

CONTINUOUS INTEGRATION AND CONTINUOUS

DELIVERY PIPELINE AUTOMATION FOR AGILE

SOFTWARE PROJECT MANAGEMENT

Indunil Suriya Arachchi

(148204F)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

April 2018

CONTINUOUS INTEGRATION AND CONTINUOUS

DELIVERY PIPELINE AUTOMATION FOR AGILE

SOFTWARE PROJECT MANAGEMENT

Suriya Arachchige Indunil Bandara Suriya Arachchi

(148204F)

Thesis submitted in partial fulfillment of the requirements for the degree Master of

Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

April 2018

i

DECLARATION

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to The University of Moratuwa the non-exclusive right to

reproduce and distribute my thesis, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such as

articles or books)

Signature: Date:

The above candidate has carried out research for the Masters thesis under my

supervision.

Signature of the Supervisor: Date:

ii

ABSTRACT

Adaptation of agile methodologies in software development life cycle has proved an
improvement in productivity and quality of systems. In terms of quality, it defines new
process and standards requirement where Continuous Integration (CI) principles have filled
the gap while improving the quality of system continuously and Continuous Delivery (CD)
approach has made faster delivery of software. Continuous Deployment extends the CD
features and delivers the software to the production through automation by completing the
pipeline. Ultimately, the Continuous Integration Continuous Delivery (CICD) pipeline
approach has increased the efficiency and the productivity of agile software projects.

In agile, new features are introduced to system in each sprint delivery, and although it is well
developed, the delivery failures are inevitable due to performance issues. By considering
delivery timeline, moving for system scaling is common solution in such situations. But,
how much system should be scaled? System scale requires current system benchmark status,
and expected system status. Benchmarking the production is a critical task, as it may
interrupt the live system, which may causes system unstable. New software version should
go through a load test, to measure expected system status. The traditional load test methods
are unable to identify production performance behavior due to simulated traffic patterns are
highly deviated from production.

To overcome those issues, this approach has extended CICD pipeline to having three phase
automations process named benchmark, load test and scaling. It minimizes the system
interruption by using test bench approach when system benchmarking and it uses the
production traffic for load testing which gives more accurate results. Once benchmark and
load test phases completed, system scaling can be evaluated. Test bench setup was done on
high capacity computer using Ansible automation which provisioned local virtual instances
for application servers, Nagios service and load balancing. A simple XML based application
which processes cached data by reading files is used to reduce the complexity of test bench
approach. Initially, the pipeline was developed using Jenkins CI server, Git repository and
Nexus repository with Ansible automation. Then GoReplay is used for traffic duplication
from production to test bench environment. Nagios monitoring is used to analyze the system
behavior in each phase and the result of test bench has proven that scaling is capable to
handle the same load while changing the application software, but it doesn’t optimize
response time of application at significant level and it helps to reduce the risk of application
deployment by integrating this three phase approach as CICD automation extended feature.
Thereby the research provides effective way to manage Agile based CICD projects.

Keywords: Continuous Integration, Continuous Delivery, Agile Manifesto, Version Control
System, Configuration Management

iii

ACKNOWLEDGEMENT

First I would like to express my earnest gratitude to my supervisor Dr. Indika Perera

for the supervision and advice given throughout to make this research a success.

Then, I would like to thank my family members for the support and encouragement

that they have given to me.

Finally, I am grateful to my MSc 2014 batch mates and various online community

members who supported me during the Research.

S.A.I.B Suriya Arachchi

iv

TABLE OF CONTENTS

DECLARATION i

ABSTRACT ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF FIGURES vii

LIST OF TABLES ix

LIST OF ABBREVIATIONS x

CHAPTER 1 1

INTRODUCTION 1

1.1 Background 1

1.2 Research Problem 2

1.3 Research Objectives 3

1.4 Research Overview 3

CHAPTER 2 4

LITERATURE REVIEW 4

2.1 Agile Software Development to CICD 4

2.2 CICD Pipeline 6

2.3 Continuous Integration 8

2.3.1 CI Practices 10

2.3.2 CI benefits 11

2.4 Continuous Delivery (CD) 11

2.4.1 CD benefits 13

2.5 Continuous Deployment 13

v

2.6 DEVOPS 14

2.7 CICD Tools 16

2.7.1 Repository and Version Controlling 17

2.7.2 Build Tools 19

2.7.3 Automation (Configuration Management) 22

2.7.4 Test Automation 32

2.7.5 Monitoring 33

CHAPTER 3 35

METHODOLOGY 35

3.1 Deployment methods 37

3.2 Benchmark 38

3.2.1 Duplicate Traffic 40

3.3 Load Test 42

3.4 Scale Identification 43

3.5 Provisioning 47

CHAPTER 4 48

DESIGN AND IMPLEMENTATION 48

4.1 Deployment Automation - CICD Pipeline 48

4.2 Benchmark Automation 56

4.3 Load Test Automation 58

4.4 Scaling Automation 60

CHAPTER 5 62

EVALUATION AND RESULTS 62

5.1 Test Bench Setup 62

5.2 Test Bench Performance 65

5.2.1 Initial Bench mark Phase 65

vi

5.2.2 Load Test Phase 69

5.2.3 Scaling Phase 71

CHAPTER 6 74

CONCLUSION & FUTURE WORK 74

6.1 Conclusion 74

6.2 Study Limitations 74

6.2 Future Works 75

REFERENCES 76

