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ABSTRACT 

 

Adaptation of agile methodologies in software development life cycle has proved an 
improvement in productivity and quality of systems. In terms of quality, it defines new 
process and standards requirement where Continuous Integration (CI) principles have filled 
the gap while improving the quality of system continuously and Continuous Delivery (CD) 
approach has made faster delivery of software. Continuous Deployment extends the CD 
features and delivers the software to the production through automation by completing the 
pipeline. Ultimately, the Continuous Integration Continuous Delivery (CICD) pipeline 
approach has increased the efficiency and the productivity of agile software projects. 

In agile, new features are introduced to system in each sprint delivery, and although it is well 
developed, the delivery failures are inevitable due to performance issues. By considering 
delivery timeline, moving for system scaling is common solution in such situations. But, 
how much system should be scaled? System scale requires current system benchmark status, 
and expected system status. Benchmarking the production is a critical task, as it may 
interrupt the live system, which may causes system unstable. New software version should 
go through a load test, to measure expected system status. The traditional load test methods 
are unable to identify production performance behavior due to simulated traffic patterns are 
highly deviated from production. 

To overcome those issues, this approach has extended CICD pipeline to having three phase 
automations process named benchmark, load test and scaling. It minimizes the system 
interruption by using test bench approach when system benchmarking and it uses the 
production traffic for load testing which gives more accurate results. Once benchmark and 
load test phases completed, system scaling can be evaluated. Test bench setup was done on 
high capacity computer using Ansible automation which provisioned local virtual instances 
for application servers, Nagios service and load balancing. A simple XML based application 
which processes cached data by reading files is used to reduce the complexity of test bench 
approach. Initially, the pipeline was developed using Jenkins CI server, Git repository and 
Nexus repository with Ansible automation. Then GoReplay is used for traffic duplication 
from production to test bench environment. Nagios monitoring is used to analyze the system 
behavior in each phase and the result of test bench has proven that scaling is capable to 
handle the same load while changing the application software, but it doesn’t optimize 
response time of application at significant level and it helps to reduce the risk of application 
deployment by integrating this three phase approach as CICD automation extended feature. 
Thereby the research provides effective way to manage Agile based CICD projects. 

Keywords: Continuous Integration, Continuous Delivery, Agile Manifesto, Version Control 
System, Configuration Management 
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