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A B S T R A C T 

MODELLING OF THE VULCANIZATION PROCESS OF THICK-

WALLED NATURAL RUBBER ARTICLES. 

By: V.S.C. Weragoda 

A computer-based technique was developed to render the state of cure in thick-walled 

natural rubber compounds as measured by the oscillating disk rheometer torque. The 

method was based on a mathematical function derived to replicate the rate of change 

in the rheometer torque with respect to the curing time and the curing temperature. 

The mathematical function was able to trace the temperature related changes in the 

rheometer curves of different rubber compounds exceptionally well, at a 99 .9% level 

of certainty. This was used to model the vulcanisation process for thick-walled articles 

through a deterministic simulation approach, which was made it possible to predict 

the scorch time, curing time, and the time for onset of reversion to a precision within 

± 5 % , as verified against programmed a temperature profile curing in a rheometer. 

This study also investigated the variation of the thermal conductivity and the thermal 

diffusivity of rubber compounds during the curing process, to determine the 

effectiveness of such variations in estimating the curing time of thick-walled rubber 

articles. The experiments were carried out using a modified hot wire technique. 

The coefficient of variation in the thermal diffusivity was estimated at 2 0 % , and the 

same for the thermal conductivity was found to be 15%, for the compounds tested. 

The simulation model showed that this variation was not significant in affecting the 

curing time. 

Chairperson of Supervisory Committee 
Co-Supervisor 

Dr. P.Y. Gunapala 
Dr. N. Munasinghe 
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