IMPLICATIONS OF EUROCODE FOR STEEL PORTAL FRAMES IN SRI LANKA

K.I.S.G. PREMACHANDRA

(168919U)

Master of Science Degree in Structural Engineering Design

Department of Civil Engineering

University of Moratuwa Sri Lanka

MAY 2019

IMPLICATIONS OF EUROCODE FOR STEEL PORTAL FRAMES IN SRI LANKA

K.I.S.G PREMACHANDRA

(168919U)

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Structural Engineering Design

Department of Civil Engineering

University of Moratuwa Sri Lanka

MAY 2019

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any university or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

Signature:

Date:

The above candidate has carried out research for the Masters thesis under my supervision.

Signature of the supervisor: Date:

Abstract

Portal frame structures are widely used all over the world and in Sri Lanka for warehouses and factory buildings as they allow a large column free area with a maximum open space. They are basically made out of steel. Speedy construction, flexibility in use and easy maintenance are the main advantages in steel portal frames. Up until now in Sri Lanka, steel portal frames were designed mainly according to the British standards. But Eurocode is a more updated set of guidelines formed through research and experience.

This paper investigates the implications of Eurocode for steel portal frames in Sri Lanka. A field survey was carried out via questionnaires and responses in interviews to get a firsthand understanding of portal frame structures prevalent in Sri Lanka. With this experience, 48 different portal frames were selected for the parametric study to suit the Sri Lankan conditions varying the span range from 20m to 50m, eaves height from 4.5m to 6.0m and frame spacing from 4.5m to 9.0m. They were analysed to find the implications of Eurocode based on the methods proposed by the Steel Construction Institute. Results of parametric study were compared with each other and with available literature and publications.

Identified implications are discussed in this paper concerning forces, moments and weight variations. A table was developed to obtain optimum column and rafter sections for selected ranges of parameters. No significant advantages were found in designing portal frames to elastic theory based on Eurocode compared to British standards in terms of weight. Main frame weight as a percentage of ULS axial force of a column (excluding the self weight of frame) was found to be in the range of 10% to 45% for 4.5m eaves height frames and 18% to 45% for 6.0m eaves height frames.

Specially dedicated to my beloved family and friends...

Acknowledgements

I would first like to express my sincere appreciation to the supervisor, Dr. (Mrs) M.T.P.Hettiarachchi for her valuable advices and guidance given during this research study. I would like to express my gratitude to Dr.K.Baskaran, the research coordinator, for the motivation and guidance he gave me to complete the thesis. Also I thank the staff members of civil engineering department of University of Moratuwa for their kind assistances.

I would like to thank the engineers in the field of civil engineering for their participation in the field survey. This supported my work and helped me get results of better quality. Special thanks to Mr. Palitha Perera, senior civil engineer, for his immense support for the field survey.

I wish to acknowledge my friends and colleagues for their feedback, cooperation and encouragement.

Last but not least, my most heartfelt appreciation goes to my family who give me invaluable support as always.

Finally I am grateful to everyone who helped me in various ways to complete this research.

CONTENTS

Declaration of the candidate and supervisor		i
Ał	ostract	ii
De	edication	iii
Ac	cknowledgement	iv
Та	ble of contents	V
Li	st of figures	vii
Li	st of tables	ix
Li	st of abbreviations	xi
Li	st of appendices	xiv
1.	Introduction	1
	1.1 Background	1
	1.2 Research Objective	2
	1.3 Scope of the work	2
	1.4 Methodology	2
2.	Literature review	5
	2.1 Portal frame structures in Sri Lanka	5
	2.2 Eurocodevs. BS 5950	5
	2.3 Second order effects	9
	2.4 Optimisation of steel portal frames	12
	2.5 Deflection limits	12
3.	Field survey	14
	3.1 Questionnaire	14
	3.2 Analysis and results	14
	3.3 Selected building parameters for the parametric study	18

4.	Design of	Portal frames	20
	4.1 Design	n considerations	20
5.	Analysis,	results and discussion	22
	5.1 Gener	al	22
	5.2 Result	s	23
	5.2.1	Result – Tables	25
	5.2.2	Axial forces on columns and rafters	35
	5.2.3	Bending moment of columns	39
	5.2.4	Weight comparison- Parametric study	42
	5.2.5	Comparison of load effects- Eurocode and British Standards	51
	5.2.6	Comparison of steel grades – Parametric study	53
	5.2.7	Comparison of portal frame weights-	
		Parametric study with available literature	55
		5.2.7.1 Research works done by Perera, et al.	55
		5.2.7.2 Data available in publications of the Steel	
Construction Institute			60
	5.2.7.3 Field survey data		
	5.3 Discussion		64
6.	Conclusio	n and recommendations	70
Re	ferences		74
Appendix A Questionnaire		76	
Appendix B Design of portal frames			
Ap	Appendix C Specimen design calculation of a portal frame		99
Ap	pendix D	Steel universal beams - property table	155
Ap	Appendix E Initial design table		161

LIST OF FIGURES

		Page
Figure 1.1	Structural elements of a steel portal frame	
Figure2.1	Second order effects of axially loaded beams	10
Figure 2.2	Second order effects on portal frames	11
Figure 2.3	Recommended deflection limits for Eurocode	13
Figure 5.1	Column axial force variations of 4.5m eaves height	
	portal frames designed to Eurocode- Parametric study	36
Figure 5.2	Column axial force variations of 6.0m eaves height	
	portal frames designed to Eurocode 3- Parametric study	36
Figure 5.3	Rafter axial force variations of 4.5m eaves height	
	portal frames designed to Eurocode 3- Parametric study	38
Figure 5.4	Rafter axial force variations of 6.0m eaves height	
	portal frames designed to Eurocode 3- Parametric study	38
Figure 5.5	Column bending moment variations of 4.5m eavesheight	
	portal frames designed to Eurocode- Parametric study	40
Figure 5.6	Column bending moment variations of 6.0m eaves height	
	portal frames designed to Eurocode- Parametric study	40
Figure 5.7	Horizontal force variations at the bottom of the column of	
	4.5m eaves height portal frames designed to Eurocode-	
	Parametric study	41
Figure 5.8	Horizontal force variations at the bottom of the column of	
	6.0m eaves height portal frames designed to Eurocode –	
	Parametric study	41
Figure 5.9	Weight of a single main frame designed to Eurocode –	
	Parametric study	43
Figure5.10	Main frame self-weight as a percentage of ULS axial force	
	on a single column of 4.5m eaves height portal frames	
	designed to Eurocode- Parametric study	44

Figure 5.11	Main frame self-weight as a percentage of ULS axial force	
	on a single column of 4.5m eaves height portal frames	
	designed to Eurocode- Parametric study	44
Figure 5.12	Percentage variation of rafter weight to the weight of a	
	single main frame4.5m eaves height designed to	
	Eurocode- Parametric study	45
Figure 5.13	Percentage variation of rafter weight to the weight of a	
	single main frame (6.0m eaves height) designed to	
	Eurocode- Parametric study	46
Figure 5.14	Comparison of total weight of the main steel frames	
	designed to Eurocode (90m building length) –	
	Parametric study	47
Figure 5.15	Comparison of weight of the structures designed to	
	Eurocode (90m building length) –Parametric study	_49
Figure 5.16	Percentage of purlin weight to total weight of structure	
	(4.5m eaves height) designed to Eurocode- Parametric study	50
Figure 5.17	Percentage of purlin weight to total weight of structure	
	(6.0 m eaves height) designed to Eurocode- Parametric study	50
Figure 5.18	Comparison of single frame weight- Parametric study	
	(Eurocode) and research works by Perera, et al.	58
Figure 5.19	Percentage variation of a main frame weight (4.5m eaves height)	
	-Parametric study (Eurocode) to research works by Perera, et al	59
Figure 5.20	Percentage variation of a main frame weight (6.0m eaves height)	
	-Parametric study (Eurocode) to research works by Perera, et al.	59

LIST OF TABLES

Page

Table 2.1	Factors for design combinations at ULS for BS5950-1:2000	
Table 2.2	Factors for design combinations at ULS forEurocode	07
Table 2.3	Partial factors given in Eurocode and British standards	08
Table 2.4	Criteria to be considered in structural beam design	09
Table 2.5	Criteria to be considered in structural column design	09
Table 3.1	Summary of general details of the portal frames	14
Table 3.2	Summary of design standards and analysis method of	
	portal frames	15
Table 3.3	Summary of dimensions of portal frames	17
Table 3.4	Variable parameters selected for the parametric study	18
Table 3.5	Fixed parameters selected for the parametric study	18
Table 5.1	Selected variable parameters and their range used for	
	the parametric study	22
Table 5.2	Fixed parameters used for the parametric study	23
Table 5.3	Purlin details	23
Table 5.4	Section sizes of portal frames designed to Eurocode-	
	Parametric study	
Table 5.5	Analysis results of portal frames designed to Eurocode–	
	Parametric study	26
Table 5.6	Comparison of column analysis results (Eurocode) -1-	
	Parametric study	
Table 5.7	Comparison of Rafter analysis results (Eurocode)-1 –	
	Parametric study	28
Table 5.8	Comparison of column analysis results (Eurocode)-2-	
	Parametric study	29
Table 5.9	Comparison of rafter analysis results (Eurocode)-2-	
	Parametric study	30

Table 5.10	Comparison of weight of portal frames of 4.5m eaves	
	height designed to Eurocode –Parametric study	31
Table 5.11	Comparison of weight of portal frames of 6.0m eaves	
	height designed to Eurocode- Parametric study	33
Table 5.12	Comparison of load effects – Parametric study	
	(Eurocode and British Standards)	52
Table 5.13	Comparison of steel grade effects –	
	Parametric study (S355 and S275)	54
Table 5.14	Comparison of sections of 4.5m eaves height portal frames	
	designed to Eurocode (parametric study) and research	
	works by Perera,et al.	56
Table 5.15	Comparison of sections of 6.0m eaves height portal frames	
	designed to Eurocode (parametric study) and research	
	works by Perera,et al.	57
Table 5.16	Comparison of the sections obtained from parametric study	
	(Eurocode) with preliminary sizes given by the Steel	
	Construction Institute (P399)	61
Table 5.17	Comparison of the section obtained from parametric study	
	(Eurocode) with preliminary sizes given by the Steel	
	Construction Institute (P252)	61
Table 5.18	Comparison of sections obtained from parametric study	
	(Eurocode) and field survey data	63
Table 5.19	Critical design criteria and the sequences, when using	
	the sections proposed by Perera, et al.for parametric study-1	66
Table 5.20	Critical design criteria and the sequences, when using	
	the sections proposed by Perera, et al. for parametric study-2	68

LIST OF ABBREVIATIONS

Abbreviation	Descrption
А	cross sectional area of the member
A_{v}	shear area
E	modulus of elasticity
f_y	yield strength
$\mathbf{f}_{\mathbf{u}}$	ultimate strength
G	shear modulus
G _k	nominal value of the permanent actions
Q_k	nominal value of the imposed actions
h	column height
H_{Ed}	design value of horizontal reaction at the bottom of the
	column due to the horizontal loads and the equivalent
	horizontal force
Ι	second moment of area of rafter
I _T	torsional constant of the member
i	radius of gyration about the relevant axis
L _{cr}	developed length of the rafter pair between columns
M _{cr}	elastic critical moment for lateral torsional buckling
$M_{y,Ed}$	design bending moment, y-y axis
$M_{Z,Ed}$	design bending moment, z-z axis
$M_{y,Rd}$	design values of the resistance of bending moment, y-y axis
M _{z,Rd}	design values of the resistance of bending moment, z-z axis
$M_{b,Rd}$	lateral torsional buckling resistance
N _{Ed}	design compression force in rafter
N _{c,Rd}	design resistance to normal forces of the cross section for
	uniform compression
N b, y, Rd	flexural buckling resistance in the major axis
N _{b, z, Rd}	flexural buckling resistance in the minor axis

Abbreviation	Descrption
N cr	elastic critical buckling load for the complete span of the rafter
V _{Ed}	design shear force
V _{c,Rd}	design shear resistance
V _{pl,Rd}	Plastic design shear resistance
W _{pl, y}	plastic section modulus of the member
W el,min	minimum elastic section modulus
W eff,min	minimum effective section modulus
x-x	axis along a member
у-у	axis of a cross section
Z-Z	axis of a cross section
α_{cr}	factor to increase the design load to cause elastic instability
	in a global mode
$\alpha_{cr,s,est}$	estimate of α_{cr} for the sway buckling mode
$\alpha_{cr,r,est}$	estimate of α_{cr} for the rafter snap- through buckling mode
α_{LT}	imperfection factor
α_{m}	reduction factor for the number of columns in a row
χ	reduction factor for the relevant buckling curve
$\chi_{ m LT}$	reduction factor for lateral torsional buckling
ε	strain
$\delta_{H,Ed}$	maximum horizontal deflection at the top of either column,
	relative to the base, when the frame is loaded with horizontal
	loads
$\delta_{\rm NHF}$	lateral deflection at the top of the column due to the NHF
φ	global initial sway imperfection
ϕ_0	basic values for global initial sway imperfection
ϕ_{LT}	values to determine the reduction factor $\chi_{\rm LT}$
ψ	ratio of moments of a segment
γm	partial factor

Abbreviation	Descrption
γ_{m1}	partial factor for resistance of members to instability(member
	checks)
γ_{m2}	partial factor for resistance of cross sections in tension to
	fracture
ν	Poisson's ratio
λ_1	slenderness value to determine the relative slenderness
$ar{\lambda}$	non dimensional slenderness
$ar{\lambda}_{ m LT}$	non dimensional slenderness for lateral torsional buckling

LIST OF APPENDICES

Appendix	Description	Page
Appendix A	Questionnaire	76
Appendix B	Design of portal frames	83
Appendix C	Specimen design calculation of a portal frame	_99
Appendix D	Steel universal beams - property table	155
Appendix E	Initial design table	161