WEARABLE SENSOR BASED ACTIVITY CLASSIFICATION DURING FAST BOWLING IN CRICKET

Jayamini Susankalpana Ranaweera

(148465E)

Degree of Master of Science

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

December 2018

WEARABLE SENSOR BASED ACTIVITY CLASSIFICATION DURING FAST BOWLING IN CRICKET

Jayamini Susankalpana Ranaweera

(148465E)

Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Electronics and Automation

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

December 2018

DECLARATION, COPYRIGHT STATEMENT AND STATEMENT OF SUPERVISOR

"I declare that this is my own work and this thesis does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text."

"I also grant University of Moratuwa, Sri Lanka the non-executive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

.....

Signature

Date

The above candidate has carried out research for the Master's Thesis under my supervision.

Name of Supervisor: Dr. Pujitha Silva

.....

Signature of Supervisor

Date

.

ABSTRACT

Inertial Measurement Unit (IMU) data can depict three dimensional rotational angles specific to a motion. However, either to prevent injuries or to enhance performance based on IMU data, a specific segment of the total movement cycle needs to be analysed. This requires a process to segment the total motion into key phases during the complete movement cycle. The proposed method focuses on the major research question of developing a pattern recognition model to classify the three main phases (Run Up, Delivery Stride and Follow Through) of fast bowling action in cricket.

The research focuses on seven fast bowlers delivering a minimum of four deliveries in a training environment with IMU's to capture motion. Nine-axis IMU's are selected and quaternion based three-dimensional motion data are captured and stored. The research initially focuses on finding the most appropriate sensor position on body among calf, thigh, trunk and forearm to collect data for activity classification in fast bowling. The classification performance obtained by Support Vector Machines (SVM) indicate that overall, second and fourth quaternion on Forearm is the most suitable combination of quaternion and position for data collection.

Data collected from IMU's on forearm are used to develop a machine learning model to segment the three key phases of the fast bowling action. Video feedback is also obtained when defining initial classes for classification. A moving window collects time domain statistical features, Least Absolute Shrinkage and Selection Operator (LASSO) is used for feature selection and Principle Component Analysis (PCA) for dimensionality reduction. Synthetic Minority Over-Sampling Technique (SMOTE) is implemented to overcome class imbalances. K-Nearest Neighbour (k-NN), Random Forest (RF), Naïve Bayes (NB) and Support Vector Machines (SVM) are tested as supervised classification methods for activity classification. Cross validation determines classification model performance based on accuracy, precision, recall and F-measure values. The results indicate that k-Nearest Neighbour produces best overall classification accuracy of 82% among the tested supervised classifiers. Finally, the model is verified against a test sample from one of the bowlers.

ACKNOWLEDGMENT

First I would like to thank my supervisor Dr.Pujitha Silva for mentoring me and teaching me throughout the course of the research and guiding me in moments of confusion by showing the correct path towards successful research completion. I also owe my gratitude to Dr.Upeka Premaratne and Dr.Amal Shehan Perera for all the advice, guidance and supervision given to me in machine learning aspects of my research. I am also thankful to course coordinator of the MSc in Electronics and Automation Prof. Rohan Munasinghe for all the guidance provided throughout the course of study. I would also like to thank Mr. Damith Kandage for all the timely assistant on various matters during the study.

Next, I owe my gratitude to Mr. Siva Gawsalyan, Mr. Shehan Deshapriya, Mr. Rasika Manjujeewa and Mr. Udith Shan for all the timely assistance provided in manipulating Kairos motion analysis system and obtaining video feedback during the data gathering phase. I would also like to thank Mr. Samith Danushka from Cric Sri Lanka for providing testing facilities for data collection including bowlers from the academy during the data gathering. I also owe my gratitude to all cricketers who participated in the data gathering.

I would also like to thank General Manager – Autonomation at MAS Intimates (Pvt) Ltd Dr. Chandika Wickramatillake for providing me necessary leave from work to participate in matters pertaining to the research. Finally, I would like to thank my family, friends and colleagues for all encouragement provided during the study.

Jayamini Susankalapana Ranaweera B.Eng (Hons) (SHU-UK), B.Sc (USJP - SL), MIET Assistant Manager – Research & Innovation MAS Intimates (Pvt) Ltd

TABLE OF CONTENTS

DECLARATION, COPYRIGHT STATEMENT AND STATEMENT	C OF	THE
SUPERVISOR		i
ABSTRACT		ii
ACKNOWLEDGMENT		iii
TABLE OF CONTENTS		iv
LIST OF FIGURES		viii
LIST OF TABLES		xii
LIST OF ABBREVIATIONS		xiii
CHAPTER 1		
1. INTRODUCTION		1
1.1 Background and Motivation		1
1.2 Problem Definition		3
1.2.1 Thesis Definition and Objectives1.2.2 Goals		3 4
1.3 Limitations		4
1.4 Contributions to Society		5
1.5 Publications based on the Research		6
CHAPTER 2		
2. LITERATURE REVIEW		7
2.1 Fast Bowling in Cricket		7
2.1.1 Fast bowling Action Types and Phases		7
2.1.2 Fast Bowling Injuries		8
2.2 Inertial Measurement Unit Selection and Processing		9
2.2.1 Inertial and Magnetic Sensor Specification		9
2.2.2 Sampling Rates		9
2.2.3 Orientation Estimation		10
2.3 On body Sensor Position for Classification		10
2.4 Pattern Recognition and Machine Learning Techniques		11

2.4.1 Activity Classification for Non-Cricket Activities ba	sed on IMU 11
2.4.2 Activity Classification for cricket related activities b	ased on IMU12
2.4.3 Event Detection	12
2.4.4 Feature Selection	13
2.4.5 Feature Extraction	14
2.4.6 Classification	15
2.4.7 Classification Evaluation	16

CHAPTER3

3. On body Sensor Position Selection Methodology	
3.1 Sensor Positions	20
3.2 Feature Selection	21
3.2.1 Feature Scaling	22
3.3 Feature Extraction (Dimensionality Reduction)	22
3.3.1 Principal Component Analysis for Dimensionality Reduction	22
3.4 Classification	23
3.5 Evaluation	24
3.6 Participants	24
3.7 Data Gathering Methodology	25
3.7.1 Data Types	26
3.8 Madgwick Filter	27
3.9 Drift Compensation	27

CHAPTER4

4. On body Sensor Position Selection Data Analysis and Results	
4.1 Original Data Plots on Sensor Positions	28
4.2 Definition of Classes	31
4.3 Feature Selection	32
4.3.1 Feature Scaling	35
4.4 Dimensionality Reduction	35
4.5 Classification	36
4.5.1 Training Set Vs Test Set plot	37

4.6 Classification Evaluation	42
4.7 Discussion	43

CHAPTER 5

5. Activity Classification during Fast Bowling in Cricket	44
5.1 Data Collection Methodology	44
5.1.1 Battery Selection for Sensor	44
5.1.2 Wireless Data Transmission	45
5.1.3 Definition of Classes for Classification	46
5.1.4 Data Gathering Participants	48
5.2 Classification Methods	48
5.2.1 Original Data Plots	49
5.2.2 Data Storage	50
5.2.3 Feature Selection	51
5.2.4 Feature Scaling	52
5.2.5 Feature/Dimensionality Reduction	53
5.2.5.1 Least Absolute Shrinkage and Selection Operator (I	LASSO) 53
5.2.5.2 Dimensionality Reduction with PCA	55
5.2.6 Classification	56
5.2.6.1 k-Nearest Neighbour (k-NN)	56
5.2.6.2 Support Vector Machine (SVM)	58
5.2.6.3 Naïve Bayes (NB)	59
5.2.6.4 Random Forest (RF)	60
5.3 Classifier Evaluation	61
5.4 Synthetic Minority Over-Sampling Technique (SMOTE)	61
5.4.1 k-NN Classifier Comparison with SMOTE	62
5.5 Model Testing on Sample Dataset	65
5.6 Discussion	66

CHAPTER 6

6. Conclusion and Recommendations		68
6.1 Key Findings		68
6.2 Detail	ed Findings and Suggestions	69
6.2.1	On Body Sensor Position	69
6.2.2	Quaternions	69
6.2.3	Inertial Measurement Units (IMU's) and Microcontroller	69
6.2.4	Transmission Control Protocol Vs User Diagram Protocol	70
6.2.5	Classification of Phases in Bowling	70
6.2	.5.1 Definition of Classes	70
6.2	.5.2 Feature Selection	71
6.2	.5.3 Feature Extraction	71
6.2	.5.4 Classification and Evaluation	71
6.3 Futu	re Work	72
REFERENCES		74
APPENDIX A		76
APPENDIX B		97
APPENDIX C		102