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ABSTRACT 
 
 

 
Inertial Measurement Unit (IMU) data can depict three dimensional rotational angles specific 

to a motion. However, either to prevent injuries or to enhance performance based on IMU 

data, a specific segment of the total movement cycle needs to be analysed. This requires a 

process to segment the total motion into key phases during the complete movement cycle. 

The proposed method focuses on the major research question of developing a pattern 

recognition model to classify the three main phases (Run Up, Delivery Stride and Follow 

Through) of fast bowling action in cricket. 

The research focuses on seven fast bowlers delivering a minimum of four deliveries in a 

training environment with IMU's to capture motion. Nine-axis IMU’s are selected and 

quaternion based three-dimensional motion data are captured and stored. The research 

initially focuses on finding the most appropriate sensor position on body among calf, thigh, 

trunk and forearm to collect data for activity classification in fast bowling. The classification 

performance obtained by Support Vector Machines (SVM) indicate that overall, second and 

fourth quaternion on Forearm is the most suitable combination of quaternion and position for 

data collection.  

Data collected from IMU's on forearm are used to develop a machine learning model to 

segment the three key phases of the fast bowling action. Video feedback is also obtained 

when defining initial classes for classification. A moving window collects time domain 

statistical features, Least Absolute Shrinkage and Selection Operator (LASSO) is used for 

feature selection and Principle Component Analysis (PCA) for dimensionality reduction. 

Synthetic Minority Over-Sampling Technique (SMOTE) is implemented to overcome class 

imbalances. K-Nearest Neighbour (k-NN), Random Forest (RF), Naïve Bayes (NB) and 

Support Vector Machines (SVM) are tested as supervised classification methods for activity 

classification. Cross validation determines classification model performance based on 

accuracy, precision, recall and F-measure values. The results indicate that k-Nearest 

Neighbour produces best overall classification accuracy of 82% among the tested supervised 

classifiers. Finally, the model is verified against a test sample from one of the bowlers.  
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CHAPTER 1  

1. INTRODUCTION  
 

Following research is focused around developing a machine learning model to 

classify human activity, specifically on classifying key phases during fast bowling in 

cricket. It is a continuation of the work conducted for Design project module for the 

Postgraduate Diploma in Electronics and Automation.  

1.1 Background and Motivation 

Cricket has become one of the key sports in Sri Lanka. Modern cricket is 

transforming into a sport embedded with key factors of technology. Developed 

countries are relishing upon the usage of technology and biomechanics in cricket. 

They have gained a competitive edge over countries like Sri Lanka in most sports by 

the usage of modern engineering technologies. This paved way towards exploring the 

capabilities of fusing engineering principles into cricket to assist Sri Lankan 

cricketers compete more comprehensively with other high-profile cricket playing 

countries.  

Most modern biomechanics analysis centres rely on the usage of high speed cameras 

like VICON Motion Capturing System for motion detection. These systems have 

been extensively used by many researchers for cricket related motion analysis. 

However, these systems have the following disadvantages,  

• Highly expensive to purchase. 

• Requires specific laboratory facilities. 

• Requires expertise assistance for application and analysis.  

These key disadvantages have paved way towards the importance of developing low 

cost wearable motion analysis systems which can be easily used by Sri Lankan 

cricketers to help enhance their performance levels. And the lack of technological 

availability and continuous demonstration of poor performances of Sri Lankan 

sportsmen paved way towards the motivation for me to develop a three-dimensional 

motion analysis system to Sri Lanka. To accomplish this quest, I needed to solve the 

major research question addressed through this research.  
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My previous Design Project work on the Postgraduate Diploma in Electronics & 

Automation concentrated on developing a wearable sensor based system for such 

applications. Inertial Measurement Units (IMU’s) were used as wearable sensors to 

detect the motion of cricketers. However, there were few parameters which needed to 

be addressed, for this system to be used as a performance analysis or injury 

prevention tool.  

One such important parameter is ‘activity classification’. Even with the 

implementation of wearable sensors for motion detection it creates a difficulty in 

segmenting the different movement phases of the activity for analysis. With the 

usage of wearable sensors, it requires other video processing methods to segment the 

different phases of the activity. This exact requirement paved way as the main 

background to this research and to explore the possibility of applying pattern 

recognition and machine learning methods to classify different phases during fast 

bowling. The basis is built around fast bowling in cricket, to research the possibility 

of applying pattern recognition techniques to IMU data with the objective of 

segmenting and understanding the three different phases during fast bowling in 

cricket.  

 

Figure 1: Phases in fast bowling action [2] 

• Run up  

• Delivery stride (Back Foot and Front Foot Contact) 

• Follow through 

Previous research [1] published on identifying key factors contributing to increasing 

bowling speeds in cricket also contributed as a motivating factor to develop a system 

capable of identifying these key phases during fast bowling to help Sri Lankan fast 

bowlers increase their bowling speeds.  
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1.2 Problem Definition   

Nine (9) axis Inertial Measurement Unit based three-dimensional motion capturing 

system provided continuous rotational angles during fast bowling. However, this data 

alone did not provide enough information to assist in a biomechanical analysis of the 

fast bowler. The continuous data once plotted would appear as depicted below, 

 

Figure 2: Quaternion data from an IMU on forearm  

The above graph depicts data received in the form of a quaternion collected from an 

IMU on the forearm of the bowler. However, it is difficult to determine, by analysing 

the above graph if the bowler has an accurate release point during delivery. To 

achieve this requirement, the bowling window needs to be segmented from the 

continuous dataset. This requirement to segment the key elements of the technique 

during fast bowling acted as the main problem identified for this research.  

Previous research on applying classification techniques to human movement mainly 

concentrated on classifying a complete movement like a jump, walk etc. rather than a 

segment of the complete activity as illustrated by following research. Hence the 

research problem defined and resolved during this thesis is a unique and novel topic. 

1.2.1 Thesis Definition and Objectives 

The fundamental objective of the current Master’s research is to develop a machine 

learning model based on statistical parameters, derived by data collected from 

Inertial Measurement Units (IMU) to classify and segment the three key phases of 
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fast bowling, which can eventually be used as an automated model for activity 

segmentation during fast bowling.   

1.2.2 Goals  

The research work is intended to achieve following goals when presenting an 

appropriate solution.  

Main Goal  

I. Develop a machine learning model based on statistical parameters derived 

from data received by Inertial Measurement Units (IMU) placed on body 

during fast bowling to classify and segment the three key phases; Run Up, 

Delivery Stride and Follow Through during fast bowling in cricket.  

Sub Goals 

I. Determination of the most appropriate Inertial Measurement Unit (IMU) 

placement position on body providing greatest amount of deviation during 

fast bowling to assist classification.  

II. Analytically identify the best classification method among supervised 

classification methods to suit human movement classification in fast bowling.  

 

1.3 Limitations 

• Accuracy of Inertial Measurement Unit based three-dimensional motion 

capturing needs to be verified in relation to a high-speed camera based 

motion capturing system. However, the unavailability of such a system in Sri 

Lanka is a limitation during for the verification phase of the research.  

• The overall performance of machine learning model can be increased by 

including a large pool of data to the model. However, collection of large 

volume of data is a challenge due the requirement of testing multiple bowlers.  

• Kairos motion analysis system provides a set of processed data in the form of 

quaternions. This creates a limitation to study the behaviour of raw data and 

its appropriateness to be used for human movement classification during fast 

bowling.  
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• The data undergoes multiple stages of processing prior to being sent to a 

classifier. This acts as a limitation when reverting to the original dataset to 

depict the boundaries of each phase during fast bowling.  

 

1.4 Contributions to Society 

This thesis aims at addressing the problem of limited usage of technology into sports 

in Sri Lanka. With current trends and technological enhancements, the world is 

continuously edging towards further improvements in sports. This has led Sri Lanka 

to lag other sporting powerhouses. This thesis aims at acting as a spark to ignite the 

usage of modern technology into Sri Lankan sports. Also, it would create an interest 

towards more researchers to contribute towards this research area. Further, producing 

good fast bowlers has been a challenge for Sri Lankan Cricket. And the latter has 

always relied on natural talent to produce good fast bowlers. However, the current 

research will act as a catalyst to develop good fast bowlers based on a scientific 

approach and help eradicate current injury worries which cloud over Sri Lankan fast 

bowlers. Further, the machine learning techniques elaborated through this thesis can 

be used as a foundation to be used for other sports like javelin throw, long jump, etc. 

This in turn will help to develop a new training culture based around technology in 

Sri Lanka.   

Apart from competitive sports this thesis can also be used to assist our communities 

in health and physical fitness. Many individuals in the modern era have understood 

the importance of physical activities and exercises to live a healthy life. Thus, many 

new electronic equipment is being developed to assist individuals to stay healthy. 

The proposed model can act as a foundation for similar applications in general health 

physical fitness equipment.  

All these factors would eventually contribute to the society by helping Sri Lankan 

sportsmen to complete better in world competitions and eventually in developing a 

healthy nation in the long run.  
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1.5 Publication based on the Research 

An abstract based on the proposed work was published at the 26th International 

Society of Biomechanics (ISB) Congress, 2017 held in Brisbane, Australia from July 

23rd to 27th. The abstract was titled ‘INERTIAL MEASUREMENT UNIT BASED ACTIVITY 

SEGMENTATION DURING FAST BOWLING IN CRICKET’ and it was included on page 

1056 of the full abstract book.  
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CHAPTER 2 

2. LITERATURE REVIEW 

2.1 Fast Bowling in cricket 

 

2.1.1 Fast Bowling Action Types and Phases 

Fast bowling action has been segmented into three key phases [3] with key activities 

occurring within those key phases. Below diagram illustrates the key phases 

including key activities. 

 

Figure 3: Three key phases in fast bowling action 

Previous research has focused around these key phases to understand the contributing 

factors towards injury about the phases and how each segment contributes to speed 

of delivery.  

Fast bowling consists of three main bowling techniques classified by the alignment 

of hips and shoulders at either the moment of Back Foot Contact (BFC), Front Foot 

Contact (FFC) or Ball Release. Following are the three key techniques with the 

largest contribution from Mixed technique.  

• Front on 

• Side on 

• Mixed 

Extensive research has been conducted to understand the biomechanics of fast 

bowling. A common area of fast bowling analysis is to determine the contributing 

factors towards increasing speeds in fast bowling. Thus, the different techniques 
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contributing to this factor has been extensively researched by scholars. Hence 

research has highlighted following key factors contributing to increasing bowling 

speeds in fast bowlers [1]. 

• Quicker run up. Bowlers having faster run ups tend to demonstrate greater 

bowling speeds. 

• Maintaining a straighter knee during front foot contact phase.  

• Exhibiting larger amounts of upper trunk flexion up to ball release point. 

• Delaying onset of arm circumduction.   

These key areas assist coaches in talent identification process and in player 

performance development as well.  

2.1.2 Fast Bowling Injuries 

Another aspect of fast bowling analysis helps in injury prevention. Research has 

demonstrated the different types of injuries occurring in each of the key phases 

during fast bowling. Run Up and Follow Through have less potential of contributing 

to injuries. Most injuries occurring during these phases are external injuries rather 

than internal ones [3]. Common injury threats which occur due to running can be 

considered in these phases. However, most injuries related to fast bowling occur 

during the Delivery Stride. The impact due to Front and Back Foot landing creates a 

large injury risk. Research shows that landing creates a ground reaction force up to 

six times the weight of the bowler. Most severe injuries created during Delivery 

Stride are caused due to excessive loading (which creates spinal column 

compression), arching to the spine and the forceful twisting of the trunk around the 

spinal column [5]. Another key injury type for fast bowlers is side strain injuries. 

Research shows that most side strain injuries effect internal oblique rather than 

external oblique [4]. All these factors highlight the importance of segmenting these 

three key phases during fast bowling to assist in injury prevention. 
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2.2 Inertial Measurement Unit selection and Processing  

2.2.1 Inertial and Magnetic Sensor Specification 

Research on activity classification with wearable sensors has focused on using 

Inertial Measurement Units (IMU’s) which comprises of three axis accelerometers, 

three axis gyroscopes and three axis magnetometers. The ranges of accelerometer, 

gyroscope, magnetometer values and resolution depend on the specific application. 

IMU’s used for trick classifications [6] during snowboarding uses +/- 16g 

accelerometer range, +/- 2000oC gyroscope with 16-bit resolution. When the 

movement speed increases accelerometer range needs to increase accordingly. But a 

major constraint at present is locating IMU’s with greater accelerometer ranges. In 

most IMU based applications magnetometer is also included to help eradicate 

drifting errors which are caused due to gyroscope drifting. Magnetometer assists to 

provide the horizontal earth’s magnetic field and accelerometer provides the vertical 

acceleration due to gravity which acts as the base for drift compensation [7]. Another 

key parameter for IMU selection is its physical size. Since most of the IMU based 

applications are wearable, most studies have focused on physically smaller IMU’s to 

support these applications. IMU developers have managed to reduce the size of the 

component while also increasing their performance parameters. Previous research [8] 

on classification of legality of bowling actions uses I2C (Inter-Integrated Circuit) for 

data communication between IMU’s and microcontroller and Bluetooth to transmit 

sensor data to a computer for storage for post processing. 

2.2.2 Sampling Rates 

For classification of legality of bowling actions [8] sensor sampling rate of 150Hz 

has been used. Sampling rate ideally depends on the application. Activity 

classification for high speed movement patterns like fast bowling requires greater 

sampling rates. A study on [9] Bowler analysis in cricket using centre of mass 

inertial monitoring, uses a sampling rate of 200Hz. Such sampling rates may be 

suitable for spin bowling analysis. Greater sampling rates will be required for fast 

bowling analysis when using IMU based systems. Vision based motion analysis 
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systems (ex: Vicon) have been used in research for fast bowler analysis operating at 

300Hz [1]. Typical range of sampling rate has varied from around 200Hz to 500Hz.  

2.2.3 Orientation Estimation 

Orientation estimation has been used throughout literature on motion analysis system 

developments based on IMU’s. Kalman Filter based orientation estimation centred 

on inertial and magnetic sensors is one of the most common methods [7]. However, 

quaternion based orientation estimation algorithm proposed by Sebastian Madgwick 

is used extensively in modern research for orientation estimation based on IMU’s 

[10].  

2.3 On Body Sensor Position for Classification 

Sensor placement for IMU based bowling action legality classification used three 

IMU sensors placed as depicted below. 

 

Figure 4: Wearable sensor placement positions to detect throwing in cricket [8] 

Most researches have examined the correlation between sensors placed at different 

positions on the body for activity classification. A specific position on body has the 

possibility of better supporting a certain activity classification [11]. Below Table 1 

illustrates the summary [11] of classification performance of different human activity 

classification tasks by using accelerometers. It illustrates performance created by 

individual and multiple sensors on different body positions.   
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Table1: Review of studies on accelerometer placement for activity recognition [11] 

 

2.4 Pattern Recognition and Machine Learning Techniques  

Accelerometer and IMU based systems have been greatly used for applications and 

research around automatic activity classification during human movement. Wearable 

sensor based systems have been preferred in pattern recognition applications on 

humans due to following reasons [12].  

• Low cost 

• Immune to occlusions & interference 

• Self-contained 

2.4.1 Activity Classification for Non-Cricket Activities based on IMU’s 

Human activity classification based on wearable sensors have been used around 

many aspects of research. However, it is unclear to determine if classification models 

Waist Wrist Thigh Side Necklace Chest Hip Lower Back Trunk Shanks Ankle Pocket Hand

✓ Long term activities 98

Average 

Classification 

Accuracy %

Walking, Falling

 Sensor Placement Position on Body

Falling, walking, 

sitting, standing, 

lying

98.9

90.8

✓

✓

Walking, running, 

scrubbing, etc
95

✓ ✓ ✓

✓

Lying, sitting, 

walking, rowing, etc

91.5

83.3

Typing, watching 

TV, drinking, etc

✓ ✓

92.13

93

Sitting, running, 

walking, etc

Lying, sitting, 

workingon a 

computer, etc

✓ ✓✓

100
Sitting, lying, 

standing, walking 

speed

✓

✓

✓✓

✓

 - 
14 daily living 

activities
✓

Siting, lying, 

standing, moving
92.25

✓✓ ✓

✓

90.3
Stairs ascend, 

descend, walking, 

etc

✓

✓

Lying, sitting, 

standing, all fours, 

etc

91

✓

✓

✓

✓ ✓

Slow walking, fast 

walking, running, 

etc

91.15✓

✓ 98

89.08
16 daily living 

activities 
✓

96.4

90.4
Sitting, standing, 

walking, lying

✓

Classified 

Activity

✓

Standing, sitting, 

lying, walking, 

transition

✓ ✓ ✓

Walking, running, 

sit-to-stand, stand-

to-sit, etc
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developed around raw data or extracted features yield better results. Pattern 

recognition models developed by data obtained from IMU’s have been used to 

classify human movements like walking, sitting, standing, etc. [11]. These models 

have been extensively used in sports related movement analysis with IMU sensors. 

One such application is to understand the patterns generated during golf swing [13].  

Sensors mounted on specific body parts generate specific patterns during repetitive 

golf swings. Pattern recognition techniques based on IMU data are also used to 

classify strong, weak and sideways movements during drumming [14]. IMU sensors 

mounted on skateboards have been used to classify different tricks performed [6]. 

The classification model classifies tricks such as Ollie, Nollie, Kick flip, etc. during 

skateboarding. Feature extraction and classification models have also been used to 

classify jumps during skiing and skateboarding based on head mounted IMU sensors 

[16].  

2.4.2 Activity Classification for Cricket Related Activities based on IMU’s 

Most common classification related problem for bowling is centred on determining if 

a certain bowling action is legal or not. Most research uses vision based systems to 

segment the bowling window to analyse if the action is legal or not. However, 

modern research has also used wearable sensors to collect three-dimensional 

rotational data and used classification techniques such as k-Nearest Neighbour, 

Naïve Bayes, Random Forest, etc. to classify the legality of bowling actions [8]. 

Initial research on usage of wearable sensors in cricket has used inertial sensors 

placed at the centre of mass of a ‘Front On’ fast bowler to determine Run Up speed, 

Pre-Delivery Stride length and hip rotational angle [9]. Unsupervised classification 

methods such as Hidden Markov Models have been used to classify arm rotation 

during bowling based on statistical features [16].  

For pattern recognition using wearable sensors, the process throughout literature can 

be classified into four key areas [12] [6] [17] as depicted below. 

2.4.3 Event Detection 

In previous studies [6], event detection was used to determine the exact time 

intervals that included the required activities. This had reduced the amount of data 
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that was to be processed in subsequent classification. Event detection has been used 

by developing data frames around the input sensor data [6] [12]. The data from the 

sensors were segmented into windows based on possible timeline of specific 

activities. For example, [6] 1s windows with 0.5s overlap was chosen for trick 

classification in snowboarding considering length of a trick and its duration. A 

certain threshold energy level was also defined allowing it to determine if a trick was 

present upon exceeding the threshold level. This has a similar impact on the current 

research as the exact starting and ending point of fast bowling will need to be 

determined for activity classification during bowling.  

2.4.4 Feature Selection 

Feature selection is the next key part in the activity classification algorithm. Different 

researchers have adopted different strategies for feature extraction. In [6] feature 

vectors are calculated for different trick activities. Statistical parameters such as 

mean, variance and skewness were included. In other examples [17], discrete 

methods were used for feature extraction. The Discrete Wavelet Transform (DWT) 

was used to extract discriminative features from accelerometer data. This was 

achieved by decomposing the original sensor signal into several scaled and time 

shifted versions of a selected mother signal. In [18] Daubechies four wavelet (db4) 

wavelet was used as the mother wavelet for the decomposition. But in terms of 

relevance to current research features will need to be computed for every window in 

the input data.  

Research segments features into two main categories [11],  

▪ Time domain features – Statistical features such as mean, mode, variance, 

skewness, etc. These are used extensively in human activity recognition.  

▪ Frequency domain features – The signal or data converted into frequency 

domain, mainly by Discrete Fourier Transform (DFT) representation has 

triggered a specific set of features. Power Spectral Density (PSD), Peak 

frequency, Entropy, DC component, etc. are some of the frequency 

domain features used for human activity classification.  
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2.4.5 Feature Extraction 

The feature extraction approach consists of detecting and discarding the features that 

are demonstrated to minimally help to cause a correct response by the classifier [12]. 

Usually, the feature extraction step is implemented via sub-optimal search 

algorithms, such as, for instance, the branch-and-bound search, the Sequential 

Forward-Backward Selection (SFS-SBS) [20]. Including features providing 

minimum effect towards classification tends to increase computational time of the 

classifier. Hence throughout literature feature extraction methods are used to identify 

the most suitable features to be input into the algorithm [11]. There are three main 

methods for feature extraction.  

o Filter methods  

o Wrapper methods 

o Hybrid methods 

Increase in the number of features corresponds to the ‘curse of dimensionality’. This 

creates difficulty in visualization of output from classification. Hence, techniques 

have been used by researchers to reduce dimensionality of features. One such method 

is Principal Component Analysis (PCA). A study [21] on classifying activities based 

on data obtained from a mobile phone accelerometer and gyroscope reveals that PCA 

was used to reduce 561 features to 70 principal components. This reduced 

computational time of classifier from 658.53s to 128s.  

Since many features are required for the classification, the data set in most studies is 

divided into two parts. Namely,  

o Training Set 

o Test Set 

Previous research [12] states that ratio between the number of instances available in 

the training set and the dimension of the feature-space must be at least ten.  
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2.4.6 Classification  

The extracted features act as input to different classification techniques. These 

classifiers are mainly divided into two segments [11], 

o Supervised classification approaches 

o k-Nearest Neighbour (k-NN) – k-NN classifier has been used 

extensively for human activity classification. In research [11] to 

classify different physical activities such as walking, standing, 

running, etc. k-NN algorithm provides the highest accuracy among all 

classifiers with an accuracy of 99.25%. For IMU based trick 

classification [6] k-NN provided the fastest response time of 5.2s at an 

accuracy of 96%. To develop a machine learning model based on 

accelerometers on body [12] has used k-NN as a single frame 

classifier with a single frame. However, the exact value for ‘k’ as the 

number of neighbours has varied from one research to another. 

o Support Vector Machines (SVM) – Usage of SVM’s for human 

activity classification has demonstrated variable accuracy percentages. 

But in most cases, it has reached above 90% accuracy levels [11] [6].  

However, in skateboarding trick classification [6] SVM is the slowest 

among the classifiers with a classification time of 37.2s.  

o Random Forest (RF) – An algorithm based around the combination of 

multiple decision trees is also used in many research topics related to 

human activity recognition. In a research [22] on developing a 

machine learning model to classify hand movement during dumbbell 

based exercise uses a RF with 99.97% accuracy of classification. 

Also, a research [11] on human movement classification uses a RF at 

98.95% accuracy to classify movements such as walking, standing, 

running, etc.  

o Naïve Bayes (NB) – NB is also used [12] as a single frame classifier to 

classify common human movements such as walking, running etc. In 

skateboarding trick classification [6] NB provides 97.8% accurate 
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classification at a computational time 6.2s. This shows that NB is a 

very effective classifier.   

Other supervised classification techniques such as Supervised Learning Gaussian 

Mixture Models (SLGMM), A-NN etc. are also used for human activity 

classification. However, the general approach is to use few different classifiers for 

the same task and compare their accuracy. But the approaches to develop specific 

classes for the training set used for supervised classification are not clearly 

documented in literature.  

o Unsupervised classification approaches 

o k-Means – In comparison to supervised methods k-Means 

demonstrates low accuracy rates for human activity classification. It 

reaches around 72.95% accuracy in classification [11]. But research 

doesn’t demonstrate enough details about setting the cluster centre 

points.  

o  Hidden Markov Models (HMM) – HMM’s demonstrate the best 

classification accuracy among unsupervised classifiers [11]. This is 

demonstrated throughout literature.  

o Gaussian Mixture Models (GMM) 

Unsupervised classification approaches have been mainly used in situations where 

development of classes for training set becomes difficult in human activity 

classification.  

2.4.7 Classification Evaluation  

Evaluation of activity classification algorithms have been carried out in few different 

ways in research. One key aspect is to evaluate the classifiers. In [6] sensitivity and 

specificity for the detection of trick events were calculated in relation to the number 

of all segmented windows. In this early stage of the project, the evaluation of the 

classification was only based on correctly detected trick events. For the above 

classification evaluation was based upon leave-one-subject-out cross-validation. 

Evaluation of classifiers is a key activity in most human movement activity 
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classification research. Below table depicts the response time of four classifiers used 

in automatic activity classification [18].  

 

Classifiers RF NB Lazy IBK MP 

Testing Time (s) 0 0.15 0.38 0.08 

Training Time (s) 0.38 0.1 0 538.9 

 

Figure 5: Random Forest, Naive Bayes, Lazy IBK, Multilayer Perceptron response 

times [18] 

 

The key method for evaluation in most research based on human activity 

classification is to develop cross validation methods. For human activity 

classification, such as walking, running, etc. 10-fold cross validation is used [11]. 

But throughout literature validation of human activity classification is developed 

around below statistical verification parameters. 

o Accuracy 

o F-Measure 

o Precision 

o Recall 

o Specificity  

Table 2: Classifier performance evaluation [11] 

Performance of Supervised Algorithms 

Classifier 
Accuracy +/- std 

(%) 

F-Measure 

(%) 

Recall 

(%) 

Precision 

(%) 

Specificity 

(%) 

k-NN 96.53 +/- 0.20 94.6 94.57 94.62 99.67 

RF 94.89 +/- 0.57 82.87 82.28 83.46 99.43 

SVM 94.22 +/- 0.28 90.66 90.98 90.33 99.56 

SLGMM 94.22 +/- 0.28 69.94 69.99 69.88 98.39 

Performance of Unsupervised Algorithms 

Classifier 
Accuracy +/- std 

(%) 

F-Measure 

(%) 

Recall 

(%) 

Precision 

(%) 

Specificity 

(%) 

HMM 80 +/- 2.10 67.67 65.02 66.15 97.68 

K-means 68.42 +/- 5.05 49.89 48.67 48.55 93.21 

GMM 73.6 +/- 2.32 57.68 57.54 58.82 96.45 

 

Another evaluation parameter on similar research is the [6] correlation coefficients 

between each pair of accelerometer signals. They are obtained by computing the dot 
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product of pairs of frame vectors, normalised to their length, and are highly helpful 

in discriminating activities that involve motions of several body parts.  

However, research has concentrated on other validation methods like cross checking 

the results with a secondary system such as an optical system. The activity 

classifications obtained by the algorithms were checked against results obtained by a 

system like a ‘VICON system’. This has helped to improve the overall effectiveness 

of those researches.  
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CHAPTER 3  

3. ON BODY SENSOR POSITION SELECTION METHODOLOGY  

This thesis uses Kairos 3-D motion analysis system for data collection. Kairos uses 

Inertial Measurement Units to provide quaternion based 3-dimensional motion data 

during movement. The first step in the research was to determine the most 

appropriate sensor position on body that would provide the best accuracy for 

classification of the three key phases during fast bowling.  

The methodology adopted to determine the best body location and quaternion 

number for classification was to fit the data into a classifier and determine its 

accuracy for each position and quaternion. The position which has the highest 

accuracy factor can be considered as the suitable location for final data collection for 

segmentation of key three phases in fast bowling by using an IMU sensor. Therefore, 

a pattern recognition algorithm is developed initially to determine the best sensor on 

body sensor position for the study.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Proposed system flow chart 
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3.1 Sensor Positions  

 

 

 

 

Figure 7: IMU placement positions on body for data collection 

Four positions on the body were considered as potential sensor placement areas.  

• Thigh – Sensors were placed on the front leg (left leg for right arm bowlers 

and vice versa).  

• Forearm – Sensors were placed on the bowling arm (right arm for bowlers 

delivering with right arm and vice versa) 

• Trunk – Sensors were placed on the upper trunk.  

• Calf – Sensors were placed on the front leg (same as the thigh).  

 

Trunk Forearm 

Calf Thigh 
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3.2 Feature Selection 

As discussed previously in literature, various feature selection methodologies have 

been used previously to determine best features for similar applications. Therefore, 

as used in most cases a moving window is used for obtaining the features. Each 

window comprises of 20 samples and a window overlap of 50%. This was done 

independently for every quaternion on each body sensor position. Following were the 

calculated features, 

 

 

 

Figure 8: Feature selection moving window 

Among the three types of features, time domain features were used for this analysis. 

Hence, eight-time domain features were calculated for each sliding window. 
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Apart from above features Root Mean Square (RMS), Median Absolute Deviation 

(MAD) and Inter Quartile Range (IQR) were also used as features for the study.  

3.2.1 Feature Scaling 

Once the features were selected it was observed that certain features were out of 

scale. Hence a standardization step was required prior to dimensionality reduction. In 

this approach the mean and standard deviation of entire feature vector was 

calculated. The dataset was scaled by subtracting every element by the mean and 

dividing by the standard deviation.  

3.3 Feature Extraction (Dimensionality Reduction) 

The next step was to reduce dimensionality of the features. Various techniques have 

been used previously for the task of dimensionality reduction.  Backward 

Elimination was used as the first method for feature extraction. However, through 

this method certain datasets reduced to more than three features. This method 

produced a visualization difficulty of the data since some cases represented more 

than two or three features. Hence, Principal Component Analysis (PCA) was used as 

a dimensionality reduction technique.  

3.3.1 Principal Component Analysis (PCA) for Dimensionality Reduction 

To minimize over fitting and for visualization purposes PCA was used for 

dimensionality reduction. PCA transforms the original variables into a new set of 

small variables without losing the most important information of the original data. 

Owing to requirements of visualization in this study the original dataset was 

transformed into two principal components. This is achieved by assuming directions 

with largest variances as the most important. In this instance PC1 (First Principal 

Component) and PC2 (Second Principal Component) are generated and they are 

orthogonal to each other with PC1 acting as the most important direction.  
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Figure 9: PC1 and PC2 orthogonality interpretation [23] 

3.4 Classification  

Support Vector Machines (SVM) have been used for both classification and 

regression tasks. Throughout literature SVM’s have been used for human movement 

classification as a supervised classifier. However, in most instances k-NN have 

performed better in human movement classification compared to SVM’s. But in this 

scenario, it required one classifier to compare different sets of data. In k-NN 

selecting correct ‘k’ number across all datasets was challenging. Hence a SVM was 

more suitable in this instance. Following characteristics in SVM were also 

considered for its selection.  

• Suitable for instances with less number of classes. In this instance, there were 

three classes (ideally two classes). 

• Suits classification with higher number of features. Current classification 

consisted of eight features.  

• When there is non-uniform weighing among features.  

In SVM’s features are mapped into high dimensions and a corresponding hyper plane 

is selected to best classify the results. However, it is worthwhile to that application of 

PCA reduces dimensionality prior to classification. Therefore, a linear ‘kernel’ was 

used for the SVM for classification.  
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3.5 Evaluation  

10-fold Cross Validation was used to evaluate every model. The dataset was divided 

into ten folds where one sample acted as the test set and the others as training set. For 

each fold Accuracy, Precision and Recall were calculated. This was repeated 10 

times and the average of each parameter was considered as the final value. And 

finally, F-measure was calculated from the averages of Precision and Recall. On-

body sensor position and quaternion providing the best values among the evaluation 

parameters were selected as the suitable quaternion and on body sensor position for 

final data gathering for fast bowling phases classification.  

Accuracy = Tp + Tn   Precision = Tp   Recall = Tp  

 Tp + Tn +Fp +Fn      Tp+ Fp   Tp+Fn 

F – Measure = 2 x (Average Precision x Average Recall) 

        (Average Precision + Average Recall) 

Where, Tp= True Positive    Fp= False Positive 

 Fn= False Negative   Tn= True Negative 

These parameters were derived based on the confusion matrix generated for each 

classification. Below is an example 3x3 confusion matrix. Where, Accuracy would 

be indicated by sum of number diagonal items divided by total instances.  

y_pred:         1  2  3 

      1 13  0  1 

      2  6 31  1 

       3  9  0 27 
 

Precision would be defined from the confusion matrix as the ratio of number of 

correctly classified instance per class to the number of predictions per class. Whereas 

Recall would be ratio of number of correctly classified instance per class to the 

number of instances per class.  

 

3.6 Participants 

Three participants were selected for the initial data gathering to determine sensor 

position on body that would provide best accuracy results for classification. All 
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participants belonged to ‘Mixed type’ fast bowling action type. All three participants 

were active cricketers. Official consent was obtained from each participant to 

participate in the data gathering and to take photos and videos during the session. 

Table 3: Bowlers age, height and weight   

Bowler Number  Age Height (cm) Weight (Kg) 

1  27 164           63 

2   17   172  60  

3  17 170 65  

3.7 Data Gathering Methodology  

Initial data gathering was conducted at Cric Sri Lanka indoor cricket nets. Sensors 

mounted using Velcro straps were placed on specific positions on body and the 

subjects were requested to bowl with the sensors.  

Each subject delivered five deliveries. One critical parameter for the classification 

model was to derive the separate classes for Run up, Delivery Stride and Follow 

through. Therefore, data gathering was conducted separately for each class.  

Table 4: Data sample generation per bowler 

Class  Number of Iterations 

Full bowling action 5 

Run up 4 

Delivery stride 4 

Follow through  4 

 

            Figure 10: Second bowler                      Figure 11: Third bowler 
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3.7.1 Data Types 

To reduce the number of repetitions, data were gathered in combination of sensor 

positions. Prior to initiating each delivery, the bowler maintained a stationary 

position to assist initial sensor calibration. A clapper was used as a benchmark to 

initiate movement and data storage. When data were collected for the classes, bowler 

conducted Run Up, Delivery Stride and Follow Through separately. These acted as 

the data for each class of classification.  

The orientation estimation was based around Madgwick’s orientation estimation 

filter [10]. This filer is a quaternion based filter. Hence each data sample provided 

four quaternion values. Each of these four quaternion values were normalized and 

stored as data, where each of the quaternions was examined to determine accuracy of 

classification. A quaternion has four parts. It is like a complex number with one real 

component (q0) and three complex components (q1, q2, q3) which can be used to 

represent a 3D rotation. A quaternion can be considered as a hypercomplex number.  

q = q0 + q1i
 + q2j + q3k = [q0, q1, q2, q3] 

Where, 

q0 = quaternion real component 

q1, q2, q3 = quaternion imaginary components  

i,j,k = imaginary basis vectors with i2 = j2 = k2 = -1 

By visualization it will be easier to understand a quaternion in reference to the 

rotation created by rotating frame B to A as illustrated below. In a nutshell it 

represents the orientation of frame B in reference to frame A.  

 

Figure 12: Quaternion generation from IMU for movements [10] 
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q0 = cos(θ/2) 

q1 = nx sin(θ/2) 

q2 = ny sin(θ/2) 

q3 = nz sin(θ/2)                                                                 

Where, 

 q0 = quaternion real component 

q1, q2, q3 = quaternion imaginary components  

 θ = rotation angle  

 nx, ny, nz = rotation axis components 

In the quaternion number, scalar component represents rotation angle and others 

represent direction of rotation.  All these values were stored in .csv file for post 

processing. Each .csv file contained Run Up, Delivery Stride and Follow Through 

per quaternion. And the class number was stored per each class along with the data 

sample.  

3.8 Madgwick Filter 

• It is specially designed to be used for inertial based sensors. 

• It has the capability of reaching the accuracy obtained by a Kalman Filter 

with less mathematical complexity.  

• Suitable for operations with high sampling rates.  

Due to the above reasons this filter was selected as the orientation estimation filter to 

be used in this system. Below are the generalized operational points of the filter. 

o Accelerometer, Gyroscope and Magnetometer Normalization. 

o Finding reference direction of earth’s magnetic field. 

o Gradient descent algorithm as a corrective step. 

o Rate of change of quaternion calculation. 

o Integrate to yield quaternion. 

o Quaternion normalization. 

3.9 Drift Compensation 

In the current design an initial magnetometer calibration was conducted. This was 

performed to compensate for the gyroscope drifting by considering magnetometer 

reading as a reference.  
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CHAPTER 4  

4 ON BODY SENSOR POSITION SELECTION DATA 

ANALYSIS AND RESULTS 

Initial step in the analysis was to visualize the output obtained from each sensor 

position. Below diagrams represent data variation during full bowling action for 

subject 1.   

4.1 Original Data Plots on Sensor Positions  

All data plots pertaining to subject 1 has been plotted.  

Subject 1  

Calf 

 

Figure 13: Quaternion data for full bowling action of first bowler from IMU on Calf 

The initial graphs developed from the sensor on the Calf demonstrated consistent 

fluctuations among all quaternions. However, q1, q2 and q3 showed consistent 

deviations and q4 showed variations through the graph, which may indicate 

boundaries for different classes of movement.   



 

29 
 

Forearm 

 

Figure 14: Quaternion data for full bowling action of first bowler from IMU on 

Forearm 

In comparison to the data plot from Calf all quaternion data from Forearm 

demonstrated higher fluctuations/variations throughout the plot. Third quaternion 

depicts least inter class deviations.  

Thigh 
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Figure 15: Quaternion data for full bowling action of first bowler from IMU on 

Thigh 

Graphed data plot from Thigh demonstrated similarities to the data from the Calf. 

Only q4 demonstrates higher variations in the plot which can indicate possibility of 

the existence of class boundaries.  

Trunk 

 

Figure 16: Quaternion data for full bowling action of first bowler from IMU on 

Trunk 
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From the sets of data received (plot) from the Trunk q3 and q4 demonstrated higher 

variations. This suggested the existence of observable boundaries for the classes, 

whereas q1 and q2 represented less likelihood of clear boundaries for the classes.  

Note 

Overall, in all data sets q2 and q4 represented best observable boundaries for classes. 

And among the datasets, data from the forearm showed best suitability for 

classification.  

4.2 Definition of Classes 

To define classes, all subjects performed deliveries in below sequence. Data 

collection was initiated and ended visually at below specified positions for each 

class.  

• Full delivery 

• Run Up   

• Delivery Stride 

• Follow Through 

Table 5: Definition of classes for classification 

Segment Beginning End 

Run Up  First Clap Pre-delivery stride end 

Delivery Stride Mid Bound Beginning Ball Release 

Follow Through Ball Release Final Clap 

Delivery Stride Class – Subject 2  

   

Figure 17: Delivery Stride – Subject 2 
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4.3 Feature Selection 

As discussed previously eight-time domain features were calculated for every sliding 

window. R Studio was used as the machine learning software tool for the analysis.  

Table 6: Feature data plot with classes 

 

When time domain features were obtained, it was observed that few features were 

out of scale. Hence a feature scaling step was necessary prior to classification.  

Comparison between multiple features  

Calf 

   

Figure 18: Feature plot for q1 on Calf   Figure 19: Feature plot for q2 on Calf
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Figure 20: Feature plot for q3 on Calf          Figure 21: Feature plot for q4 on Calf 

 

Forearm 

    

Figure 22: Feature plot for q1 on Forearm  Figure 23: Feature plot for q2 Forearm 

 

     

Figure 24: Feature plot for q3 on Forearm  Figure 25: Feature plot for q4 Forearm
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Thigh 

      

 Figure 26: Feature plot for q1 on Thigh    Figure 27: Feature plot for q2 on Thigh 

     

     Figure 28: Feature plot for q3 on Thigh    Figure 29: Feature plot for q4 on Thigh

  

Trunk 

        

Figure 30: Feature plot for q1 on Trunk  Figure 31: Feature plot for q2 on Trunk 



 

35 
 

    

Figure 32: Feature plot for q3 on Trunk            Figure 33: Feature plot for q4 on Trunk

        

4.3.1 Feature Scaling 

Features which were not scaled, tend to have less significance in the classification 

model. It was observed in the original feature set that some of the features were not 

scaled. For example, variance and median average deviation observe to be non-

scaled. Hence a feature scaling step was conducted to scale all the features.  

4.4 Dimensionality Reduction 

Dimensionality reduction was conducted using Principal Component Analysis. The 

dataset was transformed into two main components (PC1 and PC2). Following data 

were generated for data from q1 of forearm sensor.  

• Generating correlation matrix 

 

Figure 34: Correlation matrix for feature set 
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• Generating Eigenvalues and Eigenvectors 

 

Figure 35: Eigenvalues of correlation matrix 

 

Figure 36: Eigenvectors of correlation matrix 

• Compute new data set 

All above steps were performed in few lines of code in R Studio. Hence PCA 

transformation yielded below specified new dataset.  

Table 7: PC1 and PC2 data after PCA 

 

4.5 Classification 

A linear kernel based Support Vector Machine (SVM) classifier was used to classify 

each quaternion on every different on body position. For every instance the training 

set and test set were plotted and eventually a matrix comprising of evaluation 

parameters was developed to evaluate the model.  
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4.5.1 Training Set Vs Test Set Plot 

Datasets classified using SVM, were evaluated using Ten-fold Cross Validation and 

they were plotted for visualization and analysis. The fold providing best accuracy 

was plotted for visualization. In every instance the Training Set and its corresponding 

Test Set was plotted.  

Calf 

Quaternion 1 

 

Figure 37: Training set Vs Test set SVM classification data plot for q1 on Calf 

Quaternion 2  

 

Figure 38: Training set Vs Test set SVM classification data plot for q2 on Calf 
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Quaternion 4  

 

Figure 39: Training set Vs Test set SVM classification data plot for q4 on Calf 

The regions for all three classes have been defined in all the quaternions. However, 

in the training sets all data points depict to be clustered together. In the test sets, 

majority of Run Up data were correctly classified, however Delivery Stride and 

Follow Through data showed incorrect classifications. q4 showed the best 

classification results from the plots and q3 provided correct decision regions only for 

Run Up data, hence q3 plot wasn’t included.  

Forearm  

Quaternion 1 

 

Figure 40: Training set Vs Test set SVM classification data plot for q1 on Forearm 
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Quaternion 2 

Figure 41: Training set Vs Test set SVM classification data plot for q2 on Forearm 

Quaternion 3 

Figure 42: Training set Vs Test set SVM classification data plot for q3 on Forearm 

Quaternion 4  

  

Figure 43: Training set Vs Test set SVM classification data plot for q4 on Forearm 
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Data received from the forearm, once plotted demonstrated improved results in 

comparison to the results obtained from Calf. However, in Quaternion 1 Run Up and 

Follow Through decision regions demonstrated to be overlapped. Hence, a clear 

decision region was not defined for Follow Through. But all other Quaternion plots 

show improved results.  

Thigh  

Quaternion 4 

Figure 44: Training set Vs Test set SVM classification data plot for q4 on Thigh 

Among all quaternions for data received from the Thigh only fourth quaternion 

showed correctly defined decision boundaries. However, the fourth quaternion plot 

from Thigh showed less performance in comparison to previous plots. 

Trunk  

Quaternion 1 

    

Figure 45: Training set Vs Test set SVM classification data plot for q1 on Trunk 
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Quaternion 2 

Figure 46: Training set Vs Test set SVM classification data plot for q2 on Trunk 

Quaternion 3  

Figure 47: Training set Vs Test set SVM classification data plot for q3 on Trunk 

Quaternion 4  

Figure 48: Training set Vs Test set SVM classification data plot for q4 on Trunk 
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Graphs plotted for all instances of data for datasets from Trunk showed similar 

illustrations to plots from Forearm. In first quaternion Delivery Stride (Bowling) and 

Follow Through decision regions demonstrated to be overlapped. Hence, Delivery 

Stride decision region was not clearly depicted in the plot. But all other quaternion 

plots illustrated clear classification results, with third quaternion illustrating best 

visual results.  

In all plots second and fourth quaternion demonstrated best defined decision regions 

and corresponding classification points with data from Forearm and Trunk showing 

overall best classification visualization results.  

4.6 Classification Evaluation 

Table 8: Performance parameters of classification 

Parameter 

Calf Forearm  
SVM SVM 

Q1 

(%) 

Q2 

(%) 

Q3 

(%) 

Q4 

(%) 

Q1 

(%) 

Q2 

(%) 

Q3 

(%) 

Q4 

(%) 

Accuracy 83 81 78 92 82 89 89 90 

Precision 94 99 99 97 99 97 99 99 

Recall 92 82 78 95 82 93 95 98 

F-Measure 93 90 87 96 90 95 97 99 

Parameter 

Trunk  Thigh 
SVM SVM 

Q1 

(%) 

Q2 

(%) 

Q3 

(%) 

Q4 

(%) 

Q1 

(%) 

Q2 

(%) 

Q3 

(%) 

Q4 

(%) 

Accuracy 86 89 86 87 74 74 75 86 

Precision 98 99 96 99 99 99 99 99 

Recall 97 94 93 92 74 74 75 89 

F-Measure 98 97 94 95 85 85 85 94 

 

The above tables demonstrate the performance of each classification. As discussed 

previously Accuracy, Precision, Recall and F-measure were considered as classifier 

performance evaluation parameters. It was observed that all quaternions, on every 

considered body positions demonstrated accuracy levels above 74%. The best 

accuracy percentage of 92% was achieved for fourth quaternion dataset classification 

on Calf. It was also evident that fourth quaternion for each position yielded best 

accuracy of classification except for data collected on Trunk.  
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4.7 Discussion 

It was observed that classification conducted by data received from Forearm yielded 

the best overall Accuracy percentage. Best Precision was obtained for data classified 

by sensors on Thigh followed by Forearm. Best percentages for Recall and F-

Measure were obtained by data classified from sensors on Trunk and Forearm. 

Due to high Accuracy percentage (90%) and high-performance values scored for 

Precision, Recall and F-measure sensor data received from Forearm was considered 

best for classification. Therefore, Forearm was selected as the best position to collect 

data for classification of different phases of fast bowling action. Further, sensors 

placed on Forearm provided least disturbances during data collection and developing 

a mechanism to hold sensors on Forearm was easier than placing sensors on other 

locations on the body.  

Among the four quaternions of data on Forearm the fourth quaternion provided the 

best results for all performance parameters of evaluation (90%). This feature was 

observed for evaluation parameters on Thigh (86%), Trunk (87%) and Calf (92%) 

except for the Accuracy parameter on Trunk. This decision also emphasises the 

previous observations on Training Set Vs Test Set plots and Mean vs Variance 

feature plots.  The second quaternion also yielded good results (89% Accuracy on 

Forearm). Hence second and fourth quaternion data obtained by sensors on Forearm 

was selected as the quaternion number and body position for next data collection. 

It should also be noted that Run Up class had greater weight (more data points) in 

comparison to other two classes. Hence the classification performance parameters 

tend to be biased towards the performance generated from Run Up class. As a result, 

high performance parameter percentages were observed in the results.  

Above results, when compared with those obtained for human activity classification 

by sensors on different locations [26] indicate that hand movements are best 

classified by sensors on Wrist. Results from current research indicate similar results 

where Delivery Stride, which includes considerable amount of hand movements is 

best classified when sensor is placed on the Forearm. However, as in former study 

the effect of using combination of sensors is not analysed in current research.  
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CHAPTER 5  

5 ACTIVITY CLASSIFICATION DURING FAST BOWLING IN 

CRICKET 

From the previous data gathering and analysis it was concluded that best on body 

position for activity classification during fast bowling was the Forearm. Further, 

second and fourth quaternion values yielded best accuracy for classification. Hence 

the second set of data collection was conducted with an IMU sensor placed on the 

forearm with second quaternion acting as the measurement to be analysed.  

5.1 Data Collection Methodology  

The same 9 axis inertial measurement unit which was used in the previous step was 

used to gather relevant data. A special strap on unit was designed using leather and 

Velcro straps to hold the sensor during bowling.  

 

Figure 49: MPU9250 integrated ESP 8266 Wi-Fi module 

 

Figure 50: Wearable strap on forearm  

5.1.1 Battery Selection for Sensor 

The IMU sensor (MPU9250) was incorporated with an ESP-8266MOD module for 

wireless data transmission. As a result, the sensor was relatively small. It was 

observed that the setup consumed a maximum of 80mA to 100mA during data 
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transmission through Wi-Fi. Hence a Lithium Polymer battery of 180mAh was 

selected for the operation.   

5.1.2 Wireless Data Transmission 

With the use of an ESP-8266 module it was possible to transmit data wirelessly 

during motion. A Python socket programming script was written to collect the data 

transmitted through Wi-Fi.  

 

Figure 51: UDP data collection interface 

At the first step four quaternion values and corresponding timestamps were sent 

using Transmission Control Protocol (TCP). However, it was not possible to reach 

sampling rates beyond 50 Hz using TCP. Fast sampling rates of more than 300Hz 

was achieved when data were buffered and transmitted. However, there was a data 

loss (100ms) during data transmission of the buffered data packets.  

This issue in data rate loss was eradicated using User Diagram Protocol (UDP). With 

UDP, sampling rates beyond 300Hz was achieved during data transmission. 

However, there was a general tendency to lose certain data packets when transmitting 

data using UDP (Please refer to section 6.2.4). Data transmission began once a 

character sent by Python script was received by ESP module. The received data were 

stored in .csv file for processing.  
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Figure 52: Data transmission connectivity 

5.1.3 Definition of Classes for Classification 

Definition of classes for classification was one of the key requirements for a 

supervised classification task. Defining these classes correctly was one of the key 

challenges for this study. Three key phases in fast bowling were defined as the three 

main classes for this activity classification. 

• Class 1 – Run up 

• Class 2 – Delivery Stride (Bowling) 

• Class 3 – Follow Through 

Video feedback received from a camera synchronized with sensor data was used as 

the method for definition of classes. Canon EOS 1300D DSLR camera was used to 

obtain video feedback to define the classes. Movie size was set to 1280 x 720 to 

obtain a frame rate of 50 frames per second. All participants were advised to perform 

each delivery in below routine. 

  

Figure 53: Data collection steps 

Clap (Sensor data 

collection ON) 
Raise bowling 

hand 
 Bowling Clap (Sensor data 

collection OFF) 

Received data are 

stored in a .csv file 

Python program sends 

initial character for data 

transmission 

ESP joined to 

router through wifi 
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Sensor initiates data collection at the first clap and ends data at final clap. The audio 

peaks generated during the claps were used to sync video with sensor data. Raising 

of hand generated a secondary point to determine accuracy of data syncing. A factor 

to be noted was the difference in sensor and video sampling rates.  

Once both sensor and video were synced the three classes were segmented using 

video feedback for beginning and ending of each class. Relevant data samples were 

divided into each class accordingly.  

Class 1 – Run Up 

 

 

 

 

 

Run up beginning position                                        Run up end position 

Figure 54: Run Up class visualization for subject 4  

 

Class 2 – Delivery Stride 

 

 

 

 

 

Delivery Stride start position                                    Delivery Stride end position  

Figure 55: Delivery Stride class visualization for subject 4  
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Class 3 – Follow Through 

 

 

 

 

 

Follow Through start position                                     Follow Through end position 

Figure 56: Follow Through class visualization for subject 4  

5.1.4 Data Gathering Participants 

Four participants were selected for the data gathering. The consent of each 

participant was obtained to video their relevant bowling actions. Below table depict 

the details of relevant samples.  

Table 9: Data gathering sample set 

Bowler Number  Age Height (cm) Weight (Kg) Number of samples 

1 28          164 63 8 

2 28 173   83  8 

3 28 175 65 8 

             4 36 173  70  8 

 

5.2 Classification methods 

   

 

 

 

 

Figure 57: System flow chart 
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5.2.1 Original Data Plots  

 

Figure 58: Subject 1 original data plot – Quaternion 2 

 

Figure 59: Subject 2 original data plot – Quaternion 2 

 

Figure 60: Subject 3 original data plot – Quaternion 2 
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Figure 61: Subject 4 original data plot – Quaternion 2 

 

5.2.2 Data Storage  

As in the previous scenario data received from the sensor during motion were stored 

in a .csv file for processing.  

 

Figure 62: Data stored .csv file 
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5.2.3 Feature Selection 

As in the previous scenario, a moving window was used to obtain relevant time 

domain statistical features. A moving window of 400 samples per window with 50% 

overlap was selected. This sample range was selected to overcome similarities 

created between classes due to small window sizes.  

 

 

Figure 63: Run Up, Delivery Stride and Follow Through windows – Subject 2 

 

 

 

Figure 64: Moving window with 50% overlap 

Eight-time domain features were selected as relevant features for the analysis.  

• Mean 

• Median 

• Variance 

• Skewness 

• Kurtosis 

• Root Mean Square (RMS) 

• Inter-Quartile Range (IQR) 

• Median Absolute Deviation (MAD) 

 

 

50% overlap 

400 samples/window 
Samples 
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Table 10: Feature Set 

 

 

           Figure 65: Mean Vs Variance feature plot 

5.2.4 Feature Scaling  

It was observed that selected features were out of scale. This situation had the risk of 

certain features depicting to contribute more towards the classifiaction model than 

their actual relevance. Hence, a feature scaling step was conducted prior to 

dimentionality reduction.  
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5.2.5 Feature/Dimensionality Reduction  

5.2.5.1 Least Absolute Shrinkage and Selection Operator (LASSO) 

In machine learning LASSO [25] is used mainly as a regularization and feature 

selection tool. Hence, in this research LASSO was used to reduce the feature set 

before classification. It was used to reduce the number of features to decrease 

operational complexity and eradicate overfitting of the classifier. LASSO would 

eradicate features whose coefficients become zero when the optimization problem is 

minimized.  

• As an initial step the behaviour of each feature on the model was plotted. This 

would illustrate the significance of each feature to the model based on 

coefficient values.  

 

         Figure 66: Illustration of coefficients of features  

• The next challenge was to select relevant λ value that best selects relevant 

features. It was important to choose correct value since too high or low value 

would result in inaccuracies to the model. Cross validation was used for this 

purpose and corresponding features within one standard error of minimum 

mean cross validation error were selected to be included into the model.  
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• Coefficients which become zero at minimum mean cross validation error 

(λmin) were calculated. It was observed that none of the coefficients of 

features reached zero. Relevant console output is illustrated below.  

> as.matrix(coef(c, c$lambda.min)) 

                       1 

(Intercept)  2.023809524 

Mean          1.531942043 

Median         -1.193537459 

Variance        0.218492424 

IQR               0.081845677 

Skewness      0.233842144 

Kurtois          0.005370676 

RMS            -0.581196732 

MAD           -0.220137127 

 

• Finally, coefficients of features which become zero at largest value of lambda 

such that error is within one standard error of the minimum were calculated 

(λ1se). It was observed that coefficients of Kurtosis and Median Absolute 

Deviation (MAD) reached zero. Hence, they were not included into the 

classifier.  

> as.matrix(coef(c, c$lambda.1se)) 

                      1 

(Intercept)   2.02380952 

Mean           0.20757431 

Median      -0.09079894 

Variance    -0.13095438 

IQR            -0.02874632 

Skewness    0.30759359 

Kurtosis      0.00000000 

RMS          -0.29955691 

MAD          0.00000000 

 

      Figure 67: Lambda values at λmin and λ1se 
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5.2.5.2 Dimensionality Reduction with PCA 

To reduce calculation complexity to the classification algorithm and for visualization 

purposes the feature set (six features) was reduced to two components using 

Principal Component Analysis. Principal Component 1 (PC1) and Principal 

Component 2 (PC2) were calculated.  

Table 11: Dimensionally reduced feature data via PCA 

 

 

 

Figure 68: Principal Component 1 (PC1) Vs Principal Component 2 (PC2) plot 
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5.2.6 Classification 

The principal classification methods used were supervised classification models. 

Four models were used to compare performance among them and to determine best 

classifier for such applications.  

5.2.6.1 k- Nearest Neighbour (k-NN) 

k-NN classifier was used as the first classifier. The first step was to determine best k 

number for classification. For evaluation purposes 5-fold cross validation was used. 

Hence, for every fold k number was varied from 1 to 100 and the corresponding 

accuracy was calculated for every k number. The k number providing best accuracy 

for corresponding fold was selected as relevant k number for classification.    

       

Figure 69: Accuracy Vs k number – Fold 1        Figure 70: Accuracy Vs k number – Fold 2 

 

        

Figure 71: Accuracy Vs k number – Fold 3 Figure 72: Accuracy Vs k number – Fold 4 
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Figure 73: Accuracy Vs k number – Fold 5        Figure 74: Maximum k numbers  

Hence 11 was selected as the k number for classification using k-NN classifier.  

Training Set 

 

           Figure 75: k-NN Training Set plot  

Training model was plotted depicting results from the fold which provided best 

average accuracy. It was observable that Run Up and Follow Through classes show 

an overlap when fitting into their specific regions.  

Test Set  

 

        Figure 76: k-NN Test Set plot 
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The Test set visualization demonstrated that the major inaccuracies were caused due 

to incorrect classification of Run Up and Follow Through classes. The corresponding 

Test set of the fold that was used for the Training set was used for classification of 

the Test set.  

5.2.6.2 Support Vector Machine (SVM) 

A linear kernel based SVM was used as the second classifier for classification. 5-fold 

cross validation was used to create folds and corresponding Training and Test sets. 

Fold with best accuracy was selected for visualization and analysis.  

Training Set  

 

         Figure 77: SVM Training Set plot 

In the Training set it was evident that certain amounts of Run Up and Follow 

Through classes were classified incorrectly.  

Test Set 

 

          Figure 78: SVM Test Set plot 
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In the Test set classification, it was clear that majority of Delivery Stride class was 

correctly classified. However, a certain portion of Run Up and Follow Through 

classes were incorrectly classified.  

5.2.6.3 Naïve Bayes 

Naïve Bayes was used as the third supervised classification model. It has been used 

throughout literature for similar instances for human activity classification.  

Training Set 

 

              Figure 79: Naïve Bayes Training Set plot 

 

Test Set 

 

              Figure 80: Naïve Bayes Test Set plot 
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5.2.6.4 Random Forest 

The final classification model compared was Random Forest classifier. It was also 

used as a supervised classification model. It is based around developing multiple 

decision trees at training instance. The number of trees were selected at 5000 after 

multiple cycles with comparison against accuracy.  

Training Set 

 

            Figure 81: Random Forest Training Set plot 

Test Set 

 

Figure 82: Random Forest Test Set plot 



 

61 
 

5.3 Classifier Evaluation 

Five-Fold Cross Validation was used as the primary evaluation method for above 

classification. Five folds were selected due to reduced number of instances in the 

data set. As used throughout literature for similar research, below evaluation 

parameters were used for evaluation.  

• Accuracy 

• Precision 

• Recall 

• F Measure 

Accuracy, Precision and Recall were calculated for each fold and the mean value 

across all folds was calculated as the final value. F-Measure was calculated from 

mean values of Precision and Recall. 

Table 12: Summary of classifier performance 

Parameter SVM (%) k-NN (%) Naïve Bayes (%) Random Forest (%) 

Accuracy 73 77 74 75 

Deviation +/- 1 +/- 2 +/- 3 +/- 4 

Precision 74 79 77 73 

Recall 58 65 57 70 

F - measure 65 71 66 71 

 

5.4 Synthetic Minority Over-Sampling Technique (SMOTE) 

It was observed that there was an imbalance in between the classes. Run Up and 

Follow Through classes exhibited similar size of samples represented in the classes. 

However, the sample size of Delivery Stride class was very less in comparison to 

other two classes. As a result, the weight of classification accuracy was governed by 

Run Up and Follow Through classes. This effect was overcome using SMOTE 

algorithm. SMOTE creates more samples around the minority class and reduces 

certain samples from majority class to balance out the sample distribution among the 

classes.  
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5.4.1 k-NN Classifier Comparison with SMOTE 

As specified in the original SMOTE [24] documentation. SMOTE needs to be 

applied with a feature selection algorithm. In below instance, SMOTE was applied 

on the data obtained after dimensionality reduction via PCA to a k-NN classifier 

since it produced best results among the tested classifiers. The Delivery Stride 

(Bowling) class was over sampled in relation to Run Up class.   

 

     Figure 83: PC1 Vs PC2 data points plot before applying SMOTE 

 

     Figure 84: PC1 Vs PC2 data points plot after applying SMOTE 

As illustrated in the diagrams, Delivery Stride class was populated with more data 

points without affecting the nature of original data points distribution.  
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k – Number Selection 

5 – Fold Cross Validation was used to evaluate the effect of applying SMOTE prior 

to classification. As discussed previously, k number for k-NN algorithm was selected 

by varying k from 1 to 100 among each fold and by detecting fold and k number 

providing best accuracy.  

Figure 85: Accuracy Vs k number – Fold 1      Figure 86: Accuracy Vs k number – Fold 2              

Figure 87: Accuracy Vs k number – Fold 3      Figure 88: Accuracy Vs k number – Fold 4 

 

Figure 89: Accuracy Vs k number – Fold 5     Figure 90: Maximum k numbers across folds 

Hence, k = 9 was selected as the suitable k number to be used in k-NN algorithm.  
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Training Set 

 

           Figure 91: k-NN Training Set plot after SMOTE        

Test Set 

 

             Figure 92: k-NN Test Set plot after SMOTE        

Classifier Performance 

Table 13: Classifier evaluation parameters  

Parameter k-NN (%) 

Accuracy 82 

Standard Deviation      +/- 4 

Precision 80 

Recall 60 

F-Measure 68 
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5.5 Model Testing on Sample Dataset 

The final step was to test the classification model on a sample dataset. For this 

requirement 5th dataset of second subject was selected.  

 

Figure 93: Test dataset plot with marked class boundaries        

Above sample set was inserted into the model as a Test set and coloured vertical 

dotted lines were plotted on the graph to mark the different phases classified by the 

model. k-NN classifier demonstrated best accuracy results. Hence, it was used for 

this classification.  

 

Figure 94: Test dataset plot with marked specific class regions         
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The main challenge for above plot was to revert to original data from the extracted 

feature set. However, a pattern was demonstrated in the moving window which could 

help to revert to original dataset. 

Window 1 = Sample [0:400] 

Window 2 = Sample [200:600] 

Window 3 = Sample [400:800] 

Window 4 = Sample [600:1000] 

Window 5 = Sample [800:1200] 

………. 

Hence lower data point of a specific window can be linked to original dataset as, 

Window_Lower [n] = (n x 200) – 200 for n=1,2, 3... 

Upper data point of a specific window can be linked to original dataset as, 

Window_Upper [n] = (n x 200) + 200 for n=1,2, 3... 

 

5.6 Discussion 

The classification indicates that Support Vector Machines (SVM) and Naïve Bayes 

Test set plots showed similar classification regions. Overall, k-NN provided best 

classification accuracy of 77% with a k number of 11. But it was improved to 82% 

with k number as 9 when SMOTE was used. All supervised classifiers used, 

demonstrated standard deviations of 1% to 4%. When other classification parameters 

were considered, best Precision rate of 79% and F-Measure of 71% was obtained by 

k-NN algorithm. However, best Recall measure of 70% was achieved by Random 

Forest algorithm. Hence, it was evident that k-Nearest Neighbour could be regarded 

as the best supervised classifier among the ones used of this human movement 

classification problem. But overall higher accuracies haven’t been reached due to 

less number of data samples.  

With the application of SMOTE to balance the sizes of three classes it was observed 

that k-NN classifier increased classification accuracy from 77% to 82% and 

Precision was improved from 79% to 80%. However, the results indicated a 

reduction in the performance parameters of Recall and F-Measure.  
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When the model was tested against a sample dataset it was observed that most of the 

data windows were represented to be classified accurately. However, few dataset 

windows were incorrectly classified. 

The final accuracy of 82% obtained from k-NN classification (after SMOTE) 

indicates similarities to the results obtained for human activity classification by 

having accelerometers on the wrist [26]. In latter [26] study, accelerometers on the 

wrist classifies running at 80% accuracy by using a Hidden Markov Model. 

However, the results from the study [26] indicate a rapid increase (18%) in accuracy 

when a second sensor is added on the hip for classification. This trend of increase in 

classification accuracy continues when all three sensors are used for classification. 

Although the latter study uses an unsupervised classification method, there is a 

definite case to add a secondary sensor to increase classification accuracy of the 

discussed model in the current research. The results summarised on Table 8 

illustrates acceptable accuracies for sensors placed on Trunk and Calf. Therefore, 

using multiple secondary sensors could improve classification accuracy of the model 

proposed from current research.    

Research [27] further indicates that bowling technique is a major contributing factor 

towards back injuries in fast bowlers. Mixed bowling action type is considered to 

lead higher incidence of back injuries due to excessive lumbar spine extension and 

rotation during ball release and resulting in increased counter rotation during 

Delivery Stride. These effects have been identified to be minimal on Side-on 

technique of fast bowlers. Therefore, the proposed method from current research can 

be used to classify the back rotation and extension during Delivery Stride to correct a 

Mixed type fast bowling technique in a bowler towards a Side-on action type without 

affecting key performances of the bowler based on wearable sensors.  

Further, the proposed model can be used in other similar throwing sports such as 

javelin throw. Research [28] indicates that Run Up speed has a direct correlation to 

the success of javelin throw. Hence, the proposed method can be used to classify the 

Run Up and other key activities in javelin throw to assist performance enhancement 

by using wearable sensors.  
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CHAPTER 6  

6 CONCLUSIONS AND RECOMMENDATIONS  

6.1 Key Findings  

• The results of the initial experiment conducted to determine best on body 

sensor position for activity classification during fast bowling in cricket 

suggested that ‘Forearm’ is the best position to place Inertial Measurement 

Units (IMU’s) to gather data for such classification problems. 

• Second and Fourth Quaternions provided best overall performance for the 

classifiers during the study to determine best on body sensor position for data 

collection.   

• Accuracy measures obtained by Support Vector Machine (SVM) during the 

study to determine best on body sensor position suggests that comparatively 

high accuracy rates were achieved due to large variation in sample size 

among the classes. Hence, the results of confusion matrices were governed by 

the two large classes of Run Up and Follow Through. This issue was 

eradicated by the usage of Synthetic Minority Over-Sampling Technique to 

data processed after LASSO and PCA to increase the number of data points 

on minority classes.  

• It is important to use a secondary camera to assist in defining the boundary 

points of the classes. It will be best if the frame rate of camera can reach the 

sampling rate of sensor to increase accuracy of boundary points.  

• User Diagram Protocol (UDP) could transmit data beyond the expected rate 

of 350Hz during data collection. However, it was observable that when UDP 

was used, small amounts of data packets were lost during transmission.  

• k-Nearest Neighbour classifier provided the best results for activity 

classification in fast bowling in cricket among other supervised classifiers 

like Naïve Bayes, Random Forest and Support Vector Machine.  

• The classification model can be improved further by adding more data and it 

was demonstrated that it can now be used to analyse a fast bowler for 
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performance enhancement or injury prevention related parameter in either 

Run Up, Delivery Stride or Follow Through regions.  

 

6.2 Detailed Findings and Suggestions 

6.2.1 On Body Sensor Position 

The results have suggested that using an IMU on the forearm is the best position 

when gathering data to classify different phases in fast bowling. However, it will be 

important to determine the effect on the model if sensors were used in multiples to 

determine classification accuracy. For example, the effect of sensors on Forearm and 

Calf at the same instance of data gathering could be analysed as next steps. Further, 

to increase model accuracy more samples need to be added into the model.  

6.2.2 Quaternions 

Quaternions were used as the main data for classification in the research. Second and 

Fourth quaternions demonstrated better results in comparison to other two 

Quaternions. However, there is an opportunity to investigate the effect of using raw 

three axis accelerometer, gyroscope and magnetometer data in the model. It will also 

be important to determine the effect of using a more derived data from the 

Quaternions (Ex: Rotational angle, yaw, pitch, etc) on the classification models.  

6.2.3 Inertial Measurement Units (IMU’s) and Microcontroller 

Since fast bowling in cricket consists of fast movements, a minimum sampling rate 

of 300Hz was required. However, it was observed that on certain cycles the 

maximum accelerometer range of 16g in MPU 9250 was not sufficient to absorb 

these movements. Data inversions were observed. This had a minimum effect on the 

research since the effect was translated to all data collection cycles. However, it is 

best to move towards greater accelerometer ranges (multiple ranges) for future 

similar fast movement activity classifications. 

ESP 8266 Wi-Fi module was used in this research. When TCP was used as the data 

transmission protocol, it was not possible to send data at rates beyond 50Hz. 

However, when buffered data were sent the microcontroller did not have the 
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capability of processing new data. Hence, User Diagram Protocol (UDP) with the 

risk of losing data packets was used as the data transmission protocol. However, if a 

microcontroller with multiple cores was used there is a possibility of using TCP to 

send data beyond 300Hz. 

6.2.4 Transmission Control Protocol (TCP) Vs User Diagram Protocol 

As discussed previously, due to limited data rate achieved based on limitations in the 

Wi-Fi module when using TCP as data transmission protocol, UDP was introduced 

as corresponding data transmission protocol. However, when using UDP data losses 

were observed on certain instances. 

 

Figure 95: UDP data losses 

6.2.5 Classification of Phases in Bowling 

It was more appropriate to use supervised classification models over unsupervised 

classifiers to the existence of limited number of sample sets (32 sample sets). 

However, when the sample set is increased further unsupervised methods can also be 

analysed for performance.  

6.2.5.1 Definition of Classes 

The first method to define classes by doing data collection of different phases 

separately demonstrated overlapping of data in the specific regions. However, this 

was eradicated when a reference video feedback synced with sensor data was used to 
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define the classes in the second method. Even this method created an error since the 

frame rate of camera (50 fps) was less in comparison to the sensor sampling rate 

(300Hz). However, it can be improved further by using a camera with the same 

frame rate as sensor sampling rate to define the classes.  

6.2.5.2 Feature Selection 

In this research eight-time domain features were considered as corresponding 

features for classification algorithm. There is a possibility of increasing the number 

of features and analysing classification accuracy. Further, the effect of using 

frequency domain and derived features can also be analysed in future.  

6.2.5.3 Feature Extraction 

LASSO and Principal Component Analysis (PCA) were used as the methods to 

reduce dimensionality of the feature set. However, other methods such as Backward 

Elimination and Ridge Regression can be tested in future.  

6.2.5.4 Classification and Evaluation 

As specified previously, supervised classifiers were used for classification. Best 

overall accuracy of 82% was achieved by k-NN classifier. All other evaluation 

parameters (Precision, Recall and F-Measure) have scored more than 50% rates. 

Hence, the model can be accepted. However, none of the evaluation parameters have 

reached levels beyond 82%. The model performance can be improved further by 

increasing number of samples. Overall, k-NN algorithm was the most suitable 

classifier for classification of different phases in fast bowling. However, the key 

challenge was to determine the best k number for the classifier.  

Five-Fold Cross Validation was used as the evaluation method in the study. 

However, Run-Up and Follow Through classes illustrated more data points in 

comparison to Delivery Stride class. Hence, the results are dominated by former two 

classes. This effect and the effectiveness of cross validation can be improved further 

by increasing number of data sets for classification and by using SMOTE to balance 

the classes.  
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6.3 Future Work 

This study concentrated on the classification of the three key phases in fast bowling. 

However, there are other phases within the main phases that need to be classified in 

future.  

• Run Up  

o Pre-Delivery Stride 

• Delivery Stride  

o Mid-bound 

o Back Foot Contact (BFC) 

o Front Foot Contact (FFC) 

o Ball Release 

• Follow Through 

Based on classification of phases in fast bowling, the action of a bowler can be 

adjusted (about a base line) in future to increase his or her bowling speed or prevent 

injuries due to incorrect postures during bowling.   

Research [1] illustrates four key parameters that can be considered to assist bowl 

faster in cricket.  

• Run Up speed 

• Knee angle at Ball Release 

• Upper trunk flexion (First Foot Contact to Ball Release) 

• Shoulder angle at First Foot Contact 

The study indicates that fastest bowlers have a quicker Run Up. With the addition of 

another relevant sensor to capture running speed, the results of current study can be 

used to classify the Run Up of a bowler and study his or her Run Up speed to be 

adjusted to help greater bowling speeds during delivery.  

Further, the study can be refined more by allocating all the subjects to deliver a 

similar kind of delivery and determine the effects during each phase to bowling 

speed. This experiment cannot be conducted at this phase since delivery speed is not 

captured. However, it can be included for future work.  
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It will also be important to study the variability within classes for different bowlers 

when the same type of delivery is delivered. Hence, the study can be improved 

further by allocating all subjects the same type of delivery and studying the 

variability within each class on an outcome such as speed.  
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APPENDIX A 

MPU 9250 Sensor Data Collection and Transmission by using ESP 8266 

 

#include <ESP8266WiFi.h> 

//#include <WiFiUDP.h> 

//#include <WiFiUdp.h> 

#include <Wire.h> 

#include "MPU9250.h" 

char incomingPacket[255]; 

IPAddress ip(192, 168, 8, 240); 

IPAddress gateway(192, 168, 8, 1); 

IPAddress subnet(255, 255, 255, 0); 

// wifi connection variables 

char *total = ""; 

char *q0_char = ""; 

char *q1_char = ""; 

char *q2_char = ""; 

char *q3_char = ""; 

//int countx = 0; 

const char* ssid = "J-4G"; 

const char* password = "xxxxx"; 

boolean wifiConnected = false; 

 

// UDP variables 

unsigned int localPort = 12345; 

WiFiUDP UDP; 

boolean udpConnected = false; 

char packetBuffer[UDP_TX_PACKET_MAX_SIZE]; //buffer to hold incoming packet, 

char ReplyBuffer[] = "1.0,0.345,0.456,0.567"; // a string to send back 
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#define    MPU9250_ADDRESS            0x68 

#define    MAG_ADDRESS                0x0C 

//Magnetometer Registers 

#define AK8963_ADDRESS   0x0C 

#define WHO_AM_I_AK8963  0x00 // should return 0x48 

#define INFO             0x01 

#define AK8963_ST1       0x02  // data ready status bit 0 

#define AK8963_XOUT_L   0x03  // data 

#define AK8963_XOUT_H  0x04 

#define AK8963_YOUT_L  0x05 

#define AK8963_YOUT_H  0x06 

#define AK8963_ZOUT_L  0x07 

#define AK8963_ZOUT_H  0x08 

#define AK8963_ST2       0x09  // Data overflow bit 3 and data read error status bit 2 

#define AK8963_CNTL      0x0A  // Power down (0000), single-measurement (0001), self-

test (1000) and Fuse ROM (1111) modes on bits 3:0 

#define AK8963_ASTC      0x0C  // Self test control 

#define AK8963_I2CDIS    0x0F  // I2C disable 

#define AK8963_ASAX      0x10  // Fuse ROM x-axis sensitivity adjustment value 

#define AK8963_ASAY      0x11  // Fuse ROM y-axis sensitivity adjustment value 

#define AK8963_ASAZ      0x12  // Fuse ROM z-axis sensitivity adjustment value 

#define    GYRO_FULL_SCALE_250_DPS    0x00 

#define    GYRO_FULL_SCALE_500_DPS    0x08 

#define    GYRO_FULL_SCALE_1000_DPS   0x10 

#define    GYRO_FULL_SCALE_2000_DPS   0x18 

#define    ACC_FULL_SCALE_2_G        0x00 

#define    ACC_FULL_SCALE_4_G        0x08 

#define    ACC_FULL_SCALE_8_G        0x10 

#define    ACC_FULL_SCALE_16_G       0x18 

// Set initial input parameters 

enum Ascale { 

  AFS_2G = 0, 
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  AFS_4G = 1, 

  AFS_8G = 2, 

  AFS_16G = 3 

}; 

enum Gscale { 

  GFS_250DPS = 0, 

  GFS_500DPS = 1, 

  GFS_1000DPS = 2, 

  GFS_2000DPS = 3 

}; 

enum Mscale { 

  MFS_14BITS = 0, // 0.6 mG per LSB 

  MFS_16BITS      // 0.15 mG per LSB 

}; 

int magRead = 20; 

// Specify sensor full scale 

uint8_t Gscale = GFS_2000DPS; 

uint8_t Ascale = AFS_16G; 

uint8_t Mscale = MFS_14BITS; // Choose either 14-bit or 16-bit magnetometer resolution 

uint8_t Mmode = 0x02;        // 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read 

float aRes, gRes, mRes;      // scale resolutions per LSB for the sensors 

int16_t accelCount[3];  // Stores the 16-bit signed accelerometer sensor output 

int16_t gyroCount[3];   // Stores the 16-bit signed gyro sensor output 

int16_t magCount[3];    // Stores the 16-bit signed magnetometer sensor output 

float magCalibration[3] = {1, 1, 1}, magbias[3] = {0, 0, 0};  // Factory mag calibration and 

mag bias 

float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0};      // Bias corrections for gyro and 

accelerometer 

int16_t tempCount;      // temperature raw count output 

float   temperature;    // Stores the real internal chip temperature in degrees Celsius 

float   SelfTest[6];    // holds results of gyro and accelerometer self test 

// global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System) 
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float GyroMeasError = PI * (40.0f / 180.0f);   // gyroscope measurement error in rads/s (start 

at 40 deg/s) 

float GyroMeasDrift = PI * (0.0f  / 180.0f);   // gyroscope measurement drift in rad/s/s (start 

at 0.0 deg/s/s) 

float beta = sqrt(3.0f / 4.0f) * GyroMeasError;   // compute beta 

float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift;   // compute zeta, the other free parameter in 

the Madgwick scheme usually set to a small or zero value 

#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion 

scheme, Kp for proportional feedback, Ki for integral 

#define Ki 0.0f 

uint32_t delt_t = 0; // used to control display output rate 

uint32_t count = 0, sumCount = 0; // used to control display output rate 

float pitch, yaw, roll; 

float deltat = 0.0f, sum = 0.0f;        // integration interval for both filter schemes 

uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval 

uint32_t Now = 0;        // used to calculate integration interval 

float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values 

float cal_gx, cal_gy, cal_gz; 

float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};    // vector to hold quaternion 

float eInt[3] = {0.0f, 0.0f, 0.0f}; 

 

// This function read Nbytes bytes from I2C device at address Address. 

// Put read bytes starting at register Register in the Data array. 

void I2Cread(uint8_t Address, uint8_t Register, uint8_t Nbytes, uint8_t* Data) { 

  // Set register address 

  Wire.beginTransmission(Address); 

  Wire.write(Register); 

  Wire.endTransmission() 

  // Read Nbytes 

  Wire.requestFrom(Address, Nbytes); 

  uint8_t index = 0; 

  while (Wire.available()) 

    Data[index++] = Wire.read(); 
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} 

// Write a byte (Data) in device (Address) at register (Register) 

void I2CwriteByte(uint8_t Address, uint8_t Register, uint8_t Data) { 

  // Set register address 

  Wire.beginTransmission(Address); 

  Wire.write(Register); 

  Wire.write(Data); 

  Wire.endTransmission(); 

} 

// Initial time 

long int ti; 

volatile bool intFlag = false; 

// Initializations 

void setup() 

{ 

  // Arduino initializations 

  Wire.begin(0, 2); 

  Wire.setClock(400000L); 

  Serial.begin(115200); 

  //mySerial.begin(115200); 

 wifiConnected = connectWifi(); 

  // only proceed if wifi connection successful 

  if (wifiConnected) { 

    udpConnected = connectUDP(); 

    if (udpConnected) { 

      Serial.println("udpConnected ..."); 

    } 

  } 

  // Set accelerometers low pass filter at 5Hz 

  I2CwriteByte(MPU9250_ADDRESS, 29, 0x06); 

  // Set gyroscope low pass filter at 5Hz 

  I2CwriteByte(MPU9250_ADDRESS, 26, 0x06); 
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  // Configure gyroscope range 

  I2CwriteByte(MPU9250_ADDRESS, 27, GYRO_FULL_SCALE_2000_DPS); 

  // Configure accelerometers range 

  I2CwriteByte(MPU9250_ADDRESS, 28, ACC_FULL_SCALE_16_G); 

  // Set by pass mode for the magnetometers 

  I2CwriteByte(MPU9250_ADDRESS, 0x37, 0x02); 

  // Request continuous magnetometer measurements in 16 bits 

  I2CwriteByte(MAG_ADDRESS, 0x0A, 0x16); 

  // Get magnetometer calibration from AK8963 ROM 

  //initAK8963(magCalibration); Serial.println("AK8963 initialized for active data 

mode...."); // Initialize device for active mode read of magnetometer 

  //pinMode(13, OUTPUT); 

  //Timer1.initialize(10000);         // initialize timer1, and set a 1/2 second period 

  //Timer1.attachInterrupt(callback);  // attaches callback() as a timer overflow interrupt 

  getGres(); 

  getAres(); 

  getMres(); 

  mRes = 10 * 0.6; //conversion from 1229 microTesla full scale 4096 to 12.29 Gauss full 

scale 

  Gyro_cal(); 

  magbias[0] = -786;  // User environmental x-axis correction in milliGauss, should be 

automatically calculated 

  magbias[1] = -396;  // User environmental x-axis correction in milliGauss 

  magbias[2] = 1497;  // User environmental x-axis correction in milliGauss 

  // Store initial time 

  ti = millis(); 

  firstUpdate = micros(); 

} 

// Counter 

long int cpt = 0, magcpt = 0; 

void Gyro_cal() { 

  uint8_t Buf[14]; 

  for (int i = 0; i < 100 ; i++) { 
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    I2Cread(MPU9250_ADDRESS, 0x3B, 14, Buf); 

  } 

  cal_gx = 0; cal_gy = 0; cal_gz = 0; 

 

  for (int i = 0; i < 50 ; i++) { 

    I2Cread(MPU9250_ADDRESS, 0x3B, 14, Buf); 

    gyroCount[0] = -(Buf[8] << 8 | Buf[9]); 

    gyroCount[1] = -(Buf[10] << 8 | Buf[11]); 

    gyroCount[2] = Buf[12] << 8 | Buf[13]; 

 

    // Calculate the gyro value into actual degrees per second 

    gx = (float)gyroCount[0] * gRes; // - .664;  // get actual gyro value, this depends on scale 

being set 

    gy = (float)gyroCount[1] * gRes; // - (-0.221); 

    gz = (float)gyroCount[2] * gRes; 

    delay(1); 

    cal_gx += gx; cal_gy += gy; cal_gz += gz; 

  } 

  cal_gx /= 50.; cal_gy /= 50.; cal_gz /= 50.; 

} 

// Main loop, read and display data 

void loop() { 

  if (wifiConnected) { 

    if (udpConnected) { 

      if (getUdpData() == 1) { 

        uint8_t Buf[14]; 

        I2Cread(MPU9250_ADDRESS, 0x3B, 14, Buf); 

        // Create 16 bits values from 8 bits data 

        // Accelerometer 

        accelCount[0] = -(Buf[0] << 8 | Buf[1]); 

        accelCount[1] = -(Buf[2] << 8 | Buf[3]); 

        accelCount[2] = (Buf[4] << 8 | Buf[5]); 
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        ax = (float)accelCount[0] * aRes; // - accelBias[0];  // get actual g value, this depends on 

scale being set 

        ay = (float)accelCount[1] * aRes; // - accelBias[1]; 

        az = (float)accelCount[2] * aRes; // - 0.490; // - accelBias[2]; 

        // Gyroscope 

        gyroCount[0] = -(Buf[8] << 8 | Buf[9]); 

        gyroCount[1] = -(Buf[10] << 8 | Buf[11]); 

        gyroCount[2] = (Buf[12] << 8 | Buf[13]); 

        // Calculate the gyro value into actual degrees per second 

        gx = (float)gyroCount[0] * gRes - cal_gx; // - .664;  // get actual gyro value, this 

depends on scale being set 

        gy = (float)gyroCount[1] * gRes - cal_gy; // - (-0.221); 

        gz = (float)gyroCount[2] * gRes - cal_gz; // - 0.031; 

        magcpt++; 

        if (magcpt / magRead == 1) { 

          magcpt = 0; 

          // Read register Status 1 and wait for the DRDY: Data Ready 

          uint8_t ST1; 

          do 

          { 

            I2Cread(MAG_ADDRESS, 0x02, 1, &ST1); 

       } while (!(ST1 & 0x01)); 

          // Read magnetometer data 

          uint8_t Mag[7]; 

          I2Cread(MAG_ADDRESS, 0x03, 7, Mag); 

          // Create 16 bits values from 8 bits data 

          // Magnetometer 

          magCount[0] = -(Mag[3] << 8 | Mag[2]); 

          magCount[1] = -(Mag[1] << 8 | Mag[0]); 

          magCount[2] = -(Mag[5] << 8 | Mag[4]); 

        } 

        mx = (float)magCount[0] * mRes - magbias[0]; // get actual magnetometer value, this 

depends on scale being set 
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        my = (float)magCount[1] * mRes - magbias[1]; 

        mz = (float)magCount[2] * mRes - magbias[2]; 

        Now = micros(); 

        deltat = ((Now - lastUpdate) / 1000000.0f); // set integration time by time elapsed since 

last filter update 

        lastUpdate = Now; 

        if ((lastUpdate - firstUpdate) > 10000000) 

        { 

          //beta = 0.004; 

          beta = 0.04; 

          zeta = 0.015; 

        } 

        sum += deltat; // sum for averaging filter update rate 

        sumCount++; 

        MadgwickQuaternionUpdate(ax, ay, az, gx * PI / 180.0f, gy * PI / 180.0f, gz * PI / 

180.0f,  mx,  my, mz); 

        //countx++; 

        //UDP.beginPacket(ip, localPort); 

        UDP.beginPacket(UDP.remoteIP(), UDP.remotePort()); 

        UDP.print("$"); 

        UDP.print(String(millis())); 

        UDP.print(","); 

        dtostrf(q[0], 5, 4, q0_char); 

        UDP.write(q0_char); 

        UDP.write(","); 

        dtostrf(q[1], 5, 4, q1_char); 

        UDP.write(q1_char); 

        UDP.write(","); 

        dtostrf(q[2], 5, 4, q2_char); 

        UDP.write(q2_char); 

        UDP.write(","); 

        dtostrf(q[3], 5, 4, q3_char); 

        UDP.write(q3_char); 
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        UDP.println("#"); 

        UDP.endPacket(); 

        count = millis(); 

        sumCount = 0; 

        sum = 0; 

      } 

    } 

  } 

} 

 

void getMres() { 

  switch (Mscale) { 

    // Possible magnetometer scales (and their register bit settings) are: 

    // 14 bit resolution (0) and 16 bit resolution (1) 

    case MFS_14BITS: 

      mRes = 10.*4912. / 8190.; // Proper scale to return milliGauss 

      break; 

    case MFS_16BITS: 

      mRes = 10.*4912. / 32760.0; // Proper scale to return milliGauss 

      break; 

  } 

} 

void getGres() { 

  switch (Gscale) { 

    // Possible gyro scales (and their register bit settings) are: 

    // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11). 

    // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: 

    case GFS_250DPS: 

      gRes = 250.0 / 32768.0; 

      break; 

    case GFS_500DPS: 

      gRes = 500.0 / 32768.0; 
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      break; 

    case GFS_1000DPS: 

      gRes = 1000.0 / 32768.0; 

      break; 

    case GFS_2000DPS: 

      gRes = 2000.0 / 32768.0; 

      break; 

  } 

} 

void getAres() { 

  switch (Ascale) { 

    // Possible accelerometer scales (and their register bit settings) are: 

    // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11). 

    // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: 

    case AFS_2G: 

      aRes = 2.0 / 32768.0; 

      break; 

    case AFS_4G: 

      aRes = 4.0 / 32768.0; 

      break; 

    case AFS_8G: 

      aRes = 8.0 / 32768.0; 

      break; 

    case AFS_16G: 

      aRes = 16.0 / 32768.0; 

      break; 

  } 

} 

void initAK8963(float * destination) { 

  // First extract the factory calibration for each magnetometer axis 

  uint8_t rawData[3];  // x/y/z gyro calibration data stored here 

  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer 
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  delay(10); 

  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode 

  delay(10); 

  readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]);  // Read the x-, y-, and 

z-axis calibration values 

  destination[0] =  (float)(rawData[0] - 128) / 256. + 1.; // Return x-axis sensitivity 

adjustment values, etc. 

  destination[1] =  (float)(rawData[1] - 128) / 256. + 1.; 

  destination[2] =  (float)(rawData[2] - 128) / 256. + 1.; 

  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer 

  delay(10); 

  // Configure the magnetometer for continuous read and highest resolution 

  // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register, 

  // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 

for 100 Hz sample rates 

  writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set 

magnetometer data resolution and sample ODR 

  delay(10); 

} 

// Implementation of Sebastian Madgwick's "...efficient orientation filter for... 

inertial/magnetic sensor arrays" 

// (see http://www.x-io.co.uk/category/open-source/ for examples and more details) 

// which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-

based estimate of absolute 

// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing 

quadcopters, etc. 

// The performance of the orientation filter is at least as good as conventional Kalman-based 

filtering algorithms 

// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini 

operating at 8 MHz! 

void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float 

mx, float my, float mz) { 

  float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability 

  float norm; 

  float hx, hy, _2bx, _2bz; 

  float s1, s2, s3, s4; 
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  float qDot1, qDot2, qDot3, qDot4; 

  // Auxiliary variables to avoid repeated arithmetic 

  float _2q1mx; 

  float _2q1my; 

  float _2q1mz; 

  float _2q2mx; 

  float _4bx; 

  float _4bz; 

  float _2q1 = 2.0f * q1; 

  float _2q2 = 2.0f * q2; 

  float _2q3 = 2.0f * q3; 

  float _2q4 = 2.0f * q4; 

  float _2q1q3 = 2.0f * q1 * q3; 

  float _2q3q4 = 2.0f * q3 * q4; 

  float q1q1 = q1 * q1; 

  float q1q2 = q1 * q2; 

  float q1q3 = q1 * q3; 

  float q1q4 = q1 * q4; 

  float q2q2 = q2 * q2; 

  float q2q3 = q2 * q3; 

  float q2q4 = q2 * q4; 

  float q3q3 = q3 * q3; 

  float q3q4 = q3 * q4; 

  float q4q4 = q4 * q4; 

  // Normalise accelerometer measurement 

  norm = sqrt(ax * ax + ay * ay + az * az); 

  if (norm == 0.0f) return; // handle NaN 

  norm = 1.0f / norm; 

  ax *= norm; 

  ay *= norm; 

  az *= norm; 

  // Normalise magnetometer measurement 
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  norm = sqrt(mx * mx + my * my + mz * mz); 

  if (norm == 0.0f) return; // handle NaN 

  norm = 1.0f / norm; 

  mx *= norm; 

  my *= norm; 

  mz *= norm; 

 

  // Reference direction of Earth's magnetic field //   FOR SRILANKA MAGNETIC FEILD 

CAN BE ASSUMED AS ZERO ALMOST FLAT THAT IS WHY _2bz,_4bz are made to 

zero 

  _2q1mx = 2.0f * q1 * mx; 

  _2q1my = 2.0f * q1 * my; 

  _2q1mz = 2.0f * q1 * mz; 

  _2q2mx = 2.0f * q2 * mx; 

  hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz 

* q4 - mx * q3q3 - mx * q4q4; 

  hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + 

_2q3 * mz * q4 - my * q4q4; 

  _2bx = sqrt(hx * hx + hy * hy); 

  _2bz = 0; // -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 

* my * q4 - mz * q3q3 + mz * q4q4; 

  _4bx = 2.0f * _2bx; 

  _4bz = 2.0f * _2bz; 

  // Gradient decent algorithm corrective step 

  s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * 

(_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * 

(_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + 

_2bz * (0.5f - q2q2 - q3q3) - mz); 

  s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * 

(1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * 

(q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + 

q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) 

- mz); 

  s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * 

(1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - 

q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + 

_2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * 

(0.5f - q2q2 - q3q3) - mz); 
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  s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 

+ _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + 

_2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * 

(q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); 

  norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    // normalise step magnitude 

  norm = 1.0f / norm; 

  s1 *= norm; 

  s2 *= norm; 

  s3 *= norm; 

  s4 *= norm; 

  // Compute rate of change of quaternion 

  qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1; 

  qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2; 

  qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3; 

  qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4; 

  // Integrate to yield quaternion 

  q1 += qDot1 * deltat; 

  q2 += qDot2 * deltat; 

  q3 += qDot3 * deltat; 

  q4 += qDot4 * deltat; 

  norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion 

  norm = 1.0f / norm; 

  q[0] = q1 * norm; 

  q[1] = q2 * norm; 

  q[2] = q3 * norm; 

  q[3] = q4 * norm; 

} 

// Wire.h read and write protocols 

void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) { 

  Wire.beginTransmission(address);  // Initialize the Tx buffer 

  Wire.write(subAddress);           // Put slave register address in Tx buffer 

  Wire.write(data);                 // Put data in Tx buffer 

  Wire.endTransmission();           // Send the Tx buffer 
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} 

uint8_t readByte(uint8_t address, uint8_t subAddress) { 

  uint8_t data; // `data` will store the register data 

  Wire.beginTransmission(address);         // Initialize the Tx buffer 

  Wire.write(subAddress);                  // Put slave register address in Tx buffer 

  Wire.endTransmission(false);             // Send the Tx buffer, but send a restart to keep 

connection alive 

  Wire.requestFrom(address, (uint8_t) 1);  // Read one byte from slave register address 

  data = Wire.read();                      // Fill Rx buffer with result 

  return data;                             // Return data read from slave register 

} 

void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) { 

  Wire.beginTransmission(address);   // Initialize the Tx buffer 

  Wire.write(subAddress);            // Put slave register address in Tx buffer 

  Wire.endTransmission(false);       // Send the Tx buffer, but send a restart to keep 

connection alive 

  uint8_t i = 0; 

  Wire.requestFrom(address, count);  // Read bytes from slave register address 

  while (Wire.available()) { 

    dest[i++] = Wire.read(); 

  }         // Put read results in the Rx buffer 

} 

void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float 

mx, float my, float mz) { 

  float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability 

  float norm; 

  float hx, hy, bx, bz; 

  float vx, vy, vz, wx, wy, wz; 

  float ex, ey, ez; 

  float pa, pb, pc; 

  // Auxiliary variables to avoid repeated arithmetic 

  float q1q1 = q1 * q1; 

  float q1q2 = q1 * q2; 
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  float q1q3 = q1 * q3; 

  float q1q4 = q1 * q4; 

  float q2q2 = q2 * q2; 

  float q2q3 = q2 * q3; 

  float q2q4 = q2 * q4; 

  float q3q3 = q3 * q3; 

  float q3q4 = q3 * q4; 

  float q4q4 = q4 * q4; 

  // Normalise accelerometer measurement 

  norm = sqrt(ax * ax + ay * ay + az * az); 

  if (norm == 0.0f) return; // handle NaN 

  norm = 1.0f / norm;        // use reciprocal for division 

  ax *= norm; 

  ay *= norm; 

  az *= norm; 

  // Normalise magnetometer measurement 

  norm = sqrt(mx * mx + my * my + mz * mz); 

  if (norm == 0.0f) return; // handle NaN 

  norm = 1.0f / norm;        // use reciprocal for division 

  mx *= norm; 

  my *= norm; 

  mz *= norm; 

  // Reference direction of Earth's magnetic field 

  hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + 

q1q3); 

  hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - 

q1q2); 

  bx = sqrt((hx * hx) + (hy * hy)); 

  bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - 

q3q3); 

  // Estimated direction of gravity and magnetic field 

  vx = 2.0f * (q2q4 - q1q3); 

  vy = 2.0f * (q1q2 + q3q4); 



 

93 
 

  vz = q1q1 - q2q2 - q3q3 + q4q4; 

  wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3); 

  wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4); 

  wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3); 

  // Error is cross product between estimated direction and measured direction of gravity 

  ex = (ay * vz - az * vy) + (my * wz - mz * wy); 

  ey = (az * vx - ax * vz) + (mz * wx - mx * wz); 

  ez = (ax * vy - ay * vx) + (mx * wy - my * wx); 

  if (Ki > 0.0f) 

  { 

    eInt[0] += ex;      // accumulate integral error 

    eInt[1] += ey; 

    eInt[2] += ez; 

  } 

  else 

  { 

    eInt[0] = 0.0f;     // prevent integral wind up 

    eInt[1] = 0.0f; 

    eInt[2] = 0.0f; 

  } 

  // Apply feedback terms 

  gx = gx + Kp * ex + Ki * eInt[0]; 

  gy = gy + Kp * ey + Ki * eInt[1]; 

  gz = gz + Kp * ez + Ki * eInt[2]; 

  // Integrate rate of change of quaternion 

  pa = q2; 

  pb = q3; 

  pc = q4; 

  q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat); 

  q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat); 

  q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat); 

  q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat); 
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  // Normalise quaternion 

  norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); 

  norm = 1.0f / norm; 

  q[0] = q1 * norm; 

  q[1] = q2 * norm; 

  q[2] = q3 * norm; 

  q[3] = q4 * norm; 

} 

boolean connectUDP() { 

  boolean state = false; 

  Serial.println(""); 

  Serial.println("Connecting to UDP"); 

  if (UDP.begin(localPort) == 1) { 

    Serial.println("Connection successful"); 

    state = true; 

  } 

  else { 

    Serial.println("Connection failed"); 

  } 

  return state; 

} 

// connect to wifi – returns true if successful or false if not 

boolean connectWifi() { 

  boolean state = true; 

  int i = 0; 

  WiFi.begin(ssid, password); 

  Serial.println(""); 

  Serial.println("Connecting to WiFi"); 

  // Wait for connection 

  Serial.print("Connecting"); 

  while (WiFi.status() != WL_CONNECTED) { 

    delay(500); 
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    Serial.print("."); 

    i++; 

  } 

  if (state) { 

    Serial.println(""); 

    Serial.print("Connected to "); 

    Serial.println(ssid); 

    Serial.print("IP address: "); 

    Serial.println(WiFi.localIP()); 

    WiFi.config(ip, gateway, subnet); 

    Serial.println(""); 

    Serial.println("WiFi connected"); 

    Serial.println("IP address: "); 

  Serial.print(WiFi.localIP()); 

  } 

  else { 

    Serial.println(""); 

    Serial.println("Connection failed."); 

  } 

  return state; 

} 

int getUdpData() { 

  int packetSize = UDP.parsePacket(); 

  if (packetSize) 

  { 

    // receive incoming UDP packets 

    //Serial.printf("Received %d bytes from %s, port %d\n", packetSize, 

UDP.remoteIP().toString().c_str(), UDP.remotePort()); 

    int len = UDP.read(incomingPacket, 255); 

    if (len > 0) 

    { 

      incomingPacket[len] = 0; 
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    } 

    //Serial.printf("UDP packet contents: %s\n", incomingPacket); 

    return 1; 

  } 

  return 0; 

} 
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APPENDIX B 

Python Socket Program to Receive Data from ESP8266 using UDP 

 

import socket               # Import socket module 

import sys 

import datetime 

import Tkinter as tk 

import threading 

import time 

run_flag=False 

save_flag=False 

save_old_flag=False 

run_old_flag=False 

value=[0,0,0,0,0,0]; 

time_diff=0 

old_millis=0 

samples_per_second=0 

sample_count=0 

def net_thread(): 

    global run_flag 

    global run_old_flag 

    global save_old_flag 

    global time_diff 

    global old_millis 

    global value 

    global samples_per_second 

    global sample_count 

print "Waiting for connection..." 

    s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)         # Create a socket object 

    server_address=('192.168.8.100',8899) 

    s.connect(server_address) 
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    s.settimeout(0.05); 

    print "Connected." 

    while True: 

        while run_flag: 

            if save_flag==True: 

                if save_old_flag==False: 

                    save_old_flag=True 

                    f = open('data_server1.csv', 'a') 

            else: 

                if save_old_flag==True: 

                    save_old_flag=False 

                    f.close() 

            s.sendto("R",('192.168.8.100',8899)) 

            try: 

                data = s.recvfrom(1024) 

            except socket.timeout: 

                print "Socket timeout." 

                break 

            millis = int(round(time.time() * 1000)) 

            time_diff=millis-old_millis 

            if time_diff>1000:                                

                value[5]=sample_count 

                sample_count=0 

                old_millis=millis 

            if data:                        

                    now = datetime.datetime.now()                                                 

                    records=data[0].splitlines() 

                    for record in records: 

                        print record 

                        if "#" in record and "$" in record : 

                            clean_record=record.lstrip('$') 

                            clean_record2=clean_record.rstrip('#') 
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                            if "#" not in clean_record2 and "$" not in clean_record2 : 

                                value_temp = clean_record2.split(",") 

                                value[0]=value_temp[0] 

                                value[1]=value_temp[1] 

                                value[2]=value_temp[2] 

                                value[3]=value_temp[3] 

 value[4]=value_temp[4] 

                                sample_count=sample_count+1 

                                if save_flag and save_old_flag: 

                                    f.write(unicode(now)) 

                                    f.write(',') 

                                    f.write(clean_record2); 

                                    f.write('\n'); 

def net_start(): 

    global run_flag 

    run_flag=True 

    print "Starting..." 

def net_stop(): 

    global run_flag 

    run_flag=False 

    print "Stopping..." 

def save_on(): 

    global save_flag 

    save_flag=True 

    print "Save on..." 

def save_off(): 

    global save_flag 

    save_flag=False 

    print "Save off..." 

def exit_1(): 

    if(run_flag==False): 

        print "Exiting" 
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        exit() 

    else: 

        print "Still Running, Stopping now..." 

        net_stop() 

        time.sleep(2) 

        print "Exiting" 

        exit() 

def value_label(label,i): 

  def label_update(): 

    global value 

    label.config(text=str(value[i])) 

   label.after(10,label_update) 

  label_update() 

t2 = threading.Thread(target=net_thread) 

t2.setDaemon(True) 

t2.start() 

root = tk.Tk() 

root.title("Data Gathering") 

root.resizable(width=False, height=False) 

root.geometry('{}x{}'.format(200, 350)) 

#top_frame = Frame(root, bg='cyan', width = 450, height=50, pady=3).grid(row=0, 

columnspan=3) 

w = tk.Label(root, text="UDP Socket Data Transfer")#.grid(row = 0, columnspan = 3) 

w.pack() 

label1 = tk.Label(root, fg="green") 

label1.pack() 

value_label(label1,0) 

label2 = tk.Label(root, fg="green") 

label2.pack() 

value_label(label2,1) 

label3 = tk.Label(root, fg="green") 

label3.pack() 
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value_label(label3,2) 

label4 = tk.Label(root, fg="green") 

label4.pack() 

value_label(label4,3) 

label5 = tk.Label(root, fg="green") 

label5.pack() 

value_label(label5,4) 

w1 = tk.Label(root, text="Samples per second")#.grid(row = 0, columnspan = 3) 

w1.pack() 

label6 = tk.Label(root, fg="green") 

label6.pack() 

value_label(label6,5) 

button_start = tk.Button(root, text='Start', width=25, command=net_start) 

button_start.pack() 

button_stop = tk.Button(root, text='Stop', width=25, command=net_stop) 

button_stop.pack() 

button_save_on = tk.Button(root, text='Save ON', width=25, command=save_on) 

button_save_on.pack() 

button_save_off = tk.Button(root, text='Save OFF', width=25, command=save_off) 

button_save_off.pack() 

button_exit = tk.Button(root, text='Exit', width=25, command=exit_1) 

button_exit.pack() 

root.mainloop() 
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APPENDIX C 

Support Vector Machine (SVM) Classification using R  

# Load data 

j=1  ## Bowling 

p=1   ##runup 

t=1  ##Bowling 

l=1200 

e = 1 

k=1  ##runup 

i=1 

s=1 ##Folllow 

w=1 ##Follow 

b=1 ##Test 

z=1 ##Test 

q=1 

m=1  ## Cross validation 

a=1 ## Cross validation 

knearest = 1 

knearest_2 = 1 

#install.packages('XLConnect')  

#library (XLConnect) 

dataset <- read.csv('Dataset.csv') 

#Load Library 

#install.packages('ElemStatLearn')  

#install.packages('e1071')  

#install.packages('seewave') 

#install.packages('randomForest') 

library(caTools) 

library(e1071) 

library(seewave) 

library(caret) 
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# Get Column 4 

dataset_runup <- dataset[1] 

dataset_bowling <- dataset[2] 

dataset_follow <- dataset[3] 

#Get all non zero values 

non_zero_runup <- matrix(na.omit(dataset_runup[dataset_runup!=0])) 

non_zero_bowling <- matrix(na.omit(dataset_bowling[dataset_bowling!=0])) 

non_zero_follow<- matrix(na.omit(dataset_follow[dataset_follow!=0])) 

data_size = length(non_zero_bowling) 

###Get non 'NA' values 

#non_na = matrix(na.omit(data_non_zero)) 

##non_zero_bowling_na = matrix(na.omit(non_zero_bowling)) 

##non_zero_bowling_na = non_zero_bowling[625:data_size,1] 

##Plottting intial data for visualization 

#plot(non_na,xlim = c(0,2000),ylim = c(-0.2,1),type = "l", col= "red") 

#par(new=TRUE) 

plot(non_zero_runup,xlim = c(0,13000),ylim = c(-1.5,1),type = "l", col= "green", xlab = 

"Sample", ylab = "Normalized Quaternion Value", main = "Initial classes plot") 

par(new=TRUE) 

plot(non_zero_bowling, xlim = c(0,2500),ylim = c(-1.5,1),type = "l", col= "red", xlab = 

"Sample", ylab = "Normalized Quaternion Value", main = "Initial classes plot") 

par(new=TRUE) 

plot(non_zero_follow, xlim = c(0,2500),ylim = c(-1.5,1),type = "l", col= "blue", xlab = 

"Sample", ylab = "Normalized Quaternion Value", main = "Initial classes plot") 

legend(1000,-0.5,c("Run Up", "Bowling", "Follow Through"), pch = c(1,1), fill = c("green", 

"red", "blue"), cex = 0.8) 

################Bowling 

# Remainder data for matrices 

#Get run up cluster 

length_runup = length(non_zero_runup) 

remainder_runup= length_runup%%20 

#Runup Matrices 

mean_runup <- matrix(nrow = 500,ncol = 1) 
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median_runup <- matrix(nrow = 500,ncol = 1) 

variance_runup <- matrix(nrow = 500,ncol = 1) 

iqr_runup <- matrix(nrow = 500,ncol = 1) 

skewness_runup<- matrix(nrow = 500,ncol = 1) 

kurtosis_runup <- matrix(nrow = 500,ncol = 1) 

rms_runup<- matrix(nrow = 500,ncol = 1) 

mad_runup <- matrix(nrow = 500,ncol = 1) 

#rms_bowling[1,1] = rms_bowling_20 

#Calculate statistical parameters for runup data 

for (k in seq(175,(length_runup-remainder_runup),175)){ 

  val1_run=(k-175) 

  val2_run=(k+175) 

  mean_runup[p,1] = mean(non_zero_runup[val1_run:val2_run],na.rm = TRUE) 

  median_runup[p,1] = median(non_zero_runup[val1_run:val2_run],na.rm = TRUE) 

  variance_runup[p,1] = var(non_zero_runup[val1_run:val2_run],na.rm = TRUE) 

  iqr_runup[p,1] = IQR(non_zero_runup[val1_run:val2_run],na.rm = TRUE) 

  skewness_runup[p,1] = skewness(non_zero_runup[val1_run:val2_run],na.rm = TRUE, type 

= 1) 

  kurtosis_runup[p,1] = kurtosis(non_zero_runup[val1_run:val2_run],na.rm = TRUE, type = 

3) 

  rms_runup[p,1] = rms(non_zero_runup[val1_run:val2_run],na.rm = TRUE) 

  mad_runup[p,1] = mad(non_zero_runup[val1_run:val2_run],na.rm = TRUE) 

  p=p+1 

} 

f = length(na.omit(mean_runup)) 

#Plot Data bowling 

Runup_mat <- matrix(nrow = f, ncol = 9) 

Runup_mat[,1]= c(na.omit(mean_runup[,1])) 

Runup_mat[,2]= c(na.omit(median_runup[,1])) 

Runup_mat[,3] = c(na.omit(variance_runup[,1])) 

Runup_mat[,4] = c(na.omit(iqr_runup[,1])) 

Runup_mat[,5] = c(na.omit(skewness_runup[,1])) 

Runup_mat[,6] = c(na.omit(kurtosis_runup[,1])) 
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Runup_mat[,7] = c(na.omit(rms_runup[,1])) 

Runup_mat[,8] = c(na.omit(mad_runup[,1])) 

#Bowling_mat[,7] = c(na.omit(rms_bowling[,1])) 

for(e in seq(1,f,1)){ 

  Runup_mat[e,9] = 1 

} 

###Bowling Window 

length_bowling = length(non_zero_bowling) 

remainder_bowling= length_bowling%%20 

#Bowling Matrices 

mean_bowling <- matrix(nrow = 500,ncol = 1) 

median_bowling <- matrix(nrow = 500,ncol = 1) 

variance_bowling <- matrix(nrow = 500,ncol = 1) 

iqr_bowling <- matrix(nrow = 500,ncol = 1) 

skewness_bowling<- matrix(nrow = 500,ncol = 1) 

kurtosis_bowling <- matrix(nrow = 500,ncol = 1) 

rms_bowling <- matrix(nrow = 500,ncol = 1) 

mad_bowling<- matrix(nrow = 500,ncol = 1) 

#rms_bowling[1,1] = rms_bowling_20 

#Calculate statistical parameters for Bowling data 

for (j in seq(175,(length_bowling-remainder_bowling),175)){ 

  val1_bowl=(j-175) 

  val2_bowl=(j+175) 

  mean_bowling[t,1] = mean(non_zero_bowling[val1_bowl:val2_bowl],na.rm = TRUE) 

  median_bowling[t,1] = median(non_zero_bowling[val1_bowl:val2_bowl],na.rm = TRUE) 

  variance_bowling[t,1] = var(non_zero_bowling[val1_bowl:val2_bowl],na.rm = TRUE) 

  iqr_bowling[t,1] = IQR(non_zero_bowling[val1_bowl:val2_bowl],na.rm = TRUE) 

  skewness_bowling[t,1] = skewness(non_zero_bowling[val1_bowl:val2_bowl],na.rm = 

TRUE, type = 1) 

  kurtosis_bowling[t,1] = kurtosis(non_zero_bowling[val1_bowl:val2_bowl],na.rm = TRUE, 

type = 3) 

  rms_bowling[t,1] = rms(non_zero_bowling[val1_bowl:val2_bowl],na.rm = TRUE) 

  mad_bowling[t,1] = mad(non_zero_bowling[val1_bowl:val2_bowl],na.rm = TRUE) 
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  t=t+1 

} 

v = length(na.omit(mean_bowling)) 

#Plot Data bowling 

Bowling_mat <- matrix(nrow = v, ncol = 9) 

Bowling_mat[,1]= c(na.omit(mean_bowling[,1])) 

Bowling_mat[,2]= c(na.omit(median_bowling[,1])) 

Bowling_mat[,3] = c(na.omit(variance_bowling[,1])) 

Bowling_mat[,4] = c(na.omit(iqr_bowling[,1])) 

Bowling_mat[,5] = c(na.omit(skewness_bowling[,1])) 

Bowling_mat[,6] = c(na.omit(kurtosis_bowling[,1])) 

Bowling_mat[,7] = c(na.omit(rms_bowling[,1])) 

Bowling_mat[,8] = c(na.omit(mad_bowling[,1])) 

#Bowling_mat[,7] = c(na.omit(rms_bowling[,1])) 

for(e in seq(1,v,1)){ 

  Bowling_mat[e,9] = 2 

} 

###Follow Through Data 

length_follow = length(non_zero_follow) 

remainder_follow= length_follow%%20 

#Follow through Matrices 

mean_follow <- matrix(nrow = 500,ncol = 1) 

median_follow <- matrix(nrow = 500,ncol = 1) 

variance_follow <- matrix(nrow = 500,ncol = 1) 

iqr_follow <- matrix(nrow = 500,ncol = 1) 

skewness_follow<- matrix(nrow = 500,ncol = 1) 

kurtosis_follow <- matrix(nrow = 500,ncol = 1) 

rms_follow <- matrix(nrow = 500,ncol = 1) 

mad_follow<- matrix(nrow = 500,ncol = 1) 

#rms_bowling[1,1] = rms_bowling_20 

#Calculate statistical parameters for follow data 

for (s in seq(175,(length_follow-remainder_follow),175)){ 
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  val1_follow=(s-175) 

  val2_follow=(s+175) 

  mean_follow[w,1] = mean(non_zero_follow[val1_follow:val2_follow],na.rm = TRUE) 

  median_follow[w,1] = median(non_zero_follow[val1_follow:val2_follow],na.rm = TRUE) 

  variance_follow[w,1] = var(non_zero_follow[val1_follow:val2_follow],na.rm = TRUE) 

  iqr_follow[w,1] = IQR(non_zero_follow[val1_follow:val2_follow],na.rm = TRUE) 

  skewness_follow[w,1] = skewness(non_zero_follow[val1_follow:val2_follow],na.rm = 

TRUE, type = 1) 

  kurtosis_follow[w,1] = kurtosis(non_zero_follow[val1_follow:val2_follow],na.rm = 

TRUE, type = 3) 

  rms_follow[w,1] = rms(non_zero_follow[val1_follow:val2_follow],na.rm = TRUE) 

  mad_follow[w,1] = mad(non_zero_follow[val1_follow:val2_follow],na.rm = TRUE) 

  w=w+1 

} 

h = length(na.omit(mean_follow)) 

#Plot Data follow 

Follow_mat <- matrix(nrow = h, ncol = 9) 

Follow_mat[,1]= c(na.omit(mean_follow[,1])) 

Follow_mat[,2]= c(na.omit(median_follow[,1])) 

Follow_mat[,3] = c(na.omit(variance_follow[,1])) 

Follow_mat[,4] = c(na.omit(iqr_follow[,1])) 

Follow_mat[,5] = c(na.omit(skewness_follow[,1])) 

Follow_mat[,6] = c(na.omit(kurtosis_follow[,1])) 

Follow_mat[,7] = c(na.omit(rms_follow[,1])) 

Follow_mat[,8] = c(na.omit(mad_follow[,1])) 

#Bowling_mat[,7] = c(na.omit(rms_bowling[,1])) 

for(e in seq(1,h,1)){ 

  Follow_mat[e,9] = 3 

} 

##png("legend.png", width = 450, height = 400) 

##par(xpd = T, mar = par()$mar + c(0,0,0,7)) 

plot(Runup_mat[,1],Runup_mat[,3],xlim = c(-0.6,0.3), ylim = c(0,0.4),type = "p", col= 

"green", xlab = "Mean", ylab = "Variance", main = "Mean vs Variance") 
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par(new=TRUE) 

plot(Bowling_mat[,1],Bowling_mat[,3],xlim = c(-0.6,0.3), ylim = c(0,0.4),type = "p", col= 

"red", xlab = "Mean", ylab = "Variance", main = "Mean vs Variance") 

par(new=TRUE) 

plot(Follow_mat[,1],Follow_mat[,3],xlim = c(-0.6,0.3), ylim = c(0,0.4), type = "p", col= 

"blue", xlab = "Mean", ylab = "Variance", main = "Mean vs Variance") 

legend(-0.6,0.4,c("Run Up", "Bowling", "Follow Through"), fill = c("green", "red", "blue"), 

cex = 0.5) 

##par(mar=c(5, 4, 4, 2) + 0.1) 

###Full Data Matrix 

Full_data = matrix(nrow = (h+v+f),ncol = 9) 

Full_data[1:f,] = Runup_mat[1:f,] 

Full_data[(f+1):(f+v),] = Bowling_mat[1:v,] 

Full_data[(f+v+1):(f+v+h),] = Follow_mat[1:h,] 

##Feature Scaling 

Full_data[,-9]=scale(Full_data[,-9]) 

" 

# Buildig optimal model 

## Backward Elimintion 

regressor = lm(formula = Full_data[,7] ~ Full_data[,1] +Full_data[,2] + Full_data[,3]+ 

Full_data[,4] + Full_data[,5] + Full_data[,6], 

environment(formula)) 

summary(regressor) 

regressor = lm(formula = Full_data[,7] ~ Full_data[,1] +Full_data[,2] + Full_data[,3], 

environment(formula)) 

summary(regressor) 

##regressor = lm(formula = Full_data[,7] ~ Full_data[,1] +Full_data[,2] + Full_data[,4] , 

##               environment(formula)) 

##summary(regressor) 

" 

##Scaled Matrix 

Scaled_final_matrix = matrix(nrow = (f+v+h), ncol=9) 

Scaled_final_matrix[,1] = Full_data[,1] 
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Scaled_final_matrix[,2] = Full_data[,2] 

Scaled_final_matrix[,3] = Full_data[,3] 

Scaled_final_matrix[,4] = Full_data[,4] 

Scaled_final_matrix[,5] = Full_data[,5] 

Scaled_final_matrix[,6] = Full_data[,6] 

Scaled_final_matrix[,7] = Full_data[,7] 

Scaled_final_matrix[,8] = Full_data[,8] 

Scaled_final_matrix[,9] = Full_data[,9] 

##Shuffle Rows 

Scaled_final_matrix = Scaled_final_matrix[sample(nrow(Scaled_final_matrix)),] 

## ApplyPCA Training data  

Data_matri_scale = matrix(nrow = (f+v+h), ncol = 3) 

Data_matri_pca = data.frame(matrix((Scaled_final_matrix[,-9]),nrow = (f+v+h), ncol = 9))  

Data_matri_pca[,9] = Scaled_final_matrix[,9] 

pca = preProcess(x =Data_matri_pca[,-9], method = 'pca', pcaComp = 2) 

Data_matri_scale = predict(pca,Data_matri_pca[,-9]) 

Data_matri_scale[,3] =  Scaled_final_matrix[,9] 

plot(Data_matri_scale[,1],Data_matri_scale[,2])# Load data 

 

#### SVM Classifier 

accuracy = matrix(nrow = 5, ncol = 1) 

precision = matrix(nrow = 5, ncol = 1) 

recall =  matrix(nrow = 5, ncol = 1) 

f1 = matrix(nrow = 5, ncol = 1) 

classification = matrix(nrow = 2000,ncol = 10) 

##Splitting into folds 

flds <- createFolds(Data_matri_scale[,3], k = 5, list = TRUE, returnTrain = FALSE) 

names(flds)[1] <- "train" 

for(m in seq(1,5,1)){ 

  classifier = svm(formula = V3~. , 

                   data = Data_matri_scale[-flds[[m]],], 

                   type = 'C-classification', 
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                   kernel = 'linear') 

  ## classification[,m] <- classifier 

  # Predicting theTest set results 

  y_pred = predict(classifier, newdata = Data_matri_scale[flds[[m]],-3]) 

  cm = table(y_pred,Data_matri_scale[flds[[m]],3]) 

  n = sum(cm) # number of instances 

  nc = nrow(cm) # number of classes 

  diag = diag(cm) # number of correctly classified instances per class  

  rowsums = apply(cm, 1, sum) # number of instances per class 

  colsums = apply(cm, 2, sum) # number of predictions per class 

  p = rowsums / n # distribution of instances over the actual classes 

  q = colsums / n # distribution of instances over the predicted classe 

 # accuracy = sum(diag)/n 

  accuracy[m] = sum(diag)/n 

  precision[m] = diag / colsums  

  recall[m] = diag / rowsums  

  f1[m] = 2 * precision[m] * recall[m] / (precision[m] + recall[m])  

  data.frame(precision[m], recall[m], f1[m]) 

} 

###Average performance values  

accuracy_final = mean(accuracy) 

precision_final = mean(precision) 

recall_final = mean(recall) 

##SD Deviation 

SD_Deviation = sd(accuracy) 

###F measure  

f_measure = 2 * precision_final * recall_final / (precision_final + recall_final)  

### Pot Values 

Acuracy_max = which.max(accuracy) 

#####Print Validation values 

cat("Accuracy:",round(accuracy_final,digits = 2)) 

cat("Accuracy_SD Deviation:",round(SD_Deviation,digits = 2)) 
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cat("Precision:",round(precision_final, digits = 2)) 

cat("Recall:",round(recall_final,digits = 2)) 

cat("F Measure:",round(f_measure,digits = 2)) 

print(cm) 

print(Data_matri_scale[flds[[m]],3]) 

print(y_pred) 

#####SVM 

##library(e1071) 

#classifier = svm(formula = split_up_training$Fold01[,3] ~ split_up_training$Fold01[,1] + 

split_up_training$Fold01[,2], 

#               data = split_up_training$Fold01, 

#              type = 'C-classification', 

#              kernel = 'linear') 

# Predicting the Test set results 

#y_pred_test = predict(classifier, newdata = split_up_test$Fold01[-3]) 

# Making the Confusion Matrix 

#cm = table(split_up_test$Fold01[, 3], y_pred_test) 

# Visualising the Training set results 

#install.packages('ElemStatLearn') 

training_set = matrix(nrow= nrow(Data_matri_scale[-flds[[Acuracy_max]],]), ncol= 3) 

training_set = Data_matri_scale[-flds[[Acuracy_max]],] 

test_set = matrix(nrow= nrow(Data_matri_scale[flds[[Acuracy_max]],]), ncol= 3) 

test_set = Data_matri_scale[flds[[Acuracy_max]],] 

########## SVM Plot 

library(ElemStatLearn) 

set = training_set 

X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01) 

X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01) 

grid_set = expand.grid(X1, X2) 

colnames(grid_set) = c('PC1', 'PC2') 

y_grid = predict( svm(formula = V3~. ,data = training_set,type = 'C-classification',kernel = 

'linear'), newdata = grid_set) 

par(xpd=NA,oma=c(3,0,0,0)) 
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plot(set[, -3], 

     main = 'SVM (Training set)', 

     xlab = 'PC1', ylab = 'PC2', 

     xlim = range(X1), ylim = range(X2)) 

contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE) 

points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', ifelse(y_grid == 2,'tomato', 

'cornflowerblue'))) 

points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', ifelse(set[, 3]==2,'red3','blue3'))) 

legend(par("usr")[1],par("usr")[3.5],c("Run Up", "Bowling", "Follow Through"), fill = 

c("green", "red", "blue"), cex = 0.5) 

 

 

###Test Set 

library(ElemStatLearn) 

set = test_set 

X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01) 

X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01) 

grid_set = expand.grid(X1, X2) 

colnames(grid_set) = c('PC1', 'PC2') 

y_grid = predict( svm(formula = V3~. ,data = training_set,type = 'C-classification',kernel = 

'linear'), newdata = grid_set) 

par(xpd=NA,oma=c(3,0,0,0)) 

plot(set[, -3], 

     main = 'K-NN (Test Set)', 

     xlab = 'Pc1', ylab = 'PC2', 

     xlim = range(X1), ylim = range(X2)) 

contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE) 

points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', ifelse(y_grid == 2,'tomato', 

'cornflowerblue'))) 

points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', ifelse(set[, 3]==2,'red3','blue3'))) 

legend(par("usr")[1],par("usr")[3.5],c("Run Up", "Bowling", "Follow Through"), fill = 

c("green", "red", "blue"), cex = 0.5) 

 

 


