q1 = q1 * q1;

 float q1q2 = q1 * q2;

 float q1q3 = q1 * q3;

 float q1q4 = q1 * q4;

 float q2q2 = q2 * q2;

 float q2q3 = q2 * q3;

 float q2q4 = q2 * q4;

 float q3q3 = q3 * q3;

 float q3q4 = q3 * q4;

 float q4q4 = q4 * q4;

 // Normalise accelerometer measurement

 norm = sqrt(ax * ax + ay * ay + az * az);

 if (norm == 0.0f) return; // handle NaN

 norm = 1.0f / norm;

 ax *= norm;

 ay *= norm;

 az *= norm;

 // Normalise magnetometer measurement

89

 norm = sqrt(mx * mx + my * my + mz * mz);

 if (norm == 0.0f) return; // handle NaN

 norm = 1.0f / norm;

 mx *= norm;

 my *= norm;

 mz *= norm;

 // Reference direction of Earth's magnetic field // FOR SRILANKA MAGNETIC FEILD

CAN BE ASSUMED AS ZERO ALMOST FLAT THAT IS WHY _2bz,_4bz are made to

zero

 _2q1mx = 2.0f * q1 * mx;

 _2q1my = 2.0f * q1 * my;

 _2q1mz = 2.0f * q1 * mz;

 _2q2mx = 2.0f * q2 * mx;

 hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz

* q4 - mx * q3q3 - mx * q4q4;

 hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 +

_2q3 * mz * q4 - my * q4q4;

 _2bx = sqrt(hx * hx + hy * hy);

 _2bz = 0; // -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3

* my * q4 - mz * q3q3 + mz * q4q4;

 _4bx = 2.0f * _2bx;

 _4bz = 2.0f * _2bz;

 // Gradient decent algorithm corrective step

 s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 *

(_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) *

(_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) +

_2bz * (0.5f - q2q2 - q3q3) - mz);

 s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 *

(1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz *

(q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 +

q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3)

- mz);

 s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 *

(1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 -

q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) +

_2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz *

(0.5f - q2q2 - q3q3) - mz);

90

 s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4

+ _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 +

_2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx *

(q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);

 norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude

 norm = 1.0f / norm;

 s1 *= norm;

 s2 *= norm;

 s3 *= norm;

 s4 *= norm;

 // Compute rate of change of quaternion

 qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;

 qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;

 qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;

 qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;

 // Integrate to yield quaternion

 q1 += qDot1 * deltat;

 q2 += qDot2 * deltat;

 q3 += qDot3 * deltat;

 q4 += qDot4 * deltat;

 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion

 norm = 1.0f / norm;

 q[0] = q1 * norm;

 q[1] = q2 * norm;

 q[2] = q3 * norm;

 q[3] = q4 * norm;

}

// Wire.h read and write protocols

void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) {

 Wire.beginTransmission(address); // Initialize the Tx buffer

 Wire.write(subAddress); // Put slave register address in Tx buffer

 Wire.write(data); // Put data in Tx buffer

 Wire.endTransmission(); // Send the Tx buffer

91

}

uint8_t readByte(uint8_t address, uint8_t subAddress) {

 uint8_t data; // `data` will store the register data

 Wire.beginTransmission(address); // Initialize the Tx buffer

 Wire.write(subAddress); // Put slave register address in Tx buffer

 Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep

connection alive

 Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address

 data = Wire.read(); // Fill Rx buffer with result

 return data; // Return data read from slave register

}

void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) {

 Wire.beginTransmission(address); // Initialize the Tx buffer

 Wire.write(subAddress); // Put slave register address in Tx buffer

 Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep

connection alive

 uint8_t i = 0;

 Wire.requestFrom(address, count); // Read bytes from slave register address

 while (Wire.available()) {

 dest[i++] = Wire.read();

 } // Put read results in the Rx buffer

}

void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float

mx, float my, float mz) {

 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability

 float norm;

 float hx, hy, bx, bz;

 float vx, vy, vz, wx, wy, wz;

 float ex, ey, ez;

 float pa, pb, pc;

 // Auxiliary variables to avoid repeated arithmetic

 float q1q1 = q1 * q1;

 float q1q2 = q1 * q2;

92

 float q1q3 = q1 * q3;

 float q1q4 = q1 * q4;

 float q2q2 = q2 * q2;

 float q2q3 = q2 * q3;

 float q2q4 = q2 * q4;

 float q3q3 = q3 * q3;

 float q3q4 = q3 * q4;

 float q4q4 = q4 * q4;

 // Normalise accelerometer measurement

 norm = sqrt(ax * ax + ay * ay + az * az);

 if (norm == 0.0f) return; // handle NaN

 norm = 1.0f / norm; // use reciprocal for division

 ax *= norm;

 ay *= norm;

 az *= norm;

 // Normalise magnetometer measurement

 norm = sqrt(mx * mx + my * my + mz * mz);

 if (norm == 0.0f) return; // handle NaN

 norm = 1.0f / norm; // use reciprocal for division

 mx *= norm;

 my *= norm;

 mz *= norm;

 // Reference direction of Earth's magnetic field

 hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 +

q1q3);

 hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 -

q1q2);

 bx = sqrt((hx * hx) + (hy * hy));

 bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 -

q3q3);

 // Estimated direction of gravity and magnetic field

 vx = 2.0f * (q2q4 - q1q3);

 vy = 2.0f * (q1q2 + q3q4);

93

 vz = q1q1 - q2q2 - q3q3 + q4q4;

 wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);

 wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);

 wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);

 // Error is cross product between estimated direction and measured direction of gravity

 ex = (ay * vz - az * vy) + (my * wz - mz * wy);

 ey = (az * vx - ax * vz) + (mz * wx - mx * wz);

 ez = (ax * vy - ay * vx) + (mx * wy - my * wx);

 if (Ki > 0.0f)

 {

 eInt[0] += ex; // accumulate integral error

 eInt[1] += ey;

 eInt[2] += ez;

 }

 else

 {

 eInt[0] = 0.0f; // prevent integral wind up

 eInt[1] = 0.0f;

 eInt[2] = 0.0f;

 }

 // Apply feedback terms

 gx = gx + Kp * ex + Ki * eInt[0];

 gy = gy + Kp * ey + Ki * eInt[1];

 gz = gz + Kp * ez + Ki * eInt[2];

 // Integrate rate of change of quaternion

 pa = q2;

 pb = q3;

 pc = q4;

 q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);

 q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);

 q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);

 q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);

94

 // Normalise quaternion

 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);

 norm = 1.0f / norm;

 q[0] = q1 * norm;

 q[1] = q2 * norm;

 q[2] = q3 * norm;

 q[3] = q4 * norm;

}

boolean connectUDP() {

 boolean state = false;

 Serial.println("");

 Serial.println("Connecting to UDP");

 if (UDP.begin(localPort) == 1) {

 Serial.println("Connection successful");

 state = true;

 }

 else {

 Serial.println("Connection failed");

 }

 return state;

}

// connect to wifi – returns true if successful or false if not

boolean connectWifi() {

 boolean state = true;

 int i = 0;

 WiFi.begin(ssid, password);

 Serial.println("");

 Serial.println("Connecting to WiFi");

 // Wait for connection

 Serial.print("Connecting");

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

95

 Serial.print(".");

 i++;

 }

 if (state) {

 Serial.println("");

 Serial.print("Connected to ");

 Serial.println(ssid);

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP());

 WiFi.config(ip, gateway, subnet);

 Serial.println("");

 Serial.println("WiFi connected");

 Serial.println("IP address: ");

 Serial.print(WiFi.localIP());

 }

 else {

 Serial.println("");

 Serial.println("Connection failed.");

 }

 return state;

}

int getUdpData() {

 int packetSize = UDP.parsePacket();

 if (packetSize)

 {

 // receive incoming UDP packets

 //Serial.printf("Received %d bytes from %s, port %d\n", packetSize,

UDP.remoteIP().toString().c_str(), UDP.remotePort());

 int len = UDP.read(incomingPacket, 255);

 if (len > 0)

 {

 incomingPacket[len] = 0;

96

 }

 //Serial.printf("UDP packet contents: %s\n", incomingPacket);

 return 1;

 }

 return 0;

}

97

APPENDIX B

Python Socket Program to Receive Data from ESP8266 using UDP

import socket # Import socket module

import sys

import datetime

import Tkinter as tk

import threading

import time

run_flag=False

save_flag=False

save_old_flag=False

run_old_flag=False

value=[0,0,0,0,0,0];

time_diff=0

old_millis=0

samples_per_second=0

sample_count=0

def net_thread():

 global run_flag

 global run_old_flag

 global save_old_flag

 global time_diff

 global old_millis

 global value

 global samples_per_second

 global sample_count

print "Waiting for connection..."

 s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) # Create a socket object

 server_address=('192.168.8.100',8899)

 s.connect(server_address)

98

 s.settimeout(0.05);

 print "Connected."

 while True:

 while run_flag:

 if save_flag==True:

 if save_old_flag==False:

 save_old_flag=True

 f = open('data_server1.csv', 'a')

 else:

 if save_old_flag==True:

 save_old_flag=False

 f.close()

 s.sendto("R",('192.168.8.100',8899))

 try:

 data = s.recvfrom(1024)

 except socket.timeout:

 print "Socket timeout."

 break

 millis = int(round(time.time() * 1000))

 time_diff=millis-old_millis

 if time_diff>1000:

 value[5]=sample_count

 sample_count=0

 old_millis=millis

 if data:

 now = datetime.datetime.now()

 records=data[0].splitlines()

 for record in records:

 print record

 if "#" in record and "$" in record :

 clean_record=record.lstrip('$')

 clean_record2=clean_record.rstrip('#')

99

 if "#" not in clean_record2 and "$" not in clean_record2 :

 value_temp = clean_record2.split(",")

 value[0]=value_temp[0]

 value[1]=value_temp[1]

 value[2]=value_temp[2]

 value[3]=value_temp[3]

 value[4]=value_temp[4]

 sample_count=sample_count+1

 if save_flag and save_old_flag:

 f.write(unicode(now))

 f.write(',')

 f.write(clean_record2);

 f.write('\n');

def net_start():

 global run_flag

 run_flag=True

 print "Starting..."

def net_stop():

 global run_flag

 run_flag=False

 print "Stopping..."

def save_on():

 global save_flag

 save_flag=True

 print "Save on..."

def save_off():

 global save_flag

 save_flag=False

 print "Save off..."

def exit_1():

 if(run_flag==False):

 print "Exiting"

100

 exit()

 else:

 print "Still Running, Stopping now..."

 net_stop()

 time.sleep(2)

 print "Exiting"

 exit()

def value_label(label,i):

 def label_update():

 global value

 label.config(text=str(value[i]))

 label.after(10,label_update)

 label_update()

t2 = threading.Thread(target=net_thread)

t2.setDaemon(True)

t2.start()

root = tk.Tk()

root.title("Data Gathering")

root.resizable(width=False, height=False)

root.geometry('{}x{}'.format(200, 350))

#top_frame = Frame(root, bg='cyan', width = 450, height=50, pady=3).grid(row=0,

columnspan=3)

w = tk.Label(root, text="UDP Socket Data Transfer")#.grid(row = 0, columnspan = 3)

w.pack()

label1 = tk.Label(root, fg="green")

label1.pack()

value_label(label1,0)

label2 = tk.Label(root, fg="green")

label2.pack()

value_label(label2,1)

label3 = tk.Label(root, fg="green")

label3.pack()

101

value_label(label3,2)

label4 = tk.Label(root, fg="green")

label4.pack()

value_label(label4,3)

label5 = tk.Label(root, fg="green")

label5.pack()

value_label(label5,4)

w1 = tk.Label(root, text="Samples per second")#.grid(row = 0, columnspan = 3)

w1.pack()

label6 = tk.Label(root, fg="green")

label6.pack()

value_label(label6,5)

button_start = tk.Button(root, text='Start', width=25, command=net_start)

button_start.pack()

button_stop = tk.Button(root, text='Stop', width=25, command=net_stop)

button_stop.pack()

button_save_on = tk.Button(root, text='Save ON', width=25, command=save_on)

button_save_on.pack()

button_save_off = tk.Button(root, text='Save OFF', width=25, command=save_off)

button_save_off.pack()

button_exit = tk.Button(root, text='Exit', width=25, command=exit_1)

button_exit.pack()

root.mainloop()

102

APPENDIX C

Support Vector Machine (SVM) Classification using R

Load data

j=1 ## Bowling

p=1 ##runup

t=1 ##Bowling

l=1200

e = 1

k=1 ##runup

i=1

s=1 ##Folllow

w=1 ##Follow

b=1 ##Test

z=1 ##Test

q=1

m=1 ## Cross validation

a=1 ## Cross validation

knearest = 1

knearest_2 = 1

#install.packages('XLConnect')

#library (XLConnect)

dataset <- read.csv('Dataset.csv')

#Load Library

#install.packages('ElemStatLearn')

#install.packages('e1071')

#install.packages('seewave')

#install.packages('randomForest')

library(caTools)

library(e1071)

library(seewave)

library(caret)

103

Get Column 4

dataset_runup <- dataset[1]

dataset_bowling <- dataset[2]

dataset_follow <- dataset[3]

#Get all non zero values

non_zero_runup <- matrix(na.omit(dataset_runup[dataset_runup!=0]))

non_zero_bowling <- matrix(na.omit(dataset_bowling[dataset_bowling!=0]))

non_zero_follow<- matrix(na.omit(dataset_follow[dataset_follow!=0]))

data_size = length(non_zero_bowling)

###Get non 'NA' values

#non_na = matrix(na.omit(data_non_zero))

##non_zero_bowling_na = matrix(na.omit(non_zero_bowling))

##non_zero_bowling_na = non_zero_bowling[625:data_size,1]

##Plottting intial data for visualization

#plot(non_na,xlim = c(0,2000),ylim = c(-0.2,1),type = "l", col= "red")

#par(new=TRUE)

plot(non_zero_runup,xlim = c(0,13000),ylim = c(-1.5,1),type = "l", col= "green", xlab =

"Sample", ylab = "Normalized Quaternion Value", main = "Initial classes plot")

par(new=TRUE)

plot(non_zero_bowling, xlim = c(0,2500),ylim = c(-1.5,1),type = "l", col= "red", xlab =

"Sample", ylab = "Normalized Quaternion Value", main = "Initial classes plot")

par(new=TRUE)

plot(non_zero_follow, xlim = c(0,2500),ylim = c(-1.5,1),type = "l", col= "blue", xlab =

"Sample", ylab = "Normalized Quaternion Value", main = "Initial classes plot")

legend(1000,-0.5,c("Run Up", "Bowling", "Follow Through"), pch = c(1,1), fill = c("green",

"red", "blue"), cex = 0.8)

################Bowling

Remainder data for matrices

#Get run up cluster

length_runup = length(non_zero_runup)

remainder_runup= length_runup%%20

#Runup Matrices

mean_runup <- matrix(nrow = 500,ncol = 1)

104

median_runup <- matrix(nrow = 500,ncol = 1)

variance_runup <- matrix(nrow = 500,ncol = 1)

iqr_runup <- matrix(nrow = 500,ncol = 1)

skewness_runup<- matrix(nrow = 500,ncol = 1)

kurtosis_runup <- matrix(nrow = 500,ncol = 1)

rms_runup<- matrix(nrow = 500,ncol = 1)

mad_runup <- matrix(nrow = 500,ncol = 1)

#rms_bowling[1,1] = rms_bowling_20

#Calculate statistical parameters for runup data

for (k in seq(175,(length_runup-remainder_runup),175)){

 val1_run=(k-175)

 val2_run=(k+175)

 mean_runup[p,1] = mean(non_zero_runup[val1_run:val2_run],na.rm = TRUE)

 median_runup[p,1] = median(non_zero_runup[val1_run:val2_run],na.rm = TRUE)

 variance_runup[p,1] = var(non_zero_runup[val1_run:val2_run],na.rm = TRUE)

 iqr_runup[p,1] = IQR(non_zero_runup[val1_run:val2_run],na.rm = TRUE)

 skewness_runup[p,1] = skewness(non_zero_runup[val1_run:val2_run],na.rm = TRUE, type

= 1)

 kurtosis_runup[p,1] = kurtosis(non_zero_runup[val1_run:val2_run],na.rm = TRUE, type =

3)

 rms_runup[p,1] = rms(non_zero_runup[val1_run:val2_run],na.rm = TRUE)

 mad_runup[p,1] = mad(non_zero_runup[val1_run:val2_run],na.rm = TRUE)

 p=p+1

}

f = length(na.omit(mean_runup))

#Plot Data bowling

Runup_mat <- matrix(nrow = f, ncol = 9)

Runup_mat[,1]= c(na.omit(mean_runup[,1]))

Runup_mat[,2]= c(na.omit(median_runup[,1]))

Runup_mat[,3] = c(na.omit(variance_runup[,1]))

Runup_mat[,4] = c(na.omit(iqr_runup[,1]))

Runup_mat[,5] = c(na.omit(skewness_runup[,1]))

Runup_mat[,6] = c(na.omit(kurtosis_runup[,1]))

105

Runup_mat[,7] = c(na.omit(rms_runup[,1]))

Runup_mat[,8] = c(na.omit(mad_runup[,1]))

#Bowling_mat[,7] = c(na.omit(rms_bowling[,1]))

for(e in seq(1,f,1)){

 Runup_mat[e,9] = 1

}

###Bowling Window

length_bowling = length(non_zero_bowling)

remainder_bowling= length_bowling%%20

#Bowling Matrices

mean_bowling <- matrix(nrow = 500,ncol = 1)

median_bowling <- matrix(nrow = 500,ncol = 1)

variance_bowling <- matrix(nrow = 500,ncol = 1)

iqr_bowling <- matrix(nrow = 500,ncol = 1)

skewness_bowling<- matrix(nrow = 500,ncol = 1)

kurtosis_bowling <- matrix(nrow = 500,ncol = 1)

rms_bowling <- matrix(nrow = 500,ncol = 1)

mad_bowling<- matrix(nrow = 500,ncol = 1)

#rms_bowling[1,1] = rms_bowling_20

#Calculate statistical parameters for Bowling data

for (j in seq(175,(length_bowling-remainder_bowling),175)){

 val1_bowl=(j-175)

 val2_bowl=(j+175)

 mean_bowling[t,1] = mean(non_zero_bowling[val1_bowl:val2_bowl],na.rm = TRUE)

 median_bowling[t,1] = median(non_zero_bowling[val1_bowl:val2_bowl],na.rm = TRUE)

 variance_bowling[t,1] = var(non_zero_bowling[val1_bowl:val2_bowl],na.rm = TRUE)

 iqr_bowling[t,1] = IQR(non_zero_bowling[val1_bowl:val2_bowl],na.rm = TRUE)

 skewness_bowling[t,1] = skewness(non_zero_bowling[val1_bowl:val2_bowl],na.rm =

TRUE, type = 1)

 kurtosis_bowling[t,1] = kurtosis(non_zero_bowling[val1_bowl:val2_bowl],na.rm = TRUE,

type = 3)

 rms_bowling[t,1] = rms(non_zero_bowling[val1_bowl:val2_bowl],na.rm = TRUE)

 mad_bowling[t,1] = mad(non_zero_bowling[val1_bowl:val2_bowl],na.rm = TRUE)

106

 t=t+1

}

v = length(na.omit(mean_bowling))

#Plot Data bowling

Bowling_mat <- matrix(nrow = v, ncol = 9)

Bowling_mat[,1]= c(na.omit(mean_bowling[,1]))

Bowling_mat[,2]= c(na.omit(median_bowling[,1]))

Bowling_mat[,3] = c(na.omit(variance_bowling[,1]))

Bowling_mat[,4] = c(na.omit(iqr_bowling[,1]))

Bowling_mat[,5] = c(na.omit(skewness_bowling[,1]))

Bowling_mat[,6] = c(na.omit(kurtosis_bowling[,1]))

Bowling_mat[,7] = c(na.omit(rms_bowling[,1]))

Bowling_mat[,8] = c(na.omit(mad_bowling[,1]))

#Bowling_mat[,7] = c(na.omit(rms_bowling[,1]))

for(e in seq(1,v,1)){

 Bowling_mat[e,9] = 2

}

###Follow Through Data

length_follow = length(non_zero_follow)

remainder_follow= length_follow%%20

#Follow through Matrices

mean_follow <- matrix(nrow = 500,ncol = 1)

median_follow <- matrix(nrow = 500,ncol = 1)

variance_follow <- matrix(nrow = 500,ncol = 1)

iqr_follow <- matrix(nrow = 500,ncol = 1)

skewness_follow<- matrix(nrow = 500,ncol = 1)

kurtosis_follow <- matrix(nrow = 500,ncol = 1)

rms_follow <- matrix(nrow = 500,ncol = 1)

mad_follow<- matrix(nrow = 500,ncol = 1)

#rms_bowling[1,1] = rms_bowling_20

#Calculate statistical parameters for follow data

for (s in seq(175,(length_follow-remainder_follow),175)){

107

 val1_follow=(s-175)

 val2_follow=(s+175)

 mean_follow[w,1] = mean(non_zero_follow[val1_follow:val2_follow],na.rm = TRUE)

 median_follow[w,1] = median(non_zero_follow[val1_follow:val2_follow],na.rm = TRUE)

 variance_follow[w,1] = var(non_zero_follow[val1_follow:val2_follow],na.rm = TRUE)

 iqr_follow[w,1] = IQR(non_zero_follow[val1_follow:val2_follow],na.rm = TRUE)

 skewness_follow[w,1] = skewness(non_zero_follow[val1_follow:val2_follow],na.rm =

TRUE, type = 1)

 kurtosis_follow[w,1] = kurtosis(non_zero_follow[val1_follow:val2_follow],na.rm =

TRUE, type = 3)

 rms_follow[w,1] = rms(non_zero_follow[val1_follow:val2_follow],na.rm = TRUE)

 mad_follow[w,1] = mad(non_zero_follow[val1_follow:val2_follow],na.rm = TRUE)

 w=w+1

}

h = length(na.omit(mean_follow))

#Plot Data follow

Follow_mat <- matrix(nrow = h, ncol = 9)

Follow_mat[,1]= c(na.omit(mean_follow[,1]))

Follow_mat[,2]= c(na.omit(median_follow[,1]))

Follow_mat[,3] = c(na.omit(variance_follow[,1]))

Follow_mat[,4] = c(na.omit(iqr_follow[,1]))

Follow_mat[,5] = c(na.omit(skewness_follow[,1]))

Follow_mat[,6] = c(na.omit(kurtosis_follow[,1]))

Follow_mat[,7] = c(na.omit(rms_follow[,1]))

Follow_mat[,8] = c(na.omit(mad_follow[,1]))

#Bowling_mat[,7] = c(na.omit(rms_bowling[,1]))

for(e in seq(1,h,1)){

 Follow_mat[e,9] = 3

}

##png("legend.png", width = 450, height = 400)

##par(xpd = T, mar = par()$mar + c(0,0,0,7))

plot(Runup_mat[,1],Runup_mat[,3],xlim = c(-0.6,0.3), ylim = c(0,0.4),type = "p", col=

"green", xlab = "Mean", ylab = "Variance", main = "Mean vs Variance")

108

par(new=TRUE)

plot(Bowling_mat[,1],Bowling_mat[,3],xlim = c(-0.6,0.3), ylim = c(0,0.4),type = "p", col=

"red", xlab = "Mean", ylab = "Variance", main = "Mean vs Variance")

par(new=TRUE)

plot(Follow_mat[,1],Follow_mat[,3],xlim = c(-0.6,0.3), ylim = c(0,0.4), type = "p", col=

"blue", xlab = "Mean", ylab = "Variance", main = "Mean vs Variance")

legend(-0.6,0.4,c("Run Up", "Bowling", "Follow Through"), fill = c("green", "red", "blue"),

cex = 0.5)

##par(mar=c(5, 4, 4, 2) + 0.1)

###Full Data Matrix

Full_data = matrix(nrow = (h+v+f),ncol = 9)

Full_data[1:f,] = Runup_mat[1:f,]

Full_data[(f+1):(f+v),] = Bowling_mat[1:v,]

Full_data[(f+v+1):(f+v+h),] = Follow_mat[1:h,]

##Feature Scaling

Full_data[,-9]=scale(Full_data[,-9])

"

Buildig optimal model

Backward Elimintion

regressor = lm(formula = Full_data[,7] ~ Full_data[,1] +Full_data[,2] + Full_data[,3]+

Full_data[,4] + Full_data[,5] + Full_data[,6],

environment(formula))

summary(regressor)

regressor = lm(formula = Full_data[,7] ~ Full_data[,1] +Full_data[,2] + Full_data[,3],

environment(formula))

summary(regressor)

##regressor = lm(formula = Full_data[,7] ~ Full_data[,1] +Full_data[,2] + Full_data[,4] ,

environment(formula))

##summary(regressor)

"

##Scaled Matrix

Scaled_final_matrix = matrix(nrow = (f+v+h), ncol=9)

Scaled_final_matrix[,1] = Full_data[,1]

109

Scaled_final_matrix[,2] = Full_data[,2]

Scaled_final_matrix[,3] = Full_data[,3]

Scaled_final_matrix[,4] = Full_data[,4]

Scaled_final_matrix[,5] = Full_data[,5]

Scaled_final_matrix[,6] = Full_data[,6]

Scaled_final_matrix[,7] = Full_data[,7]

Scaled_final_matrix[,8] = Full_data[,8]

Scaled_final_matrix[,9] = Full_data[,9]

##Shuffle Rows

Scaled_final_matrix = Scaled_final_matrix[sample(nrow(Scaled_final_matrix)),]

ApplyPCA Training data

Data_matri_scale = matrix(nrow = (f+v+h), ncol = 3)

Data_matri_pca = data.frame(matrix((Scaled_final_matrix[,-9]),nrow = (f+v+h), ncol = 9))

Data_matri_pca[,9] = Scaled_final_matrix[,9]

pca = preProcess(x =Data_matri_pca[,-9], method = 'pca', pcaComp = 2)

Data_matri_scale = predict(pca,Data_matri_pca[,-9])

Data_matri_scale[,3] = Scaled_final_matrix[,9]

plot(Data_matri_scale[,1],Data_matri_scale[,2])# Load data

SVM Classifier

accuracy = matrix(nrow = 5, ncol = 1)

precision = matrix(nrow = 5, ncol = 1)

recall = matrix(nrow = 5, ncol = 1)

f1 = matrix(nrow = 5, ncol = 1)

classification = matrix(nrow = 2000,ncol = 10)

##Splitting into folds

flds <- createFolds(Data_matri_scale[,3], k = 5, list = TRUE, returnTrain = FALSE)

names(flds)[1] <- "train"

for(m in seq(1,5,1)){

 classifier = svm(formula = V3~. ,

 data = Data_matri_scale[-flds[[m]],],

 type = 'C-classification',

110

 kernel = 'linear')

 ## classification[,m] <- classifier

 # Predicting theTest set results

 y_pred = predict(classifier, newdata = Data_matri_scale[flds[[m]],-3])

 cm = table(y_pred,Data_matri_scale[flds[[m]],3])

 n = sum(cm) # number of instances

 nc = nrow(cm) # number of classes

 diag = diag(cm) # number of correctly classified instances per class

 rowsums = apply(cm, 1, sum) # number of instances per class

 colsums = apply(cm, 2, sum) # number of predictions per class

 p = rowsums / n # distribution of instances over the actual classes

 q = colsums / n # distribution of instances over the predicted classe

 # accuracy = sum(diag)/n

 accuracy[m] = sum(diag)/n

 precision[m] = diag / colsums

 recall[m] = diag / rowsums

 f1[m] = 2 * precision[m] * recall[m] / (precision[m] + recall[m])

 data.frame(precision[m], recall[m], f1[m])

}

###Average performance values

accuracy_final = mean(accuracy)

precision_final = mean(precision)

recall_final = mean(recall)

##SD Deviation

SD_Deviation = sd(accuracy)

###F measure

f_measure = 2 * precision_final * recall_final / (precision_final + recall_final)

Pot Values

Acuracy_max = which.max(accuracy)

#####Print Validation values

cat("Accuracy:",round(accuracy_final,digits = 2))

cat("Accuracy_SD Deviation:",round(SD_Deviation,digits = 2))

111

cat("Precision:",round(precision_final, digits = 2))

cat("Recall:",round(recall_final,digits = 2))

cat("F Measure:",round(f_measure,digits = 2))

print(cm)

print(Data_matri_scale[flds[[m]],3])

print(y_pred)

#####SVM

##library(e1071)

#classifier = svm(formula = split_up_training$Fold01[,3] ~ split_up_training$Fold01[,1] +

split_up_training$Fold01[,2],

data = split_up_training$Fold01,

type = 'C-classification',

kernel = 'linear')

Predicting the Test set results

#y_pred_test = predict(classifier, newdata = split_up_test$Fold01[-3])

Making the Confusion Matrix

#cm = table(split_up_test$Fold01[, 3], y_pred_test)

Visualising the Training set results

#install.packages('ElemStatLearn')

training_set = matrix(nrow= nrow(Data_matri_scale[-flds[[Acuracy_max]],]), ncol= 3)

training_set = Data_matri_scale[-flds[[Acuracy_max]],]

test_set = matrix(nrow= nrow(Data_matri_scale[flds[[Acuracy_max]],]), ncol= 3)

test_set = Data_matri_scale[flds[[Acuracy_max]],]

########## SVM Plot

library(ElemStatLearn)

set = training_set

X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)

X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)

grid_set = expand.grid(X1, X2)

colnames(grid_set) = c('PC1', 'PC2')

y_grid = predict(svm(formula = V3~. ,data = training_set,type = 'C-classification',kernel =

'linear'), newdata = grid_set)

par(xpd=NA,oma=c(3,0,0,0))

112

plot(set[, -3],

 main = 'SVM (Training set)',

 xlab = 'PC1', ylab = 'PC2',

 xlim = range(X1), ylim = range(X2))

contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)

points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', ifelse(y_grid == 2,'tomato',

'cornflowerblue')))

points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', ifelse(set[, 3]==2,'red3','blue3')))

legend(par("usr")[1],par("usr")[3.5],c("Run Up", "Bowling", "Follow Through"), fill =

c("green", "red", "blue"), cex = 0.5)

###Test Set

library(ElemStatLearn)

set = test_set

X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)

X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)

grid_set = expand.grid(X1, X2)

colnames(grid_set) = c('PC1', 'PC2')

y_grid = predict(svm(formula = V3~. ,data = training_set,type = 'C-classification',kernel =

'linear'), newdata = grid_set)

par(xpd=NA,oma=c(3,0,0,0))

plot(set[, -3],

 main = 'K-NN (Test Set)',

 xlab = 'Pc1', ylab = 'PC2',

 xlim = range(X1), ylim = range(X2))

contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)

points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', ifelse(y_grid == 2,'tomato',

'cornflowerblue')))

points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', ifelse(set[, 3]==2,'red3','blue3')))

legend(par("usr")[1],par("usr")[3.5],c("Run Up", "Bowling", "Follow Through"), fill =

c("green", "red", "blue"), cex = 0.5)

