

ARCHITECTURAL HELPER TOOL TO CONVERT

MONOLITHIC SYSTEMS TO MICROSERVICES

Chamika Kasun Bandara

(168205D)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

June 2018

ARCHITECTURAL HELPER TOOL TO CONVERT

MONOLITHIC SYSTEMS TO MICROSERVICES

Balamanage Chamika Kasun Bandara

(168205D)

Thesis submitted in partial fulfillment of the requirements for the degree

Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

 June 2018

i

DECLARATION

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other medium.

I retain the right to use this content in whole or part in future works (such as articles

or books).

Signature: ……………… Date: ………………..

Name: B.M Chamika Kasun Bandara

The above candidate has carried out research for the Masters Thesis under my

supervision.

Name of the supervisor: Dr. Indika Perera

Signature of the supervisor: …………………………. Date: ………………..

ii

Abstract
Today many of the developers and users expect systems to have dynamic user experience on

a wide variety of clients including mobile devices. As well as expect to have high scalability

and needs to roll out new updated in order to cope with the competitors, even for multiple

times a day. But to gain such level of flexibility through the existing monolithic systems is

quite tough and hard due to the dependability of the internal modules, components and the

services. Recently researchers have discovered a new architecture called microservices

architecture where it consists of independent set of services which are focused on one or small

set of functionalities of the system and can be deployed as a separated service. By having

isolated services, it increases the flexibility on scalability, independent deplorability,

maintainability, and reusability.

 Recently microservice topic has gain lots of attention from the software industry. If we

search on Google or Yahoo we would fine millions of articles, blogs, discussions on social

media, and conference presentations. That is because microservices has huge advantage when

it comes to development and the evolving of the system. If we are doing a green field project,

then there would be not much risk than managing the lots of concurrent and distributed

microservices. But if it is going to be a brown field project or trying to convert the existing

monolithic systems into microservices there are exist several other risks associated with it, one

of major risk is deciding which services to convert into microservices.

 In this research trying to find a solution to that problem and mainly focused on the OO

Java based monolithic systems. In order to identify the services in the monolithic system`s

legacy code we use hierarchical agglomerative clustering algorithm with customized fitness

function which helps to identify the candidate microservices for the microservice based

architecture, then those will be presented to the users based on the risk value. This tool is

capable of providing insights about each of the services by showing risk levels of the obtained

services. If the time permits those features will complete with this research in addition to

microservices identification. So that people who use this architectural helper tool will get

broad understanding of candidate services and they can be reordered by inputting business

values to each of those services. Which reduces the risk of converting the existing monolithic

system into the relevant microservices.

iii

ACKNOWLEDGEMENT

I am grateful to Dr. Indika Perera for taking my project under his supervision and his

willingness to give valuable advices, support and direction. As well as I should be

thankful to Sysco Labs' Senior Director of Engineering & Architecture Hasitha

Liyanage for helping me to come up with this research idea and giving me valuable

points and advices. Not only that I should be thankful to Sysco Labs' Senior Director,

Engineering and Architecture Rohana Kumara for his valuable ideas, and comments.

I am again thankful to them for providing immense guidance for this project.

iv

TABLE OF CONTENTS
DECLARATION i

Abstract ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF FIGURES vi

LIST OF TABLES vii

LIST OF ABBREVIATIONS viii

Chapter 1 INTRODUCTION ix

1.1 Background 1

1.2 Problem Statement 3

1.3 Motivation 3

1.4 Objectives 6

1.5 Research Scope 7

Chapter 2 LITREATURE REVIEW 8

2.1 Extracting Microservices 9

2.2 Service Identification Techniques 10

2.2.1 Structured and Unstructured Analysis Approach 10

2.2.2 Architecture based Approach 13

2.2.3 Service Identification with Domain analysis 17

2.2.4 Semi-Automated Approach 19

2.3 Summary of Service Identification 21

2.4 Challenges in Service Identification 21

2.5 Migration Techniques used in Legacy Systems Migration 22

2.6 Challenges in Choosing Implementation Techniques 24

2.7 Overview of the Current Practices on Legacy Systems Migration. 25

Chapter 3 METHODOLOGY 26

3.1 Proposed Solution 27

3.1.1 Overview of Proposed Solution 27

3.1.2 Scrutiny of Proposed Solution 28

Chapter 4 ARCHITECTURE AND IMPLEMENTATION 31

4.1 System Architecture 32

4.2 Solution 32

v

4.2.1 Mapping of Object to Services 33

4.2.2 Fitness Function 33

4.2.3 Service Clustering 37

4.3 Implementation 38

4.3.1 Frontend 39

4.3.2 Backend 41

4.3.3 Algorithms 43

Chapter 5 SYSTEM EVALUATION 44

5.1 Overview of Test Project 45

5.1.1 DDL for Student Management API 46

5.1.2 File Structure of Student Management API. 49

5.2 Microservice Identification 51

5.2.1 Results 51

5.3 Discussion and Validation 66

5.3.1 Discussion 66

5.3.2 Validation 69

5.3.3 Validation and Discussion Summary. 81

Chapter 6 CONCLUSION 84

6.1 Research Contributions 85

6.2 Study Limitations 86

6.3 Future Work 87

Chapter 7 REFERENCES 88

vi

LIST OF FIGURES

Figure 1-1: Types of Scaling. ... 2
Figure 1-2: Sample Legacy System. .. 4
Figure 1-3: Example Microservice System. ... 5
Figure 2-1: Two stage processing .. 12
Figure 2-2: Architecture based approach for Service Identification 16
Figure 2-3: Service Identification with Domain Analysis ... 17
Figure 2-4: Service Identification with Semi-Automated Approach. 19

Figure 2-5: Types of Migration Techniques .. 22
Figure 2-6: Implementation Techniques .. 24
Figure 3-1:System Overview. .. 27
Figure 3-2: Java Objects to Service mapping. ... 29

Figure 3-3: Dendrogram of Service Clusters. .. 30
Figure 4-1: System Architecture. ... 32
Figure 4-2: Project Backend. ... 38

Figure 4-3: Project Frontend - File Upload. ... 39
Figure 4-4: Project Frontend - Submit Files. ... 39
Figure 4-5: Project Frontend - File Uploaded. ... 40
Figure 4-6: Project Frontend - Processed Results. ... 40

Figure 4-7: Project Backend - Controllers. .. 41
Figure 4-8: Project Backend - Algorithms. .. 43
Figure 5-1: Iteration 1 Final Result .. 55
Figure 5-2: Iteration 2 Final Result. ... 60
Figure 5-3: Iteration 3 Final Result. ... 65
Figure 5-4: System Dependencies for Repositories. .. 70
Figure 5-5: System Dependencies for Managers. .. 71
Figure 5-6: 3rd Iteration Final Cluster Results. ... 82
Figure 6-1: Features to be Implemented. ... 87

file://///Users/Chamikabandara/Documents/MSc%20Thesis/ARCHITECTURAL%20HELPER%20TOOL%20TO%20CONVERT%20MONOLITHIC%20SYSTEMS%20TO%20MICROSERVICES.docx%23_Toc515922977
file://///Users/Chamikabandara/Documents/MSc%20Thesis/ARCHITECTURAL%20HELPER%20TOOL%20TO%20CONVERT%20MONOLITHIC%20SYSTEMS%20TO%20MICROSERVICES.docx%23_Toc515922978
file://///Users/Chamikabandara/Documents/MSc%20Thesis/ARCHITECTURAL%20HELPER%20TOOL%20TO%20CONVERT%20MONOLITHIC%20SYSTEMS%20TO%20MICROSERVICES.docx%23_Toc515922979
file://///Users/Chamikabandara/Documents/MSc%20Thesis/ARCHITECTURAL%20HELPER%20TOOL%20TO%20CONVERT%20MONOLITHIC%20SYSTEMS%20TO%20MICROSERVICES.docx%23_Toc515922980
file://///Users/Chamikabandara/Documents/MSc%20Thesis/ARCHITECTURAL%20HELPER%20TOOL%20TO%20CONVERT%20MONOLITHIC%20SYSTEMS%20TO%20MICROSERVICES.docx%23_Toc515922981
file://///Users/Chamikabandara/Documents/MSc%20Thesis/ARCHITECTURAL%20HELPER%20TOOL%20TO%20CONVERT%20MONOLITHIC%20SYSTEMS%20TO%20MICROSERVICES.docx%23_Toc515922982
file://///Users/Chamikabandara/Documents/MSc%20Thesis/ARCHITECTURAL%20HELPER%20TOOL%20TO%20CONVERT%20MONOLITHIC%20SYSTEMS%20TO%20MICROSERVICES.docx%23_Toc515922983
file://///Users/Chamikabandara/Documents/MSc%20Thesis/ARCHITECTURAL%20HELPER%20TOOL%20TO%20CONVERT%20MONOLITHIC%20SYSTEMS%20TO%20MICROSERVICES.docx%23_Toc515922984
file://///Users/Chamikabandara/Documents/MSc%20Thesis/ARCHITECTURAL%20HELPER%20TOOL%20TO%20CONVERT%20MONOLITHIC%20SYSTEMS%20TO%20MICROSERVICES.docx%23_Toc515922986
file://///Users/Chamikabandara/Documents/MSc%20Thesis/ARCHITECTURAL%20HELPER%20TOOL%20TO%20CONVERT%20MONOLITHIC%20SYSTEMS%20TO%20MICROSERVICES.docx%23_Toc515922988
file://///Users/Chamikabandara/Documents/MSc%20Thesis/ARCHITECTURAL%20HELPER%20TOOL%20TO%20CONVERT%20MONOLITHIC%20SYSTEMS%20TO%20MICROSERVICES.docx%23_Toc515922991
file://///Users/Chamikabandara/Documents/MSc%20Thesis/ARCHITECTURAL%20HELPER%20TOOL%20TO%20CONVERT%20MONOLITHIC%20SYSTEMS%20TO%20MICROSERVICES.docx%23_Toc515922992
file://///Users/Chamikabandara/Documents/MSc%20Thesis/ARCHITECTURAL%20HELPER%20TOOL%20TO%20CONVERT%20MONOLITHIC%20SYSTEMS%20TO%20MICROSERVICES.docx%23_Toc515922993

vii

LIST OF TABLES

Table 2-1: Current Practices on Legacy Systems Migration. 25
Table 5-1: Test Project Functionalities. ... 45
Table 5-2: Iteration 1 Final Results Cluster Values. .. 66
Table 5-3: Iteration 2 Final Results Cluster Values. .. 67
Table 5-4: Iteration 3 Final Results Cluster Values. .. 68
Table 5-5: Risk Level Value Margins. ... 69
Table 5-6: Usage Summary as a Percentage. ... 79
Table 5-7: Adding Student Usage Percentages. ... 79
Table 5-8: Adding Lecturer Usage Percentages... 80
Table 5-9: Adding Department Usage Percentages. .. 80

Table 5-10: Adding Exam Usage Percentages. .. 80
Table 5-11: Making a Payment Usage Percentages. .. 80

Table 5-12: 3rd Iteration Cluster Values. ... 83

viii

LIST OF ABBREVIATIONS

Abbreviation Description

AI Artificial Intelligence

API Application Programming Interface

CORBA Common Object Request Broker Architecture

CoC Convention over Configuration

COTS Commercial Off-The-Shelf

DCE Distributed Computing Environment

DCOM Distributed Component Object Model

DDD Domain Driven Design

HTTP Hyper Text Transfer Protocol

IR Information Retrieval

MVC Model – View – Controller

OAR Options Analysis for Reengineering

SO Service Orientation

SOA Software Oriented Architecture

SOMA Service Oriented Modeling and Architecture

UDDI Universal Description Discovery and Integration

UML Unified Modeling Language

YAGNI You Ain’t Going to Need It

XML eXtensible Markup Language

DDL Data Definition Language

TBI To Be Implemented

ix

Chapter 1

INTRODUCTION

1

1.1 Background

Today it has become a heavier burden maintaining a very large scale monolithic legacy

systems due to lots of complexities. Due to that many researchers are looking for well-

defined architectural solutions to cope with such systems. Among those converting

existing system into microservices hold a specific place due to simplicity and related

other advantages. They are rapidly heading towards the peak of inflated expectations

on the Gartner Hype Cycle [1]. As well as there are some skeptics in the software

community regarding the microservices convincing nothing much other than simple

extension to Service Oriented Architecture (SOA). Despite both the hype and the

skeptics, Microservices architecture has considerable advantages.

When it is come to the monolithic world it is very simple and less complex to build

and deploy a moderate size software. Normally at the core of a monolithic system lies

the core business logic of the system which is implemented by modules that define

services, domain objects, and events. Surrounding the core are adapters that interface

with the external world. Though is seems like a modular service architecture whole

system packaged and deployed as a one system. Today most of the systems that we

see in the literature are monolithic systems. But unfortunately, such a simple approach

has its own disadvantages. That is when it comes to a successful application it always

tends to modification and grow overtime which is basically adds many lines of codes

to the existing system. Once the system quite large and complex such a system

development team and the organization would be in the hell of pain. One of the major

thing is becoming much more complex thus it not be possible for a one single

programmer to understand the whole system code itself. As well as small change for a

code causes to larger deployment times not only that small bug will cause to system

crashes fully. That is where the microservices comes to rescue from such a heavier

burden.

In a microservices system, idea is to build to set of smaller and interconnected layer of

services to provide the required functionality thus reducing the complexities and the

other pitfalls in the monolithic systems. Applications typically use the three types of

scaling together. Y-axis scaling decomposes the application into microservices as

shown above in the first figure in this section. At runtime, X-axis scaling runs multiple

2

instances of each service behind a load balancer for throughput and availability. Some

applications might also use Z-axis scaling to partition the services. In a microservice

architecture each of the service has its own database. Since gain the ability of using

diverse of the database types which can be match to the different sort of requirements.

But that adds some more complexity to the system. That is controlling the distributed

transaction and failovers.

Many people today trying to discover the benefits of converting large scale monolithic

systems into smaller microservices. Those microservices have a standardized interface

that enables them to tolerate individual service failures and updates without

catastrophically impacting the overall business solution. But most of the people who

has even the deep knowledge about the architectural concepts and related field in a

dilemma of deciding whether to build a monolithic solution (Brownfield) and convert

it to a microservices architecture, or to build a microservices architecture from scratch

(Greenfield). But when it comes to the Greenfield solution it could be high risky and

lots of time consuming. Due to that most of the architectures or the system consultants

trying to move the less risk part of the system into microservices initially.

But identifying those less risky services in a very complex and large scale monolithic

system would be a headache for a system architecture. There could be huge number of

dependencies and complexities on each and every single service. It would not be

Figure STYLEREF 1 \s 1 SEQ Figure *

ARABIC \s 1 1: Types of scaling.

Figure STYLEREF 1 \s 1 SEQ Figure *

ARABIC \s 1 1: Types of scaling. Figure 1-1: Types of Scaling.

3

possible to look at each line of code and decide what to move as a microservice and

what not to.

1.2 Problem Statement

As pointed out earlier it is quite a challenging and complex task to identify and classify

the existing service layer into microservices. Because there could be different service

related metrics to consider when we are separating out from the existing services. Such

as business values, dependencies, requirements, risks and deadlines etc. But it would

be great and valuable to have a tool that support to identify services from the existing

monolithic system which are more feasible to convert into microservices. Otherwise if

we take a system which has millions or billions of lines of code, it is not feasible or

possible to go through each line of the code or architectural documents to identify the

feasible service to convert. Not only that only one person won't be able to understand

the whole code base or the system architecture that leave us a problem to solve. What

if there exist a tool which help the architectures or the system consultants that can use

to decide which services need to convert and which are not to. In this research trying

to address this new problem to identify the services which can convert as a

microservices with less risk and effort. But it is not an easy task to provide a tool which

gives such a support there could be different aspects that need to take into account

when identifying those services. Those could be the architectural constraints, system

limitations, business requirements, architectural complexities and dependencies.

Among those using a tool we will be limited to finding a solution for problems like

architectural complexities, and dependencies only. Because those are the factors that

only can be measurable theoretically as well as practically using a simple tool. Other

factors may require even more complex logics and research areas to accomplish (i.e.

AI).

1.3 Motivation

Finding a solution to the above state problem is quite hard task, despite all of the

barriers might come across when implementing the solution for the problem, solution

for this problem would address several benefits which cannot be easily gained from an

existing monolithic approach. As pointed out earlier monoliths are built as a single

systems unit, because of that for every possible functionality such as handling HTTP

4

requests, executing domain logic, database operations, communication with the

browser/client, handling authentication and so on, that unit must bear the

responsibility, which sort of lead to a problem of single point of failure, failure of that

unit might cause to fail the entire system. Having such architecture, even with smaller

changes in the code base it requires building and deploying the whole application.

Not only that when it comes to the scalability aspect of the system, to have a quite

large scalable system, it might require have to run multiple instances of the monolith,

even if you know that the bottleneck lies in one component only. For an instance if we

take a simple image processing application as depicted below,

If many clients are accessing the services and try to upload lots of images, application

servers will not be able to handle the high requests congestion, due to that whole

application will suffer performance issues. In order to solve such a simple problem

there, exist two possible solutions, either scale the application by running multiple

instances of the monolith or move the logic into a microservice. But it is clear that

there is no point of creating instance for entire system just to resolve the image

Figure STYLEREF 1 \s 1 SEQ Figure * ARABIC \s 1 2: Example Monolithic System.

Figure 1-2: Sample Legacy System.

5

processing related performance issue, instead we can easily put those services into

separate microservices and we can scale those services upon the scalable requirements.

As depicted above the picture we can serve the different types of services as

microservices based on the scalability requirements. Not only that, having a

microservice architecture will bring much more advantages to the system. One of the

biggest advantages of the microservices pattern is that it does not require you to rewrite

your whole application from the ground up. Instead what you can do is to add new

features as microservices and plug them into your existing application. Since each

microservice deals with one concern only which ultimately wrapped into a small

system for each microservices and this result in a small codebase, which means easier

maintainability. And also, in order to release a newer version of some part of the

system will not require entire system to rebuild and test again, since such architecture

having smaller dependency circle, it only required to deploy those services. Not only

that it increases the system resilience as well, as such a system is composed from

multiple microservices, if some of them goes down only some features from your

application will go down, not the entire application.

 Because of those advantages we see from having such a system

architecture it motivates to convert the existing monolithic systems into the gain the

Figure 1-3: Example Microservice System.

6

benefits as described above. This solution could be helpful for very large and complex

monolithic systems to convert those existing systems into microservices based system

with less risk by identifying the less risk services in beforehand of implementation.

1.4 Objectives

The main objective of this research is to create an architectural helper tool where it can

be used to get insight about the microservices in the existing monolithic system. By

having an insight about all the system services, it would be easy for anyone who is

willing to convert existing monoliths into microservices architecture. And also, this

consist with two main process activities. First step is identifying services in the existing

monolithic system, and the second one is creating the architectural helper tool.

 Service identification is the major role in the process of

converting existing monolithic systems into microservices based system. Due to that

this would be a one of major object of this research. To identify services in an existing

monolithic system there, exist lots of methods in the service identification literature.

Find a best and most suitable method will another sub objective of this research. And

also, there will be such requirements that where we need to change the some of those

identified methods in order to match with the microservice identification, since many

of the service identification techniques that available in the literature are done to

identify the services for Service Oriented Architecture (SOA). Both the SOA and

microservices indeed have many similarities, but microservices has a special approach

of breaking a monolithic application into many smaller services that talk to each other,

SOA has a broader scope.

 Next key objective is, develop an algorithm where we

can used to filter out the most relevant microservices by using the above identified

methodology. In Order to achieve the best out of those methods since many of the

developed methods and algorithms used only to identify the SOA related services.

Then after in the process of creating that architectural tool next objective is identify

the methods and technologies to create such a tool. In this final process step will try to

accommodate best technologies and methodologies which can be used to represent

many information related to the each of the identified services. Using that information

7

anyone who is interested in converting existing monolithic system into microservice

architecture-based system will get much more comprehensive idea about which

services to convert and which are not to base on the risk-based sorting.

1.5 Research Scope

Initial phase of this research trying to find a way to identify the microservices from the

existing monolithic systems. But this research scope will be narrowed down to one

architecture pattern and one language due to the time limitations. In this research it

will mainly focused on MVC pattern where an architecture consists controllers,

services, repositories and managers etc.

8

Chapter 2

LITREATURE REVIEW

9

2.1 Extracting Microservices

This research area is pretty much new and currently being emerging a lot. Due to that;

it is quite hard to find a research which have done on the same track, but there are few

that are done on the microservices related such as Designing a Business Platform using

Microservices [1] by Rajendra Kharbuja, Towards a Technique for Extracting

Microservices from Monolithic Enterprise Systems [2] by Alessandra Levkovitz et al

and Application Development and Microservices: A case study [3] by Pedro Felipe et

al. Among the above listed research articles Towards a Technique for Extracting

Microservices from Monolithic Enterprise Systems Article is more relevant to the

research which this paper describes.

In Towards a Technique for Extracting Microservices from Monolithic Enterprise

Systems [2] paper they have described a technique to identify and define Microservices

on a monolithic enterprise system. As the major contribution, their evaluation

demonstrate that their approach could identify good candidates to become

microservices on a 750 KLOC banking system, which reduced the size of the original

system and took the benefits of microservices architecture, such as services being

developed and deployed independently, and technology independence. According to

their proposed technique they have considered that monolithic enterprise applications

have three main parts a client-side user interface, a server-side application, and a

database also considered that a large system is structured on smaller subsystems and

each subsystem has a well-defined set of business responsibilities not only that they

have also assumed that each subsystem has a separate data store. And then they have

map their selected system database tables into subsystems from that they created a

dependency graph where vertices represent facades, business functions, database

tables and edges represent the each of those function invokes. And then after they

identified the set of services through the dependency graph to convert as microservices

and finally they created API gateways to turn the migration to microservices

transparent to clients.

In a blog article [4] it describes several principles regarding when converting existing

monolithic systems into microservices. If a monolithic system has design in a way that

matches those architectural principle those makes easier to convert them into

10

microservices. That are Domain driven design(DDD), Separation of concerns using

MVC, High cohesion, Low coupling, Do not repeat(DRY) [5], Convention over

Configuration (CoC)[6], You Ain’t Going to Need It (YAGNI) [5]. That logic might

be helpful when deciding which systems can be easily converted into microservices

and which are not.

In a separate blog article [7] which has the topic Monolithic to Microservices

Refactoring for Java EE Applications, they also talk about the architectural principles

that are already mentioned above. This also highlights the same point about easiness

of converting those existing monolithic applications into microservices when having

known architectural patterns. Because without knowing an architectural pattern that

the current monolithic system follows the task of converting such a system into

microservice would be pretty much difficult or even can be an impossible task to

achieve.

2.2 Service Identification Techniques

2.2.1 Structured and Unstructured Analysis Approach

For this research to continue it requires to analyze the existing legacy code base and

identify the existing services. For that there are couple of research papers that can get

few ideas. First one is Service Identification in Legacy Code Using Structured and

Unstructured Analysis by Inbal Ronen et al [7]. According to that research paper they

see another aspect of reuse of some of the existing legacy code base such as Lots of

resources and time have been spent on

Existing legacy systems, need to retain as much as possible of previous investments,

requires identification of where a service or part of it is already implemented and can

be reused and Manual identification of candidate code sections is tedious and requires

domain experts. According to their paper they have discussed about 3 approaches on

transforming existing legacy code into SOA based system. The first one is Top Down

approach that is Define to-be model and implement it and No consideration of existing

system. The second approach is Bottom Up that is Start from given legacy as-is system

and expose as SOA, but this approach is harder to adapt to new business models. And

the final approach is Meet in the middle that is hybrid approach of the above two

11

method Combine Top Down and Bottom Up approaches. Start from target to be model

and Map into existing system then Exploit reuse and implement if needed. Then they

have discussed ways to analyze the code base and they talked about main two

approaches for code analysis that is Structured Code analysis and unstructured code

analysis. In Unstructured code analysis Information Retrieval (IR) techniques, e.g.

tokenization, usage of thesauri and stemming of source code and comments and No

consideration of code structure and semantics. In Structured code analysis, Classic

static analysis, e.g. control flow, data flow and No comment analysis as well as No

identification of non-exact matches. But Combination of techniques facilitates

effective and precise service implementation search.

Finally, in that research paper they have discussed their approach on identification of

services with SOMA – Service Oriented Modeling and Architecture. According to that

An IBM end-to-end SOA method for the identification, specification, realization and

implementation of services, components and flows. Under Service Identification

combines top-down, bottom-up, and meet-in-the-middle techniques for the

identification of services to be implemented in the new SOA environment. For Service

Specification – further designs the subsystems that were found in the previous step

and specifies the coordination between them. Details the components that implement

the services. Service Realization - defines the software that realizes a given service.

According to the Service Identification method, receives a service title as input,

searches for potential implementations in the code and ranks the results by relevance

to the service title. This process happens under several stages, Stage 1: source code

processing, in this stage they have Analyze code structure to Identify components of

interest in code and comments then Insert code and processing results into repository.

Stage 2: search and ranking, in this stage Search for service title matches in the

artifacts that have been processed Rank match relevance, taking into account structural

and semantic context. This Stage 2 can be repeated for multiple service titles over the

same processed code artifacts.

12

\

Source Code Processing Stage

Identify programming constructs (e.g. variable declarations, procedure names,

comments). In this stage basically Perform shallow analysis based mostly on a

composition of regular expressions, perform deep static code analysis (control flow

and data flow detection), Analyze comments, exploit conventions and Mark constructs

using annotations. And also Tokenize - enable matching of substrings under this

Consider special characters (spaces, commas, underscores) and code naming practices

(Hungarian notation, Camel Case) then Insert tokens and annotations into repository

Figure STYLEREF 1 \s 2 SEQ Figure * ARABIC \s 1 1:

Overview of above described method.

Figure 2-1: Two stage processing

13

their Ignore tokens with low semantic value (e.g., “and”, “the”) and their method uses

a search engine as the repository (provides indexing and querying capabilities).

 Search and Ranking Stage

In this stage Tokenize service title, that is Apply the techniques used during the source

code processing stage. Construct and execute search query that is Include the tokens

from the service title Exploit unstructured analysis capabilities of the search engine

(e.g. stemming, thesauri and abbreviation usage) to search for inexact matches. (i.e.

Provide common language and domain-specific thesauri and abbreviation dictionaries

to the search engine) then Analyze query results Search engine returns the location of

each query token occurrence (or its synonym), The method assembles valuable

occurrence combinations such that There is exactly one match for every token (or one

of its synonyms) and Token match locations are close to each other. Finally, virtual

similarity: 100% for exact match of all service title tokens, Aggregate results to

procedure level and Apply supplemental ranking heuristics based on semantic context.

 Ranking Heuristics

They High score for match in procedure declaration. Higher score for match in

procedure declaration and in the adjacent comment, Match in variable declaration or

close to it for this Use data flow analysis results to find variable referencing code and

Identify the reference location as a match with low score then Separate matches for

service title subject (noun) and action (verb), Look for noun matches in or close to a

variable declaration and Look for verb matches in or close to the variable referencing

code.

2.2.2 Architecture based Approach

Next is Service Identification and Packaging in Service Oriented Reengineering

research paper which was published by Zhuopeng Zhang et al [8]. In this research

paper they present an architecture-based service-oriented approach to support service-

oriented reengineering. It integrates and reuses software components as services over

Internet by wrapping underlying computing models with XML. Service identification

and service packaging processes are described in detail, which are the keys to service-

oriented reengineering. Target services are defined according to service identification,

14

which is based on a comparison of analyses in both problem domain and legacy

systems. Clustering techniques are applied in service identification process to analyze

recovered architectural information and to identify related modules. Service packaging

is benefit from architecture-based development and reuse.

Web service technology and Service-Oriented Architectures (SOA) are rapidly

developing and widely adopted. Web service technology is to build complex Web-

based systems fast, rapidly adopt changes and to provide effective inter- and intra-

enterprise system integration. Web services have been born as a natural evolution of

different technologies, approaches and demands from communities in business and

technology compared to other integration technologies such as Common Object

Request Broker Architecture (CORBA), Distributed Component Object Model

(DCOM), and Distributed Computing Environment (DCE) – all involved

communication within different closed technologies. Web services are based on

Service-Oriented Architectures (SOA), which is the keystone of service-oriented

computing. SOA is an architectural style whose goal is to achieve loose coupling

among interacting software agents. The service implementation can evolve easily since

it is hidden behind the service interface. The implementation is able to evolve without

breaking applications that consume the service. SOA is particularly applicable when

multiple applications running on varied technologies and platforms have to

communicate with each other. It is an architecture evolution, and it affects the software

life cycle from the software as a service point of view. Affected by this Service

Orientation (SO) trend, many existing non-service-oriented software systems will

become legacy systems. These legacy systems need service-oriented reengineering,

which can facilitate legacy evolution in service-based computing environment. From

economic aspects, a business is constantly reorganizing, changing its boundaries and

reconfiguring its activities. Service-oriented reengineering enables legacy systems to

adapt to continuous changes in business logic and market requirements. From technical

aspects, application integration towards services and service choreography will

become common in service-oriented computing.

15

Service identification process

Their approach is especially applicable to reengineering tasks, which have some of the

special characteristics such as A legacy system needs to be migrated into a network

environment, and it can be wrapped and exposed as a Web service, there are some

reusable and reliable functions embedded with valuable business logic in the, Legacy

system. These functions are useful to be exposed as independent services from the

requirement point of view, some reuse components from the legacy system are fairly

maintainable compared to maintain the whole legacy system, some components of the

target system run on different platforms and vendor products and the target system will

operate over the Internet where reliability and speed cannot be guaranteed.

Step 1: Legacy system evaluation.

This evaluation reveals the current status of a legacy system and specifies which

phase it is in its lifecycle. A decision tree is used in the assessment in order to

consider many aspects altogether. Techniques such as the Options Analysis for

Reengineering (OAR) are used to guide the decision-making process.

Reengineering decisions are made according to this assessment.

Step 2: Architecture recovery.

The goal of this step is to obtain design and architecture information as much as

possible by reverse engineering techniques. The static and dynamic analysis

techniques applied in this step will depend on the features of the legacy system.

Various modularization criteria, such as coupling, cohesion, reliability,

maintenance measures, are adopted to identify potential components and

connectors. The results are the foundation of further reengineering work and the

input of later service identification.

Step 3: Service identification.

On the one hand, it is to determine what business functionalities should be provided

by the target service in the application domain. On the other hand, the business

functionalities embedded in the legacy system should be identified in order to be

reused in the target service.

16

Step 4: Service packaging.

According to the results of service identification, legacy components and newly-

built functional components are composed by connectors. This is an architecture-

based integration process.

Step 5: Service publication and choreography.

After a Web service is created, it will be registered under Universal Description

Discovery and Integration (UDDI). UDDI creates a standard interoperable platform

that enables companies and applications to quickly, easily and dynamically discover

and use Web services over the Internet.

Figure STYLEREF 1 \s 2 SEQ Figure * ARABIC \s 1 2: Overview of proposed

approach. Figure 2-2: Architecture based approach for Service Identification

17

2.2.3 Service Identification with Domain analysis

Properly identifying services and determining reusable legacy components are a

critical step in architecting a service-oriented reengineering task. Service identification

process consists of the following three steps

Step 1:

Service identification in problem domain. It starts with a domain analysis. The goal of

this domain analysis is to identify and document requirements on a set of systems in

the same application domain. The domain analysis process can be carried out in two

steps, subdomain identification and analysis of the selected subdomain. The results of

the whole domain analysis are summarized as a domain model. This domain model

can be represented by UML and processed by some modelling tools, such as Rational

Rose. Based on this domain model, some business functions are identified to be

valuable and reusable and needed to be provided as services. In this way, some logical

services are summarized, which are mainly based on requirement analysis.

Figure STYLEREF 1 \s 2 SEQ Figure * ARABIC \s 1 3: Service Identification Process.

Figure 2-3: Service Identification with Domain Analysis

18

Step 2:

Service identification in a legacy system. There are some abstracted components in the

legacy system, which encapsulate valuable functionalities and are reusable in the target

service. The recovered architecture describes these components and their relationship.

They have adopted a requirement-driven agglomerative hierarchical clustering method

with a complete linkage algorithm, which can provide the most cohesive clusters

according to empirical evidence. Components and connectors, which are described in

SADL files, are defined as the entities to be clustered. Features are defined to measure

the similarity between entities. The weight of features is calculated according to the

architectural configuration and the specification of components and connectors. A

dendrogram is obtained after executing this clustering algorithm on these SADL

descriptions. This dendrogram is analyzed according to requirements. In order to

identify a functional business service from these architectural elements, a cutting point

must be determined in the dendrogram. The architectural elements in sub-clusters,

which are partitioned by the cutting point, are candidates for reuse in the target

services. The selection of the cutting point is an elementary factor for determining the

granularity of extracted code. So far, architects are responsible for making the cutting

point and selecting subtrees manually according to other recovered design information.

This clustering method together with human supervision provides a powerful analysis

on recovered architecture, and restructures legacy systems into coarse-grained and

loose-coupling modules.

Step 3:

Matching legacy functionalities to business functions in the logical service. Because

the SADL

Representation has equivalent UML profiles and the logical service model is

represented in UML as well, the comparison between legacy system architecture and

logical service architecture enables to determine the selection of reusable legacy

functionalities and the construction of unavailable functionalities.

19

2.2.4 Semi-Automated Approach

In [11] research paper which is done by Ravi Khadka mainly talked about approach of

developing a consolidated legacy-to-SOA migration approach that facilitates the

(semi-) automated service identification and service extraction from the legacy

systems and the open-source components. According to mentioned research approach

it consists with several process steps as depicted in the below picture.

Figure STYLEREF 1 \s 2 SEQ Figure * ARABIC \s 1 4:

Service Extraction Process.

Figure 2-4: Service Identification with Semi-Automated Approach.

20

Consolidated legacy-to-SOA migration approach, referred as” ServiciFi method”. This

method has developed using [11] method engineering and [12] concept slicing which

combines the migration feasibility and technology support required for the legacy-to-

SOA migration. The method engineering approach is used to assemble relevant

activities from existing service-oriented development methods (SODDM [13], WSIM

[14] and SOMA [15]) and cost-benefit analysis as suggested by Sneed [16].

Furthermore, concept slicing is used to facilitate the extraction of the legacy code to

be exposed as services.

 Candidate service identification involves two steps according to that

research that is patterns identification and service identification steps as depicted in

the figure 2.4. Since this a most crucial and critical task it this approach is contains set

of steps to follow. Initially, the research aims to exploit architectural reconstruction

[17], [18] and [19] source code visualization. This step helps to explore the legacy

code which gives a proper understanding about the legacy code base and to obtain

structural properties of the source code. In this process next step is to identify the

design patterns [20] [21]. Final step is using linguistic analysis techniques [22] identify

the semantic patterns and by doing a concept analysis [23] locate the appropriate

concepts that have been applied in the source code. After completing all the step in

this process, it would help to identify the candidate services to extract.

 Next step in the process it the service extraction, according to the

research paper they have used Concept slicing [12] technique to extract the complete

code representing the identified functionality. Not only that this paper has used

investigates code-query technologies [24] to extract the source code in language

independent fashion. This code-query technique supports so-called extract-abstract

present paradigm. Finally, those code extractions map to the relations, and to the query

language and to build the new relations. After that result are obtained in a manner

which can be presented to the users.

21

2.3 Summary of Service Identification

In A Structured Legacy to SOA Migration Process and its Evaluation in Practice [25]

research paper which was done by Ravi Khadka et al, talks about different approaches

on candidate service identification techniques. Identifying candidate services is an

important activity in the context of legacy to SOA migration as this activity enables

reusability and leveraging the existing legacy features [26]. A plethora of methods are

reported (Gu & Lago [27], Arsanjani et al. [28]) to identify potential services. In the

literature of the Candidate Service Identification (CSI) there exist several practices.

Basically, those type of practices of CSI is broadly categorized into two such as

I. Top down

II. Bottom Up

In the top-down approach, initially a business process is modeled based on the

requirements and then the process is subdivided into sub-processes until these can be

mapped to legacy functions. The top-down approach is used by Alahmari et al. [29],

Fuhr et al. [30], Ricca & Marchetto [31], and Zillmann et al. [32]. In contrast, the

bottom-up approach utilizes the legacy code to identify services using various

techniques such as information retrieval [33], concept analysis [34], business rule

recovery [31], and source code visualization [35].

2.4 Challenges in Service Identification

In the CSI literature many of the researchers argue that locating and identifying service

rich areas in legacy applications is not only a challenging task, but also an open

problem [36], [37]. The functionalities are embedded in legacy applications in such a

way that it is difficult to isolate the business functionality from the complex user

interfaces and data access logic. Equally challenging is the determination of the

optimal granularity of the candidate services such that they contribute to the business

goals. Zhang et al. [38] argue that (i) service rationalization- an analysis process to

identify the least frequently accessed component as a candidate than that of more

frequently accessed ones; and (ii) service consolidation- an iterative process for

redefining all the similar service instances into a consolidated version that supports a

22

superset of all the functions exposed by the individual functions, can improve the

candidate service identification.

2.5 Migration Techniques used in Legacy Systems Migration

The implementation phase is related to the execution of the migration of the legacy

applications to other architectures. Needless to say, that the implementation depends

on factors such as proper migration strategies, assessments of available tools and

techniques while executing the migration process. According to [25] they have

classified migration strategies into four categories such as;

1. Replacement - Legacy application is replaced entirely with a commercial off-

the-shelf (COTS) product

2. Integration - Existing legacy application is accessible via an interface

3. Redevelopment - Entire legacy application is Re-Developed.

4. Migration - Legacy application is gradually moved.

Even though this research paper mainly focused on the SOA related methodologies

there is much closer similarities between microservices based architecture and the

SOA. When comparing a microservices architecture and a service-oriented

architecture (SOA), it is nearly impossible to gain agreement on how they are related

to one another. Adding application programming interfaces (APIs) into the mix makes

Figure STYLEREF 1 \s 2 SEQ Figure * ARABIC \s 1 5: Four strategies against

“business value & cost” versus “technical value”.

Figure 2-5: Types of Migration Techniques

23

it even more challenging to understand the differences. Some might say that these

concepts are distinct, solve their own set of problems, and have a unique scope. Others

might be more generous and say that they achieve similar goals and work from the

same principles. They might also say that a microservices architecture is a "fine-

grained SOA" or that it is "SOA done right." So that we can take those classification

also relevant and valid for the microservices as well.

According to this paper implementation techniques which are heavily used in

converting legacy systems to SOA based systems can be categorized into two broad

groups. That is;

1. Code level techniques

2. Architectural level techniques

Those are depicted in the above Figure 8, in the literature of legacy to SOA migration

their other techniques where code level group can be further divided into categories.

Such as slicing [39], [38], [40], [41], wrapping [42], [43], [37], refactoring [44], code

transformation [32]. Due to the several factors like fast, less risk, economical and

easiness wrapping techniques has become more popular on the category of code level

techniques. Not only that even in the architectural techniques there exist some other

sub techniques which can be subcategorized into. Such as graph transformation

techniques are used by Heckel et al. [45] and Fuhr et al. [30]. Some of the other

techniques being used in legacy to SOA migration are inspired by model-driven

engineering [30], [29]. Below figure shows summary of the categories that identified

as major and sub techniques on used as implementation techniques for legacy systems

to Software Oriented Architecture (SOA) convert.

24

Figure 2-6: Implementation Techniques

2.6 Challenges in Choosing Implementation Techniques

One of the major challenge in this implementation phase is the identification or the

implementation of the most relevant migration strategy. Because it is much more a

difficult task to identify the proper guidelines for deciding which factors (e.g., business

priority, technical qualities, business value, and non-functional characteristics) have to

be considered while selecting a strategy. Furthermore, legacy applications are in a

heterogeneous IT landscape and developing tools for each variation of the legacy

languages tends to be very expensive. Ultimately this raises a question by opening up

a new research topic that is whether the legacy to SOA migration be realized in a

language independent manner.

25

2.7 Overview of the Current Practices on Legacy Systems Migration.

Table 2-1: Current Practices on Legacy Systems Migration.

26

Chapter 3

METHODOLOGY

27

3.1 Proposed Solution

3.1.1 Overview of Proposed Solution

As a solution to above mentioned problem it is required to develop an algorithm which

suggest the less risk services within the existing monolithic service layer. It will output

the all possible services that can be transform as microservices along with the priority.

In the too it can used to check the usages of the existing services and the dependency

hierarchy including the inheritance hierarchy to get an overview of the proposed

service layer. Based on the suggestions users will be able to pick the most relevant and

the appropriate services to transform into as microservices.

As depicted in the above diagram the tool consists with two main parts, namely System

analyzer and the Suggestion tool. Basically, the system initially analyzes the existing

code base to identify the architectural patterns to take decisions and analyzing those

data using the developed algorithm make the suggestions appropriately to sort the less

risk services as microservices. In addition to that tool is capable of showing the usages,

dependencies as mentioned above (This is a future work). Thus, gives the

architectures, system consultants to more flexibility on choosing relevant

microservices from the existing monolithic service layer.

Figure STYLEREF 1 \s 3 SEQ Figure * ARABIC \s 1 1: Overview of

the System. Figure 3-1:System Overview.

28

3.1.2 Scrutiny of Proposed Solution

For this research mainly it involves two steps, which is Service Identification of a

Monolithic system and the creating the architectural helper tool to give suggestions

which to choose as microservice from identified microservices. There are many service

identification techniques available in the legacy systems service identification

literature, among those many of techniques requires large amount of human interaction

(e.g. system analyst, maintenance programmer, etc.) that gathers information through

interviewing stakeholders in order to fill the gap between existing legacy system and

target architecture. Some approaches [8] identifies services by domain analysis and

business function identification, those are based on both requirements abstraction and

source code levels and needs architectural and requirement information to be available.

[9] Proposes an automatic approach to evaluate candidate services as found in the

literature review.

Since many of those researches for identification of Services in legacy systems

are done mainly rely on documentation or architecture, sometimes it could be very

hard to find those resources. But the source code of a system is the always available

resource, hence this research is focused on identification of candidate services through

the legacy system code. In this approach candidate services are considered as groups

of object-oriented classes evaluated in terms of development, maintenance and

estimated replacement costs as same as [10] approach. Basically, this service

identification process will be done though mainly two steps,

1. Mapping of Object to Services

2. Service Ranking

Mapping of the object classes into service is basically consider a service as a group of

classes defined in object-oriented source code. From those identified group of classes,

they will be provided some defined service to the system. There will be some inner

classes which are usually be the internal connections to other classes of the same

service. And also each of those classes interfaces defines the service operations, and

29

each of those class's public methods will be the operations provide by the identified

service.

Once the services are identified next task is to rank the services by the set of

characteristics or the quality attributes, such as

● Self-containment - Higher the number of required interfaces is, the less the

service is self-contained.

● Composability - Degree of direct and indirect dependence of a class on other

classes in the system.

● Functionality - Higher the number of interfaces is, the more the service

provides functionalities.

● Usage - Higher the number of references of the class, more the service use.

Figure 3-2: Java Objects to Service mapping.

Clustering Process

As pointed out earlier it is required to cluster the related classes in legacy code in order

to figure out the services within the monolithic systems. Usually may of researches

have done on this area have used hierarchical agglomerative clustering algorithm. To

proceed with this approach, we need to develop and fitness function which uses the

services ranking logic to cluster them accordingly, that is this algorithm groups

together the classes with the minimum value of the fitness function. Initially all of the

30

classes in the legacy code marked as a single cluster and then accordingly merge those

clusters into new clusters. This repeating process carried out until the number of

clusters is bigger than one. By doing so we can express the monolithic system in

hierarchical dendrogram. (See Figure 3-3.)

In order to get the partition of disjoint clusters, obtained hierarchy needs to be cut at

some point. Initially on the root node, compare the similarity of the current node to the

similarity of it child nodes. If the current node’s similarity value exceeds the average

of similarity value of its children, then the current node is a cutting point, otherwise,

the algorithm continues recursively through its children. Then after by the standard we

can apply the aforementioned clustering algorithm to evaluate the existing monolithic

system and represent all of its classes as coarse- grained and loose-coupled disjoint set

of services. or else it can use a predefined depth to stop the process.

Once after completing the clustering and filtering out the services from the existing

monolithic legacy code base, then it is presented to users based on the ranking of the

services. And also, it gives flexibility to add the business values to the suggested

services and based on the user input values for business values for each of those

services raked will be re calculated and rearranged.

Figure STYLEREF 1 \s 3 SEQ Figure * ARABIC \s 1 3:

Dendrogram with set of services. Figure 3-3: Dendrogram of Service Clusters.

31

Chapter 4

ARCHITECTURE AND IMPLEMENTATION

32

4.1 System Architecture

Figure 4-1: System Architecture.

According to the above system architecture whole system is divided into two main

parts, one is frontend and backend. Frontend is that place where the users can upload

the project files and get the processed to see the results. Once the project files are

uploaded to the server users can process those files to identify the candidate

microservices in the legacy code base. Once the files are uploaded and press the

process from the frontend. It is starting to extract the zip files and then start to process

the project files. In this step files are maps to the services and then those will be ranked

based on the fitness function. Finally, those services are clustered into few clusters

which are basically be the candidate microservices for the system. Then the response

will be send to the frontend and will be displayed on the web with relevant colors, and

risk level.

4.2 Solution

As a solution to identify the microservice in a legacy code in the proposed method it

identifies services as groups of classes in the legacy software source code. Since the

source code be the always available resource to analyze a code to identify service,

unlike other researches that have done under the service identification this is an

Upload Project

List of Microservices

33

automated approach while many of other approaches are manual. In the basic form of

this approach heavily based on the fitness function which will be defined in the

sections to come. It measures semantic correctness of each group of source code

elements to be considered as a service.

4.2.1 Mapping of Object to Services

As illustrated in the figure 3-2, need to define a relationship or the mapping between

services and the object-oriented code in order to identify the services from the object-

oriented code. Initially it considers a service as a set of classes defined in OO source

code. Among these classes, some define the operations provided by the service,

whereas others are inner classes. Inner classes are those which only have internal

connections to other classes of the same service. Usually operations provide by the

service are be the public methods of the relevant classes. Classes that define the

operations provided by the service are the classes that define its interface. Inner classes

do not define operations provided by the service.

4.2.2 Fitness Function

Here defines a fitness function for an identified candidate service as a linear

combination between the 4 characteristics of services previously defined, such as

functionality, composability, self-containment and usage. Let's take fitness function as

FF(E) where E be the candidate service, and F(E), C(E), S(E) and U(E) be symbols

respectively for the characteristics of the services above mentioned. Hence, we define

the fitness function as follows:

𝐹𝐹(𝐸) =
𝛼𝐹(𝐸) + 𝛽𝐶(𝐸) + 𝛾𝑆(𝐸) + 𝛿𝑈(𝐸)

𝑛

where 𝛼,𝛽,𝛾,𝛿will be the coefficient weights for each characteristic that are

determined by software architect. As well as n will be calculated as follows:

𝑛 = 𝛴(𝛼, 𝛽, 𝛾, 𝛿)

34

In order to evaluate the eligibility of the candidate services in this research we deploy

the quality metrics evaluation techniques to evaluate the quality of candidate services.

Using these measurements, we will be able to extract the relevant candidate services

as the microservices of the monolithic system. For the different aspects or the quality

attributes that we have selected above require different measurements;

● Functionality - Coupling and Cohesion measurements

● Composability - Cohesion measurement

● Self-Containment - External Coupling

● Usage - Inheritance(IS-A) and Composition(Has-A)

According to the [46] Cohesion of a service measures how strong the elements within

this service are related to each other. A service is considered as highly cohesive, if it

performs a set of closely related functions and cannot be split into finer elements. The

metric LCC Loose Class Cohesion proposed by [47] measures the overall

connectedness of the class. It is calculated as follows:

They have defined two measures of class cohesion based on the direct and indirect

connections of method pairs. Let NP(C) be the total number of pairs of abstracted

methods in abstract class AC(C). NP is the maximum possible number of direct or

indirect connections in a class. . If there are N methods in a class C, NP(C) is N* (N-

1)/2. Let NDC(C) be the number of direct connections and NIC(C) be the number of

indirect connections in AC(C). Then Loose class cohesion (LCC) is the relative

number of directly or indirectly connected methods give from the following equation.

𝐿𝐶𝐶(𝐶) =
𝑁𝐷𝐶(𝐶) + 𝑁𝐼𝐶(𝐶)

𝑁𝑃(𝐶)

In its simplest form;

𝐿𝐶𝐶(𝐶) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑟𝑒𝑐𝑡 𝑎𝑛𝑑 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

35

Coupling means the degree of direct and indirect dependence of a class on other classes

in the system. Here, two measures are counted: method calls and parameter use, i.e.

two classes are considered coupled to each other if the methods of one class use the

methods or attributes of the other class. In our approach, Couple(E) measures the

internal coupling of the candidate service E and is calculated by the ratio between

number of classes inside the service that are internally called to the total number of

classes within the candidate service E, and also the term ExtCouple(E) measures the

coupling of the candidate service with other services. It is calculated as follows;

 ExtCouple(E) = 1 - Couple(E)

According to the above they have defined few other parameters which will be used to

measure the functionality, composability, self-containment and usage. That is np(E)

refers to number of provided interfaces, LCC(i) refers to the average of service’s

interface cohesion within the interface, LCC(I) refers to the cohesion between

interfaces, Couple(E) refers to the coupling inside a service, LCC(E) and refers to the

cohesion inside a service.

Measure functionality of a candidate Service - F(E)

According to the definition we can calculate the functionality of a candidate service as

follows;

𝐹(𝐸) =
1

5
(𝑛𝑝(𝐸) +

1

𝐼
𝛴𝑡𝜖𝐼𝐿𝐶𝐶(𝑖) + 𝐿𝐶𝐶(𝐼) + 𝐶𝑜𝑢𝑝𝑙𝑒(𝐸) + 𝐿𝐶𝐶(𝐸))

Measure composability of a candidate Service - C(E)

Similar to above we can calculate the composability if a candidate service as follows;

𝐶(𝐸) =
1

𝐼
𝛴𝑡𝜖𝐼𝐿𝐶𝐶(𝑖)

Here i refers to the interface.

36

Measure self-containment of a candidate Service - S(E)

According to the definition Self Containment simply be the;

𝑆(𝐸) = 𝐸𝑥𝑡𝐶𝑜𝑢𝑝𝑙𝑒(𝐸)

Measure usage of a candidate Service - U(E)

To calculate the service usage, let’s take the Inheritance factor H(E) for given class

and composition factor as P(E) Hence we calculate the class usage as follows;

𝑈(𝐸) = 𝐻(𝐸) + 𝑃(𝐸)

37

4.2.3 Service Clustering

To extract all the candidate service from the legacy monolithic OO code base, we need

to group those classes based on relevant dependencies that each of those classes have

on each other. In order to do that here we deploy hierarchical agglomerative clustering

algorithm and this algorithm uses above defined fitness function to groups the classes

with the maximized value of the fitness function. In the initial phase of every class of

the code base considered as a single cluster and by recursively those classes are get

paired in to set of clusters based on the fitness function value. That is this algorithm

merges the pair of clusters with the highest fitness function value into a new cluster.

And the it measures the fitness function between the new formed cluster and all other

clusters and successively merge the pair with the highest fitness function value. For

this algorithm input will be the source code classes and it outputs set of hierarchy of

clusters as a dendrogram. Here is the pseudo code for the process.

 let each class be a cluster

compute fitness function of pair classes

repeat

merge two “closest” clusters based on fitness function

value;

update list of clusters;

until only one cluster remains or reach the desired depth

return dendrogram;

As well as in order to partition of disjoint cluster the result of the above process needs

to be cut at some point, to do that we employ the standard depth first search (DFS)

algorithm or the desired depth which will take as an input value. Initially on the root

node, we compare the similarity of the current node to the similarity of it child nodes.

If the current node’s similarity value exceeds the average of similarity value of its

children, then the current node is a cutting point, otherwise, the algorithm continues

recursively through its children. By doing so eventually the algorithm outputs the set

of classes as coarse grained and loose-coupled disjoint set of services. Ultimate result

is depicted in Figure 3-3.

38

4.3 Implementation

For the implementation of this project I have used two different technologies for the

frontend and backend. That is for the frontend it uses angular2 and for the backend it

uses java with spring boot. This architecture works as a client server architecture where

angular frontend communicates with spring java backend with REST endpoints.

GitHub: https://github.com/chamikabm/monolithicToMicroservicesTool

Project Structure:

Figure 4-2: Project Backend.

Both backend and frontend will be packaged into one project as above.

https://github.com/chamikabm/monolithicToMicroservicesTool

39

4.3.1 Frontend

According to the implementations of frontend users can upload a project file as a zip

file to a server and then get processed the project. As a result, it will display set of

candidate services along with their risk level, and importance.

Upload Project Files

Select project zip file from clicking the “Browse” button

After it will show upload button and click on upload button files will be upload to the

server.

Figure 4-3: Project Frontend - File Upload.

Figure 4-4: Project Frontend - Submit Files.

40

Process Project File

Once click on the Upload file, file will be uploaded to the service and it shows a

processing button beneath the file upload success message as follows.

Results

Once after click on the process button it will start to process the project files on the

server and return the set of microservices as follows along with its relevant risk level

and the importance as a percentage.

Figure 4-6: Project Frontend - Processed Results.

Figure 4-5: Project Frontend - File Uploaded.

41

4.3.2 Backend

For this project backend. it serves as a REST API.

Controller

This is the REST controller which provides the endpoints for the frontend to access

the services in the server. It mainly has 3 endpoints as follows.

Figure 4-7: Project Backend - Controllers.

First endpoint is to check the server health. And second endpoint can be used to upload

the zip files to the server, finally the last endpoint will be used to process the uploaded

files to get the candidate microservices.

Managers

Fitness Function Manager

This manager is used to calculate the fitness function values for the each of the

candidate microservices. It used to calculate the functionality, composability, self-

containment and usage of each of the services. Main functions of the manages are as

follows:

42

Calculate Fitness Value:

public float calculateFitnessFunction (int alpha, int beta, int gamma, int

delta, MicroService microService) {

 float fitnessValue; int n = alpha + beta + gamma + delta;

 fitnessValue = (alpha*measureFunctionality(microService)+

 beta*measureComposability(microService)+

 gamma*measureSelfContainment(microService)+

 delta*measureUsage(microService))/n;

 return fitnessValue;

}

Calculate functionality:

private float measureFunctionality (MicroService microService) {

 float functionalityValue;

 functionalityValue = (

 computeNumberOfProvidedInterfaces(microService)+

 measureComposability(microService)+

 computeCohesionBetweenInterfaces(microService)+

 computeInternalCoupling(microService)+

 computeLoseClassCohesion(microService))

 /5;

 return functionalityValue;

}

Calculate composability:

private float measureComposability (MicroService microService) {

 float comparabilityValue;

 int I = microService.getClasses().size();

 float totalInternalCohesion=

computeCohesionWithInInterface(microService);

 comparabilityValue = totalInternalCohesion/I;

 return comparabilityValue;

}

Calculate Self-containment:
private float measureSelfContainment (MicroService microService) {

 float selfContainmentValue;

 selfContainmentValue = computeExternalCoupling(microService);

 return selfContainmentValue;

}

Calculate Usage:

private float measureUsage (MicroService microService) {

 float usageValue; float inheritanceFactor; float compositionFactor;

 inheritanceFactor = getInheritanceFactor(microService);

 compositionFactor = getCompositionFactor(microService);

 usageValue = inheritanceFactor + compositionFactor;

 return usageValue;

}

43

Cluster Manager

This manager is used to cluster the services into relevant clusters based on the fitness

function value:

public class ClusterManager {

 //These values should be change according to the Architects needs.

 private final int alpha = 2;

 private final int beta = 3;

 private final int gamma = 4;

 private final int delta = 5;

 public List<MicroService> getMicroServiceCluster(List<Class>

sourceClassesList) {

 ClusteringAlgorithm clusteringAlgorithm = new

DefaultClusteringAlgorithm ();

 Cluster cluster =

 clusteringAlgorithm.performClustering(sourceClassesList,

alpha, beta, gamma, delta);

 return cluster.getMicroServices();

 }

}

4.3.3 Algorithms

To identify the microservices implemented several functions in the algorithm sections

where it used to generate the microservices clusters it is an open source code base

extended from this project (https://github.com/lbehnke/hierarchical-clustering-java).

This algorithm encompasses a basic implementation of hierarchical agglomerative

clustering algorithm which can be used to cluster the services according to the

provided fitness function.

Figure 4-8: Project Backend - Algorithms.

https://github.com/lbehnke/hierarchical-clustering-java

44

Chapter 5

SYSTEM EVALUATION

45

5.1 Overview of Test Project

The proposed approach has been evaluated on one realistic case study which is the

student data management Rest API. Source code for this case study project can be

found here (https://github.com/chamikabm/StudentManagementRestApi). This API

was completely developed from the scratch in java language using Spring Boot

framework with Hibernate to support this project evaluation. This a rest API contains

few basic Controllers such as App Controller, Student Controller, Lecturer Controller,

Department Controller, Exam Controller, Payment Controller, Registration Controller.

Following table will describe the main functionalities of those controllers.

Controller Main Functionality

1 App Controller Basic Controller of the API

2 Student Controller Manages student related operations such as add /

delete/ update students.

3 Lecturer Controller Manages lecturer related operations such as add /

delete/ update lecturers.

4 Department Controller Manages department related operations such as

add/remove/update departments.

5 Registration Controller Manages student related registration functionalities

such as register student/ remove registration of

students.

6 Exam Controller Manages exams related functions of students.

7 Payment Controller Manages student related payment activities such as

exam fees, course fees. etc.

Table 5-1: Test Project Functionalities.

Idea of this project to provide complete and comprehensive student management

system to a private university. According to the implementations, this code base

leverages the OOP concepts heavily. Related MySQL and Java file structure will be

shown in coming subtopics.

https://github.com/chamikabm/StudentManagementRestApi

46

5.1.1 DDL for Student Management API

DROP TABLE IF EXISTS `student`;

CREATE TABLE `student`

 (

 `id` INT(11) NOT NULL auto_increment,

 `name` VARCHAR(45) NOT NULL,

 `age` INT(11) DEFAULT NULL,

 `contact_no` VARCHAR(45) DEFAULT NULL,

 `address` VARCHAR(45) DEFAULT NULL,

 `email` VARCHAR(45) DEFAULT NULL,

 `department_id` INT(11) NOT NULL,

 `semester` TINYINT(2) NOT NULL,

 PRIMARY KEY (`id`),

 INDEX `idx_student_semester` (`semester`),

 INDEX `idx_student_department` (`department_id`)

)

engine=innodb

auto_increment=1

DEFAULT charset=utf8;

DROP TABLE IF EXISTS `lecturer`;

CREATE TABLE `lecturer`

 (

 `id` INT(11) NOT NULL auto_increment,

 `name` VARCHAR(45) NOT NULL,

 `age` INT(11) DEFAULT NULL,

 `contact_no` VARCHAR(45) DEFAULT NULL,

 `address` VARCHAR(45) DEFAULT NULL,

 `email` VARCHAR(45) DEFAULT NULL,

 `department_id` INT(11) NOT NULL,

 PRIMARY KEY (`id`),

 INDEX `idx_lecturer_department` (`department_id`)

)

engine=innodb

auto_increment=1

DEFAULT charset=utf8;

DROP TABLE IF EXISTS `department`;

CREATE TABLE `department`

 (

 `id` INT(11) NOT NULL auto_increment,

 `name` VARCHAR(45) NOT NULL,

 `department_head_id` INT(11) NOT NULL,

 PRIMARY KEY (`id`),

 CONSTRAINT `fk_department_lecturer_department_head_id` FOREIGN KEY (

 `department_head_id`) REFERENCES lecturer(`id`) ON UPDATE no action ON

 DELETE no action

)

engine=innodb

auto_increment=1

DEFAULT charset=utf8;

DROP TABLE IF EXISTS `course`;

CREATE TABLE `course`

 (

 `id` INT(11) NOT NULL auto_increment,

 `name` VARCHAR(45) NOT NULL,

 `offering_department_id` INT(11) NOT NULL,

 `fee` DECIMAL(6, 2) NOT NULL DEFAULT 0.00,

 `lecturer_id` INT(11) NOT NULL,

 PRIMARY KEY (`id`),

 INDEX `idx_course_offering_department_id` (`offering_department_id`),

 INDEX `idx_course_lecturer_id` (`lecturer_id`),

 CONSTRAINT `fk_course_department_offering_department_id` FOREIGN KEY (

 `offering_department_id`) REFERENCES department(`id`) ON UPDATE no action

 ON DELETE no action

)

engine=innodb

auto_increment=1

DEFAULT charset=utf8;

47

DROP TABLE IF EXISTS `student_course`;

CREATE TABLE `student_course`

 (

 `id` INT(11) NOT NULL auto_increment,

 `student_id` INT(11) NOT NULL,

 `course_id` INT(11) NOT NULL,

 PRIMARY KEY (`id`),

 INDEX `idx_student_course_1` (`student_id`),

 INDEX `idx_student_course_2` (`course_id`, `student_id`),

 CONSTRAINT `fk_student_course_student_id` FOREIGN KEY (`student_id`)

 REFERENCES student(`id`) ON UPDATE no action ON DELETE no action,

 CONSTRAINT `fk_student_course_course_id` FOREIGN KEY (`course_id`)

 REFERENCES course(`id`) ON UPDATE no action ON DELETE no action

)

engine=innodb

auto_increment=1

DEFAULT charset=utf8;

DROP TABLE IF EXISTS `semester_course`;

CREATE TABLE `semester_course`

 (

 `id` INT(11) NOT NULL auto_increment,

 `semester` TINYINT(2) NOT NULL,

 `course_id` INT(11) NOT NULL,

 PRIMARY KEY (`id`),

 INDEX `idx_semester_course_1` (`course_id`),

 INDEX `idx_semester_course_2` (`semester`, `course_id`),

 CONSTRAINT `fk_semester_course_course_id` FOREIGN KEY (`course_id`)

 REFERENCES course(`id`) ON UPDATE no action ON DELETE no action

)

engine=innodb

auto_increment=1

DEFAULT charset=utf8;

DROP TABLE IF EXISTS `exam`;

CREATE TABLE `exam`

 (

 `id` INT(11) NOT NULL auto_increment,

 `name` VARCHAR(45) NOT NULL,

 `department_id` INT(11) NOT NULL,

 `course_id` INT(11) NOT NULL,

 `date` DATE DEFAULT NULL,

 PRIMARY KEY (`id`),

 INDEX `idx_exam_department` (`department_id`)

)

engine=innodb

auto_increment=1

DEFAULT charset=utf8;

DROP TABLE IF EXISTS `student_exam`;

CREATE TABLE `student_exam`

 (

 `id` INT(11) NOT NULL auto_increment,

 `student_id` INT(11) NOT NULL,

 `exam_id` INT(11) NOT NULL,

 PRIMARY KEY (`id`),

 INDEX `idx_student_exam_1` (`student_id`),

 INDEX `idx_student_exam_2` (`student_id`, `exam_id`),

 CONSTRAINT `fk_student_exam_student_id` FOREIGN KEY (`student_id`)

 REFERENCES student(`id`) ON UPDATE no action ON DELETE no action,

 CONSTRAINT `fk_student_exam_exam_id` FOREIGN KEY (`exam_id`) REFERENCES

 exam(`id`) ON UPDATE no action ON DELETE no action

)

engine=innodb

auto_increment=1

DEFAULT charset=utf8;

DROP TABLE IF EXISTS `payment`;

48

CREATE TABLE `payment`

 (

 `id` INT(11) NOT NULL auto_increment,

 `course_id` INT(11) NOT NULL,

 `student_id` INT(11) NOT NULL,

 `amount` DECIMAL(6, 2) NOT NULL DEFAULT 0.00,

 `semester` TINYINT(2) NOT NULL,

 `payment_date` DATE DEFAULT NULL,

 `status` ENUM('PAID', 'PENDING', 'FREE') NOT NULL DEFAULT 'PENDING',

 PRIMARY KEY (`id`),

 INDEX `idx_payment_course_id` (`course_id`),

 INDEX `idx_payment_student_id` (`student_id`),

 INDEX `idx_payment_status` (`status`)

)

engine=innodb

auto_increment=1

DEFAULT charset=utf8;

DROP TABLE IF EXISTS `student_register`;

CREATE TABLE `student_register`

 (

 `id` INT(11) NOT NULL auto_increment,

 `student_id` INT(11) NOT NULL,

 `is_registered` TINYINT(1) UNSIGNED NOT NULL DEFAULT 0,

 `registered_date` DATE DEFAULT NULL,

 PRIMARY KEY (`id`),

 CONSTRAINT `fk_student_register_student_id` FOREIGN KEY (`student_id`)

 REFERENCES student(`id`) ON UPDATE no action ON DELETE no action,

 INDEX `idx_student_register_1` (`student_id`, `is_registered`)

)

engine=innodb

auto_increment=1

DEFAULT charset=utf8;

49

5.1.2 File Structure of Student Management API.

Controllers

Controllers are the one that exposes the endpoints to the outside.

Services

Services are the one that required services to the controller functions.

Repositories

Repositories are the one that access the database layer based on the MySQL queries.

Managers

Managers will be mainly responsible for managing and manipulating data objects.

50

Entities

Those will be the DAO which used by repositories to access the MySQL database.

Models

Those will be the responses to the outside from the API.

Utils

There are the utility classes which used as API utility functions and models.

As seen on the file structure there are separate folders dedicated for services, managers,

repositories and utilities. Services are the type of classes that leverage the managers

and repositories to serve the controller requests. Repositories mainly focused on

performing CRUD operations on the MySQL database. As per the implementations

there are dependencies on some of the services with managers and other repositories

in order to cater some advanced functionalities for the API. For an instance in order to

create a new user we need to leverage 3 services such as Student Service, Registration

Service and Payment Service. That is when creating a student, it needs to make him/her

a registered student and also need to create a PENDING payment for the semester.

Along with that associated manager functions will validate and do the data

manipulations to the data objects as required.

51

5.2 Microservice Identification

In order to identify the microservices in the code base which need to be verified (i.e

Student Management API which explained the previous section.) uploaded to the tool

as a .zip file which have created with the logics and the functionalities which describes

in the Implementation section. (See 4.3 for more details.)

5.2.1 Results

This research was carried out for 3 iterations in order to find out most suitable values

for the weighted coefficient values which were fed to the fitness function. There values

should be defined by an experienced software architect in order to gain the maximum

out of the method which used to identify microservice in the monolithic system. Here

ran the tool for 3 times with different values to identify how the results can vary with

the values and the suitable parameters to filter out the correct microservices from the

system. Results and input values are as follows. Note that the cluster depth has set to

2 since this is a fairly small system.

Iteration 1: 𝛼 =1, 𝛽 = 2, 𝛾 = 3, 𝛿=4

In this iteration it has given more weight to the usage of the services.

[𝛼 − 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦, 𝛽 − 𝐶𝑜𝑚𝑝𝑜𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝛾 − 𝑆𝑒𝑙𝑓 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 , 𝛿 − 𝑈𝑠𝑎𝑔𝑒]

Logs Related to the Process:

 2018-01-09 01:59:13.481 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

alpha=1, beta=2, gamma = 3, delta = 4.

 2018-01-09 01:59:13.491 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Clustering Process Starting.

 2018-01-09 01:59:13.492 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Total

service classes = 6.

 2018-01-09 01:59:13.492 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Clustering Process Starting.

 2018-01-09 01:59:13.493 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Values for Cluster 1.

 2018-01-09 01:59:13.556 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Payment Service.

 2018-01-09 01:59:13.557 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Payment Service: 0.75.

 2018-01-09 01:59:13.638 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Payment Service.

52

 2018-01-09 01:59:15.068 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Payment Service : 0.89.

 2018-01-09 01:59:15.069 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Payment Service.

 2018-01-09 01:59:15.069 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Payment Service : 0.91.

 2018-01-09 01:59:15.819 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Payment Service.

 2018-01-09 01:59:15.838 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Payment Service : 0.79.

 2018-01-09 01:59:15.839 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Payment Service : 0.842.

 2018-01-09 01:59:15.931 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Exam Service.

 2018-01-09 01:59:15.932 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Exam Service: 0.8.

 2018-01-09 01:59:15.933 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Exam Service.

 2018-01-09 01:59:16.078 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Exam Service : 0.86.

 2018-01-09 01:59:16.083 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Exam Service.

 2018-01-09 01:59:16.084 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Exam Service : 0.83.

 2018-01-09 01:59:16.084 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Exam Service.

 2018-01-09 01:59:16.084 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Exam Service : 0.76.

 2018-01-09 01:59:16.116 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Exam Service : 0.805.

 2018-01-09 01:59:16.826 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Registration Service.

 2018-01-09 01:59:17.807 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Registration Service: 0.66.

 2018-01-09 01:59:18.708 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Registration Service.

 2018-01-09 01:59:18.818 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Registration Service : 0.71.

 2018-01-09 01:59:18.837 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Registration Service.

 2018-01-09 01:59:18.838 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Registration Service : 0.73.

 2018-01-09 01:59:18.846 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Registration Service.

 2018-01-09 01:59:18.847 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Registration Service : 0.84.

 2018-01-09 01:59:18.848 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Registration Service : 0.763.

 2018-01-09 01:59:18.851 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Student Service.

 2018-01-09 01:59:18.853 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Student Service: 0.76.

 2018-01-09 01:59:18.854 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Student Service.

 2018-01-09 01:59:18.854 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Student Service : 0.72.

 2018-01-09 01:59:18.864 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Student Service.

53

 2018-01-09 01:59:18.871 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Student Service : 0.80.

 2018-01-09 01:59:18.871 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Student Service.

 2018-01-09 01:59:18.873 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Student Service : 0.77.

 2018-01-09 01:59:18.873 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Student Service : 0.768.

 2018-01-09 01:59:18.881 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Lecturer Service.

 2018-01-09 01:59:18.882 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Lecturer Service : 0.72.

 2018-01-09 01:59:18.882 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Lecturer Service.

 2018-01-09 01:59:18.882 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Lecturer Service : 0.7.

 2018-01-09 01:59:18.883 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Lecturer Service.

 2018-01-09 01:59:18.883 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Lecturer Service : 0.71.

 2018-01-09 01:59:18.884 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Lecturer Service : 0.711.

 2018-01-09 01:59:18.885 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Department Service.

 2018-01-09 01:59:18.888 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Department Service: 0.74.

 2018-01-09 01:59:18.888 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Department Service.

 2018-01-09 01:59:18.889 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Department Department : 0.7.

 2018-01-09 01:59:18.890 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Department Service.

 2018-01-09 01:59:18.894 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Department Service : 0.72.

 2018-01-09 01:59:18.895 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Department Service.

 2018-01-09 01:59:18.897 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Department Service : 0.66.

 2018-01-09 01:59:18.898 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Department Service : 0.694.

 2018-01-09 01:59:18.899 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Clustering Related Services Started.

 2018-01-09 01:59:18.900 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Services

[Payment Service, Student Service+Registration Service, Lecturer Service + Department Service].

 2018-01-09 01:59:18.901 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Clustering Related Services Ended.

 2018-01-09 01:59:18.901 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - alpha=1,

beta=2, gamma = 3, delta = 4.

 2018-01-09 01:59:18.902 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Clustering Process Starting.

 2018-01-09 01:59:18.904 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Total

service classes = 4.

 2018-01-09 01:59:18.905 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Clustering Process Starting.

 2018-01-09 01:59:18.906 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Values for Cluster 2.

 2018-01-09 01:59:18.907 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Payment Service.

54

 2018-01-09 01:59:18.908 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Payment Service: 0.75.

 2018-01-09 01:59:18.908 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Payment Service.

 2018-01-09 01:59:18.909 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Payment Service : 0.89.

 2018-01-09 01:59:18.911 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Payment Service.

 2018-01-09 01:59:18.913 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Payment Service : 0.91.

 2018-01-09 01:59:18.914 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Payment Service.

 2018-01-09 01:59:18.940 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Payment Service : 0.79.

 2018-01-09 01:59:18.941 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Payment Service : 0.842.

 2018-01-09 01:59:18.941 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Registration Service - Student Service.

 2018-01-09 01:59:18.942 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Registration Service - Student Service : 0.75.

 2018-01-09 01:59:18.942 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Registration Service - Student Service.

 2018-01-09 01:59:18.943 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Registration Service - Student Service : 0.71.

 2018-01-09 01:59:18.943 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Registration Service - Student Service.

 2018-01-09 01:59:18.943 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Registration Service - Student Service : 0.82.

 2018-01-09 01:59:18.944 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Registration Service - Student Service.

 2018-01-09 01:59:18.944 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Registration Service - Student Service : 0.86.

 2018-01-09 01:59:18.945 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Registration Service - Student Service : 0.807.

 2018-01-09 01:59:18.945 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Department Service - Lecturer Service.

 2018-01-09 01:59:18.945 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Department Service - Lecturer Service: 0.73.

 2018-01-09 01:59:18.946 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Department Service - Lecturer Service.

 2018-01-09 01:59:18.946 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Department Department - Lecturer Service: 0.71.

 2018-01-09 01:59:18.947 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Department Service - Lecturer Service.

 2018-01-09 01:59:18.947 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Department Service - Lecturer Service : 0.73.

 2018-01-09 01:59:18.947 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Department Service - Lecturer Service.

 2018-01-09 01:59:18.947 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Department Service - Lecturer Service : 0.69.

 2018-01-09 01:59:18.947 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Department Service - Lecturer Service : 0.71.

 2018-01-09 01:59:18.947 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Clustering Related Services Started.

 2018-01-09 01:59:18.947 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Services

[Payment Service, Exam Service + Registration Service + Student Service, Lecturer Service + Department Service].

 2018-01-09 01:59:18.948 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Clustering Related Services Ended.

55

Clustering Data:

As seen in the above logs following diagram has drawn to understand how the

clustering process has been executed by the tool. In the below diagram each of the

Services boxes are tagged with relevant fitness function values which calculated by

the tool and found from the above logs.

Tool Result:

Below picture shows how the identified services are displayed on the tool.

Figure 5-1: Iteration 1 Final Result

Payment Service

Exam Service

Registration Service

Lecturer Service

Student Service

Department Service

Registration Service

Student Service

Lecturer Service

Department Service

Exam Service

Payment Service

Payment Service

Exam Service

Registration Service

Student Service

Lecturer Service

Department Service

Cluster 1 Cluster 2 Cluster 3

F = 0.842

F = 0.805

F = 0.763

F = 0.768

F = 0.711

F = 0.694

F = 0.842

F = 0.805

F = 0.807

F = 0.71

56

Iteration 2: 𝛼 =4, 𝛽 = 2, 𝛾 = 3, 𝛿=1

In this iteration is has given more weight to the functionality

[𝛼 − 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦, 𝛽 − 𝐶𝑜𝑚𝑝𝑜𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝛾 − 𝑆𝑒𝑙𝑓 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 , 𝛿 − 𝑈𝑠𝑎𝑔𝑒]

Logs Related to the Process:

2018-01-09 01:59:18.948 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - alpha=4,

beta=2, gamma = 3, delta = 1.

2018-01-09 01:59:18.948 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Clustering

Process Starting.

2018-01-09 01:59:18.948 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Total

service classes = 6.

2018-01-09 01:59:18.948 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Clustering

Process Starting.

2018-01-09 01:59:18.948 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Values for Cluster 1.

2018-01-09 01:59:18.948 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Payment Service.

2018-01-09 01:59:18.948 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Payment Service: 0.75.

2018-01-09 01:59:18.948 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Payment Service.

2018-01-09 01:59:18.949 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Payment Service : 0.89.

2018-01-09 01:59:18.949 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Payment Service.

2018-01-09 01:59:18.949 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Payment Service : 0.91.

2018-01-09 01:59:18.949 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Payment Service.

2018-01-09 01:59:18.949 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Payment Service : 0.79.

2018-01-09 01:59:18.949 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Payment Service : 0.832.

2018-01-09 01:59:18.949 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Exam Service.

2018-01-09 01:59:18.949 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Exam Service: 0.8.

2018-01-09 01:59:18.949 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Exam Service.

2018-01-09 01:59:18.949 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Exam Service : 0.86.

2018-01-09 01:59:18.949 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Exam Service.

2018-01-09 01:59:18.949 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Exam Service : 0.83.

2018-01-09 01:59:18.950 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Exam Service.

2018-01-09 01:59:18.950 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Exam Service : 0.76.

2018-01-09 01:59:18.950 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Exam Service : 0.697.

57

2018-01-09 01:59:18.950 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Registration Service.

2018-01-09 01:59:18.950 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Registration Service: 0.66.

2018-01-09 01:59:18.950 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Registration Service.

2018-01-09 01:59:18.950 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Registration Service : 0.71.

2018-01-09 01:59:18.950 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Registration Service.

2018-01-09 01:59:18.950 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Registration Service : 0.73.

2018-01-09 01:59:18.950 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Registration Service.

2018-01-09 01:59:18.951 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Registration Service : 0.84.

2018-01-09 01:59:18.951 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Registration Service : 0.709.

2018-01-09 01:59:18.951 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Student Service.

2018-01-09 01:59:18.951 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Student Service: 0.76.

2018-01-09 01:59:18.951 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Student Service.

2018-01-09 01:59:18.951 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Student Service : 0.72.

2018-01-09 01:59:18.951 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Student Service.

2018-01-09 01:59:18.951 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Student Service : 0.80.

2018-01-09 01:59:18.951 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Student Service.

2018-01-09 01:59:18.951 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Student Service : 0.77.

2018-01-09 01:59:18.951 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Student Service : 0.765.

2018-01-09 01:59:18.951 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Lecturer Service.

2018-01-09 01:59:18.952 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Lecturer Service: 0.73.

2018-01-09 01:59:18.952 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Lecturer Service.

2018-01-09 01:59:18.960 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Lecturer Service : 0.72.

2018-01-09 01:59:18.961 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Lecturer Service.

2018-01-09 01:59:18.962 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Lecturer Service : 0.7.

2018-01-09 01:59:18.962 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Lecturer Service.

2018-01-09 01:59:18.962 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Lecturer Service : 0.71.

2018-01-09 01:59:18.962 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Lecturer Service : 0.75.

2018-01-09 01:59:18.962 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Department Service.

2018-01-09 01:59:18.962 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Department Service: 0.74.

58

2018-01-09 01:59:18.962 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Department Service.

2018-01-09 01:59:18.962 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Department Department : 0.7.

2018-01-09 01:59:18.962 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Department Service.

2018-01-09 01:59:18.962 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Department Service : 0.72.

2018-01-09 01:59:18.962 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Department Service.

2018-01-09 01:59:18.963 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Department Service : 0.66.

2018-01-09 01:59:18.963 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Department Service : 0.821.

2018-01-09 01:59:18.963 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Clustering

Related Services Started.

2018-01-09 01:59:18.963 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Services

[Payment Service, Exam Service + Registration Service, Student Service + Lecturer Service, Department Service].

2018-01-09 01:59:18.963 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Clustering

Related Services Ended.

2018-01-09 01:59:18.963 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - alpha=4,

beta=2, gamma = 3, delta = 1.

2018-01-09 01:59:18.963 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Clustering

Process Starting.

2018-01-09 01:59:18.963 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Total

service classes = 4.

2018-01-09 01:59:18.963 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Clustering

Process Starting.

2018-01-09 01:59:18.963 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Values for Cluster 2.

2018-01-09 01:59:18.963 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Payment Service.

2018-01-09 01:59:18.963 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Payment Service: 0.75.

2018-01-09 01:59:18.963 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Payment Service.

2018-01-09 01:59:18.964 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Payment Service : 0.89.

2018-01-09 01:59:18.964 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Payment Service.

2018-01-09 01:59:18.964 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Payment Service : 0.91.

2018-01-09 01:59:18.964 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Payment Service.

2018-01-09 01:59:18.964 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Payment Service : 0.79.

2018-01-09 01:59:18.964 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Payment Service : 0.832.

2018-01-09 01:59:18.964 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Registration Service - Student Service.

2018-01-09 01:59:18.964 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Exam Service - Registration Service : 0.75.

2018-01-09 01:59:18.964 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Exam Service - Registration Service.

2018-01-09 01:59:18.964 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Exam Service - Registration Service : 0.71.

2018-01-09 01:59:18.964 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Exam Service - Registration Service.

59

2018-01-09 01:59:18.965 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Exam Service - Registration Service : 0.82.

2018-01-09 01:59:18.965 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Exam Service - Registration Service.

2018-01-09 01:59:18.965 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Exam Service - Registration Service : 0.86.

2018-01-09 01:59:18.965 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Exam Service - Registration Service : 0.713.

2018-01-09 01:59:18.965 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Student Service - Lecturer Service.

2018-01-09 01:59:18.965 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Student Service - Lecturer Service: 0.73.

2018-01-09 01:59:18.965 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Student Service - Lecturer Service.

2018-01-09 01:59:18.965 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Department Department - Lecturer Service: 0.71.

2018-01-09 01:59:18.965 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Student Service - Lecturer Service.

2018-01-09 01:59:18.965 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Student Service - Lecturer Service : 0.73.

2018-01-09 01:59:18.965 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Student Service - Lecturer Service.

2018-01-09 01:59:18.966 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Student Service - Lecturer Service : 0.69.

2018-01-09 01:59:18.966 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Student Service - Lecturer Service : 0.71.

2018-01-09 01:59:18.966 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Department Service.

2018-01-09 01:59:18.966 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Department Service: 0.74.

2018-01-09 01:59:18.966 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Department Service.

2018-01-09 01:59:18.966 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Department Department : 0.7.

2018-01-09 01:59:18.966 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Department Service.

2018-01-09 01:59:18.966 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Department Service : 0.72.

2018-01-09 01:59:18.966 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Department Service.

2018-01-09 01:59:18.966 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Department Service : 0.66.

2018-01-09 01:59:18.966 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Department Service : 0.821.

2018-01-09 01:59:18.966 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Clustering

Related Services Started.

2018-01-09 01:59:18.966 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Services

[Payment Service + Department Service, Exam Service + Registration Service, Student Service + Lecturer Service].

2018-01-09 01:59:18.966 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Clustering

Related Services Ended.

2018-01-09 01:59:18.967 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Controller- Clustering Process Ended.

60

Clustering Data:

As seen in the above logs following diagram has drawn to understand how the

clustering process has been executed by the tool. In the below diagram each of the

Services boxes are tagged with relevant fitness function values which calculated by

the tool and found from the above logs.

Tool Result:

Figure 5-2: Iteration 2 Final Result.

Payment Service

Exam Service

Registration Service

Lecturer Service

Student Service

Department Service

Registration Service

Student Service

Lecturer Service

Department Service

Exam Service

Payment Service

Payment Service

Exam Service

Registration Service

Student Service

Lecturer Service

Department Service

Cluster 1 Cluster 2 Cluster 3

F = 0.832

F = 0.697

F = 0.709

F = 0.765

F = 0.751

F = 0.821

F = 0.832

F = 0.713

F = 0.764

F = 0.821

61

Iteration 3: 𝛼 =2, 𝛽 = 3, 𝛾 = 4, 𝛿=1

In this iteration is has given more weight to the self-containment

[𝛼 − 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦, 𝛽 − 𝐶𝑜𝑚𝑝𝑜𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝛾 − 𝑆𝑒𝑙𝑓 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 , 𝛿 − 𝑈𝑠𝑎𝑔𝑒]

Logs Related to the Process:

2018-01-14 22:22:09.577 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - alpha=2,

beta=3, gamma = 4, delta = 1.

2018-01-14 22:22:09.594 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Clustering

Process Starting.

2018-01-14 22:22:09.595 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Total

service classes = 6.

2018-01-14 22:22:09.596 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Clustering

Process Starting.

2018-01-14 22:22:09.597 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Values for Cluster 1.

2018-01-14 22:22:09.703 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Payment Service.

2018-01-14 22:22:09.703 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Payment Service: 0.75.

2018-01-14 22:22:09.831 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Payment Service.

2018-01-14 22:22:11.507 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Payment Service : 0.89.

2018-01-14 22:22:11.511 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Payment Service.

2018-01-14 22:22:11.512 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Payment Service : 0.91.

2018-01-14 22:22:12.192 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Payment Service.

2018-01-14 22:22:12.214 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Payment Service : 0.79.

2018-01-14 22:22:12.216 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Payment Service : 0.901.

2018-01-14 22:22:12.349 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Exam Service.

2018-01-14 22:22:12.351 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Exam Service: 0.8.

2018-01-14 22:22:12.353 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Exam Service.

2018-01-14 22:22:12.599 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Exam Service : 0.86.

2018-01-14 22:22:12.617 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Exam Service.

2018-01-14 22:22:12.618 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Exam Service : 0.83.

2018-01-14 22:22:12.618 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Exam Service.

2018-01-14 22:22:12.618 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Exam Service : 0.76.

2018-01-14 22:22:12.684 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Exam Service : 0.831.

2018-01-14 22:22:13.832 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Registration Service.

62

2018-01-14 22:22:14.927 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Registration Service: 0.66.

2018-01-14 22:22:16.020 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Registration Service.

2018-01-14 22:22:16.537 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Registration Service : 0.71.

2018-01-14 22:22:16.554 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Registration Service.

2018-01-14 22:22:16.555 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Registration Service : 0.73.

2018-01-14 22:22:16.559 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Registration Service.

2018-01-14 22:22:16.559 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Registration Service : 0.84.

2018-01-14 22:22:16.560 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Registration Service : 0.786.

2018-01-14 22:22:16.561 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Student Service.

2018-01-14 22:22:16.561 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Student Service: 0.76.

2018-01-14 22:22:16.562 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Student Service.

2018-01-14 22:22:16.562 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Student Service : 0.72.

2018-01-14 22:22:16.565 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Student Service.

2018-01-14 22:22:16.566 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Student Service : 0.80.

2018-01-14 22:22:16.566 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Student Service.

2018-01-14 22:22:16.566 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Student Service : 0.77.

2018-01-14 22:22:16.574 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Student Service : 0.692.

2018-01-14 22:22:16.575 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Lecturer Service.

2018-01-14 22:22:16.576 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Lecturer Service: 0.73.

2018-01-14 22:22:16.591 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Lecturer Service.

2018-01-14 22:22:16.592 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Lecturer Service : 0.72.

2018-01-14 22:22:16.598 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Lecturer Service.

2018-01-14 22:22:16.598 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Lecturer Service : 0.7.

2018-01-14 22:22:16.599 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Lecturer Service.

2018-01-14 22:22:16.599 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Lecturer Service : 0.71.

2018-01-14 22:22:16.599 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Lecturer Service : 0.703.

2018-01-14 22:22:16.608 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Department Service.

2018-01-14 22:22:16.609 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Department Service: 0.74.

2018-01-14 22:22:16.609 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Department Service.

63

2018-01-14 22:22:16.613 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Department Department : 0.7.

2018-01-14 22:22:16.614 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Department Service.

2018-01-14 22:22:16.617 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Department Service : 0.72.

2018-01-14 22:22:16.617 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Department Service.

2018-01-14 22:22:16.626 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Department Service : 0.66.

2018-01-14 22:22:16.626 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Department Service : 0.713.

2018-01-14 22:22:16.626 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Clustering

Related Services Started.

2018-01-14 22:22:16.627 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Services

[Payment Service, Exam Service + Registration Service, Student Service + Lecturer Service, Department Service].

2018-01-14 22:22:16.627 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Clustering

Related Services Ended.

2018-01-14 22:22:16.629 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - alpha=2,

beta=3, gamma = 4, delta = 1.

2018-01-14 22:22:16.630 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Clustering

Process Starting.

2018-01-14 22:22:16.637 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Total

service classes = 5.

2018-01-14 22:22:16.637 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Clustering

Process Starting.

2018-01-14 22:22:16.638 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Values for Cluster 2.

2018-01-14 22:22:16.638 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Payment Service.

2018-01-14 22:22:16.638 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Payment Service: 0.75.

2018-01-14 22:22:16.639 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Payment Service.

2018-01-14 22:22:16.640 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Payment Service : 0.89.

2018-01-14 22:22:16.650 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Payment Service.

2018-01-14 22:22:16.650 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Payment Service : 0.91.

2018-01-14 22:22:16.653 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Payment Service.

2018-01-14 22:22:16.689 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Payment Service : 0.79.

2018-01-14 22:22:16.690 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Payment Service : 0.901.

2018-01-14 22:22:16.690 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Exam Service.

2018-01-14 22:22:16.691 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Exam Service: 0.8.

2018-01-14 22:22:16.691 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Exam Service.

2018-01-14 22:22:16.691 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Exam Service : 0.86.

2018-01-14 22:22:16.703 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Exam Service.

2018-01-14 22:22:16.704 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Exam Service : 0.83.

64

2018-01-14 22:22:16.704 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Exam Service.

2018-01-14 22:22:16.704 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Exam Service : 0.76.

2018-01-14 22:22:16.704 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Exam Service : 0.831.

2018-01-14 22:22:16.704 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Registration Service.

2018-01-14 22:22:16.704 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Registration Service: 0.66.

2018-01-14 22:22:16.705 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Registration Service.

2018-01-14 22:22:16.705 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Registration Service : 0.71.

2018-01-14 22:22:16.705 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Registration Service.

2018-01-14 22:22:16.705 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Registration Service : 0.73.

2018-01-14 22:22:16.705 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Registration Service.

2018-01-14 22:22:16.705 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Registration Service : 0.84.

2018-01-14 22:22:16.709 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Registration Service : 0.786.

2018-01-14 22:22:16.716 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Student Service - Lecturer Service: 0.73.

2018-01-14 22:22:16.717 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Student Service - Lecturer Service.

for Service - Student Service - Lecturer Service.

2018-01-14 22:22:16.720 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Student Service - Lecturer Service : 0.69.

2018-01-14 22:22:16.720 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Student Service - Lecturer Service : 0.71.

2018-01-14 22:22:16.721 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Functionality for Service : Department Service.

2018-01-14 22:22:16.721 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Functionality for Service - Department Service: 0.74.

2018-01-14 22:22:16.722 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Composability for Service - Department Service.

2018-01-14 22:22:16.722 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Composability for Service - Department Department : 0.7.

2018-01-14 22:22:16.722 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Self-Containment for Service - Department Service.

2018-01-14 22:22:16.723 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Self-

Containment for Service - Department Service : 0.72.

2018-01-14 22:22:16.723 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI -

Calculating Usage for Service - Department Service.

2018-01-14 22:22:16.724 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Usage

for Service - Department Service : 0.66.

2018-01-14 22:22:16.724 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Fitness

function value for Service - Department Service : 0.713.

2018-01-14 22:22:16.724 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Clustering

Related Services Started.

2018-01-14 22:22:16.724 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Services

[Payment Service, Exam Service, Registration Service, Student Service + Lecturer Service + Department Service].

2018-01-14 22:22:16.724 INFO 7596 --- [http-nio-8080-exec-1] c.s.m.r.a.Manager.ClusterManager : SMAPI - Clustering

Related Services Ended.

65

Clustering Data:

As seen in the above logs following diagram has drawn to understand how the

clustering process has been executed by the tool. In the below diagram each of the

Services boxes are tagged with relevant fitness function values which calculated by

the tool and found from the above logs.

Tool Result:

Figure 5-3: Iteration 3 Final Result.

Payment Service

Exam Service

Registration Service

Lecturer Service

Student Service

Department Service

Registration Service

Student Service

Lecturer Service

Department Service

Exam Service

Payment Service

Payment Service

Exam Service

Registration Service

Student Service

Lecturer Service

Department Service

Cluster 1 Cluster 2 Cluster 3

F = 0.901

F = 0.831

F = 0.786

F = 0.692

F = 0.703

F = 0.713

F = 0.901

F = 0.831

F = 0.786

F = 0.710

F = 0.713

66

5.3 Discussion and Validation

5.3.1 Discussion

From the results obtain from the tool from each iteration gives very good

understanding about how the each of the identified quality attributes are important to

identify the micro services. In order to classify existing monolithic system into

microservices we first identified 4 major quality characteristics such as functionality,

composability, self-containment and usage. Related to those characteristics which has

identified through a thorough research [45] [46] [47] as discussed in implementation

section of this research paper ran the tool against those characteristics by changing the

weighted value. Mainly ran this tool under 3 configurations set even though there can

be many variations. Those will be the highly impacted configurations as discussed in

many research papers and supervisors. Hence ran the tool under following

configurations in order to identify the microservices for the input monolithic system

as well as the matching configurations.

Iteration 1:

For the iteration 1 ran the tool with following configuration.

Configurations: 𝛼 =1, 𝛽 = 2, 𝛾 = 3, 𝛿=4

[𝛼 − 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦, 𝛽 − 𝐶𝑜𝑚𝑝𝑜𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝛾 − 𝑆𝑒𝑙𝑓 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 , 𝛿 − 𝑈𝑠𝑎𝑔𝑒]

After running the tool and according to the collected data it has given following results

as a summary.

Result Summary:

Service Merged Services - Cluster 2 Fitness Function Value

1 Payment Service 0.842

2 Exam Service 0.805

Register Service 0.807

Student Service

3 Lecturer Service 0.71

Department Service

Table 5-2: Iteration 1 Final Results Cluster Values.

67

When we increase the bias for the usage of initial services the end results from the tool

according to the implementation of Student Management API it has given a result more

bias to the service usages. In this case it is harder to remove those as services as they

have much more dependencies.

Iteration 2:

For the iteration 2 ran the tool with following configuration.

Configurations:

𝛼 =4, 𝛽 = 2, 𝛾 = 3, 𝛿=1

[𝛼 − 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦, 𝛽 − 𝐶𝑜𝑚𝑝𝑜𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝛾 − 𝑆𝑒𝑙𝑓 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 , 𝛿 − 𝑈𝑠𝑎𝑔𝑒]

After running the tool and according to the collected data it has given following results

as a summary.

Result Summary:

Service Merged Services Fitness Function Value

1 Payment Service 0.832

Department Service 0.821

2 Exam Service 0.713

Register Service

3 Student Service 0.764

Lecturer Service

Table 5-3: Iteration 2 Final Results Cluster Values.

When we increase the bias for the functionality of initial services the end results from

the tool according to the implementation of Student Management API it has given a

result more bias to the service functionality.

68

Iteration 3:

For the iteration 3 ran the tool with following configuration.

Configurations:

𝛼 =4, 𝛽 = 2, 𝛾 = 3, 𝛿=1

[𝛼 − 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦, 𝛽 − 𝐶𝑜𝑚𝑝𝑜𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝛾 − 𝑆𝑒𝑙𝑓 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 , 𝛿 − 𝑈𝑠𝑎𝑔𝑒]

After running the tool and according to the collected data it has given following results

as a summary.

Result Summary:

Service Merged Services Fitness Function Value

1 Payment Service 0.901

2 Exam Service 0.831

3 Register Service 0.786

4 Student Service 0.710

Lecturer Service

Department Service 0.713

Table 5-4: Iteration 3 Final Results Cluster Values.

When we increase the bias for the Self-Containment of initial services the end results

from the tool according to the implementation of Student Management API it has given

a result more bias to the service isolatability. Which means these services can be

isolated very easily.

69

Risk Level

In addition to the above results from the tool it shows additional information such as

Service Description, Risk Level and Importance. For this research scope it will only

implement the Risk Level. It is an indicator which show the dependency of this service

other services. From the qualities point of view for a service it will be the Self-

Containment value. In order to decide the level from the tool it has device that value

into 4 groups as follows.

Risk Level Value Margins

High Risk < 0.75

Medium Risk 0.75 - 0.80

Low Risk 0.80 - 0.95

No Risk > 0.95

Table 5-5: Risk Level Value Margins.

5.3.2 Validation

In order to validate the result obtained from the method used by this research to identify

microservices in the monolithic system can be divided into two streams.

1. Manual Approach

- This approach will be the most suitable and reliable approach since a

person or set of persons whose having good understanding about the

microservices and the system architecture of the system which going to

analyzed can give more correct prediction to the outcome.

2. Automated Approach

- This approach is not the most reliable since this also a tool or a method

which will be used to validate another tool or a method. But using this

method can validate the outcome to some level.

70

Manual Approach

As explained briefly above about this method in order to validate the methodology

which used to identify the microservice from the existing monolithic system, will

manually predict the microservices in the monolithic system by looking at the current

system architecture and the implementation. Following figure will give more insights

about the monolithic system architecture of Student Data Management API related to

the controllers, services and its dependencies. (NOTE: The arrows in the diagram

shows its being used by the pointed entity, e.g.: Department Controller uses

Department Service)

Figure 5-4: System Dependencies for Repositories.

As depicted above in the above picture many of the controllers have dependencies to

many of the services in the system. And also, this architecture has many dependencies

from services to managers as follows (See figure 5-5).

71

Figure 5-5: System Dependencies for Managers.

According to the above architecture and applying the knowledge on microservices it

can say that this system can be developed as a microservice architecture as follows.

1. Student Service + Lecture Service (Student - Lecture Service)

2. Department Service

3. Exam Service

4. Registration Service

5. Payment Service

Because the functionality vise Student Service and Lecture Service have similarity

when looking at the architecture and the code base. As well as other services can be

developed as separate services as they much not depend on other service. Hence

according to the manual validation process the results obtained on the iteration 3 is

more relevant and accurate comparing to the other iterations results. That is because

in the iteration 3 it has given more weight to the Self-Containment and Cohesion

which are the main aspects or the qualities when developing the microservice

architecture. By looking at those results it can clearly notice that the there is a direct

influence from those qualities when identifying the microservices from the monolithic

system by using its quality attributes. By looking at the results show that close to 80%

of extracted microservices from the tool are accurate. It can be assumed that by feeding

context related knowledge to the tool it can be more accurate than this, but it is too

hard to implement for this research with the given time frame.

72

Automated Approach

This approach is not most accurate as the manual approach since this also a using a

concept to validate the results obtained from another tool. The idea of this method is

to validate the results we obtained from the tool by using the logs that have added to

the Student Data Management API when executing few common functions. Any after

gathering those logs new tool which created to analyze the logs from the Student Data

Management API will analyze how frequent those services and related manager

functions have used to accomplish those tasks.

Tasks which will be taken to analyze:

1. Add a Student

2. Add a Lecturer

3. Add a Department

4. Add an Exam

5. Make payment for an exam

(Log Analyzing Tool: https://github.com/chamikabm/logAnalizerForSMAPI)

Logs for above operations:

2018-01-15 20:06:36.930 DEBUG 3376 --- [http-nio-8080-exec-1] o.s.web.servlet.DispatcherServlet :

DispatcherServlet with name 'dispatcherServlet' processing GET request for [/studentapi/student/all]

2018-01-15 20:06:36.934 DEBUG 3376 --- [http-nio-8080-exec-1] s.w.s.m.m.a.RequestMappingHandlerMapping : Looking up

handler method for path /student/all

2018-01-15 20:06:36.936 DEBUG 3376 --- [http-nio-8080-exec-1] s.w.s.m.m.a.RequestMappingHandlerMapping : Returning

handler method [public

org.springframework.http.ResponseEntity<java.util.List<com.student.management.rest.api.Model.Student>>

com.student.management.rest.api.Controller.StudentController.listAllStudents()]

2018-01-15 20:06:36.937 DEBUG 3376 --- [http-nio-8080-exec-1] o.s.web.servlet.DispatcherServlet : Last-

Modified value for [/studentapi/student/all] is: -1

2018-01-15 20:06:36.959 INFO 3376 --- [http-nio-8080-exec-1] c.s.m.r.a.Controller.StudentController : SMAPI -

Student - Controller- listAllStudents request received.

2018-01-15 20:06:36.959 INFO 3376 --- [http-nio-8080-exec-1] c.s.m.r.a.S.Impl.StudentServiceImpl : SSMAPI -

tudent - Service- findAllStudents method invoked.

2018-01-15 20:06:37.075 INFO 3376 --- [http-nio-8080-exec-1] c.s.m.r.a.S.Impl.StudentServiceImpl : SMAPI -

Student - Service- findAllStudents method processed.

2018-01-15 20:06:37.196 INFO 3376 --- [http-nio-8080-exec-1] c.s.m.r.a.Controller.StudentController : SMAPI -

Student - Controller- listAllStudents request processed.

2018-01-15 20:06:37.318 DEBUG 3376 --- [http-nio-8080-exec-1] o.s.w.s.m.m.a.HttpEntityMethodProcessor : Written

[[com.student.management.rest.api.Model.Student@2fe9ac3a, com.student.management.rest.api.Model.Student@47b473f,

com.student.management.rest.api.Model.Student@7e5ce404, com.student.management.rest.api.Model.Student@3a937fd0,

com.student.management.rest.api.Model.Student@58f99cc4, com.student.management.rest.api.Model.Student@6e56a5b,

com.student.management.rest.api.Model.Student@1f00d247, com.student.management.rest.api.Model.Student@3e4c5388,

com.student.management.rest.api.Model.Student@2ac7e739, com.student.management.rest.api.Model.Student@75de788,

https://github.com/chamikabm/logAnalizerForSMAPI

73

com.student.management.rest.api.Model.Student@1e569fce]] as "application/json" using

[org.springframework.http.converter.json.MappingJackson2HttpMessageConverter@7781e32a]

2018-01-15 20:06:37.318 DEBUG 3376 --- [http-nio-8080-exec-1] o.s.web.servlet.DispatcherServlet : Null

ModelAndView returned to DispatcherServlet with name 'dispatcherServlet': assuming HandlerAdapter completed request

handling

2018-01-15 20:06:37.320 DEBUG 3376 --- [http-nio-8080-exec-1] o.s.web.servlet.DispatcherServlet : Successfully

completed request

2018-01-15 20:07:16.633 DEBUG 3376 --- [http-nio-8080-exec-2] o.s.web.servlet.DispatcherServlet :

DispatcherServlet with name 'dispatcherServlet' processing POST request for [/studentapi/student/add]

2018-01-15 20:07:16.634 DEBUG 3376 --- [http-nio-8080-exec-2] s.w.s.m.m.a.RequestMappingHandlerMapping : Looking up

handler method for path /student/add

2018-01-15 20:07:16.634 DEBUG 3376 --- [http-nio-8080-exec-2] s.w.s.m.m.a.RequestMappingHandlerMapping : Returning

handler method [public org.springframework.http.ResponseEntity<?>

com.student.management.rest.api.Controller.StudentController.createStudent(com.student.management.rest.api.Model.S

tudent,org.springframework.web.util.UriComponentsBuilder)]

2018-01-15 20:07:16.702 DEBUG 3376 --- [http-nio-8080-exec-2] m.m.a.RequestResponseBodyMethodProcessor : Read [class

com.student.management.rest.api.Model.Student] as "application/json;charset=UTF-8" with

[org.springframework.http.converter.json.MappingJackson2HttpMessageConverter@7781e32a]

2018-01-15 20:07:16.722 INFO 3376 --- [http-nio-8080-exec-2] c.s.m.r.a.Controller.StudentController : SMAPI -

Student - Controller- createStudent request received.

2018-01-15 20:07:16.722 INFO 3376 --- [http-nio-8080-exec-2] c.s.m.r.a.S.Impl.StudentServiceImpl : SMAPI -

Student - Service- saveStudent method invoked.

2018-01-15 20:07:16.723 INFO 3376 --- [http-nio-8080-exec-2] c.s.m.r.a.S.Impl.StudentServiceImpl : SMAPI -

Student - Service- saveStudent method processed.

2018-01-15 20:07:16.723 INFO 3376 --- [http-nio-8080-exec-2] c.s.m.rest.api.Manager.StudentManager : SMAPI -

Student - Manager- isValidStudent method invoked.

2018-01-15 20:07:16.723 INFO 3376 --- [http-nio-8080-exec-2] c.s.m.rest.api.Manager.StudentManager : SMAPI -

Student - Manager- isValidStudent method processed.

2018-01-15 20:07:16.754 INFO 3376 --- [http-nio-8080-exec-2] c.s.m.r.a.S.I.RegistrationServiceImpl : SMAPI -

Registration - Service- registerNewStudent method invoked.

2018-01-15 20:07:16.755 INFO 3376 --- [http-nio-8080-exec-2] c.s.m.r.a.S.I.RegistrationServiceImpl : SMAPI -

Registration - Service- registerNewStudent method processed.

2018-01-15 20:07:16.763 INFO 3376 --- [http-nio-8080-exec-2] c.s.m.r.a.Controller.StudentController : SMAPI -

Student - Controller- createStudent request processed.

2018-01-15 20:07:16.847 DEBUG 3376 --- [http-nio-8080-exec-2] o.s.web.servlet.DispatcherServlet : Null

ModelAndView returned to DispatcherServlet with name 'dispatcherServlet': assuming HandlerAdapter completed request

handling

2018-01-15 20:07:16.849 DEBUG 3376 --- [http-nio-8080-exec-2] o.s.web.servlet.DispatcherServlet : Successfully

completed request

2018-01-15 20:08:01.326 DEBUG 3376 --- [http-nio-8080-exec-3] o.s.web.servlet.DispatcherServlet :

DispatcherServlet with name 'dispatcherServlet' processing GET request for [/studentapi/lecturer/all]

2018-01-15 20:08:01.327 DEBUG 3376 --- [http-nio-8080-exec-3] s.w.s.m.m.a.RequestMappingHandlerMapping : Looking up

handler method for path /lecturer/all

2018-01-15 20:08:01.328 DEBUG 3376 --- [http-nio-8080-exec-3] s.w.s.m.m.a.RequestMappingHandlerMapping : Returning

handler method [public

org.springframework.http.ResponseEntity<java.util.List<com.student.management.rest.api.Model.Lecturer>>

com.student.management.rest.api.Controller.LecturerController.listAllLecturers()]

2018-01-15 20:08:01.328 DEBUG 3376 --- [http-nio-8080-exec-3] o.s.web.servlet.DispatcherServlet : Last-

Modified value for [/studentapi/lecturer/all] is: -1

2018-01-15 20:08:01.329 INFO 3376 --- [http-nio-8080-exec-3] c.s.m.r.a.Controller.LecturerController : SMAPI -

Lecturer - Controller- listAllLecturers request received.

2018-01-15 20:08:01.329 INFO 3376 --- [http-nio-8080-exec-3] c.s.m.r.a.S.Impl.LecturerServiceImpl : SMAPI -

Lecturer - Service- findAllLecturers method invoked.

2018-01-15 20:08:01.345 INFO 3376 --- [http-nio-8080-exec-3] c.s.m.r.a.S.Impl.LecturerServiceImpl : SMAPI -

Lecturer - Service- findAllLecturers method processed.

2018-01-15 20:08:01.354 INFO 3376 --- [http-nio-8080-exec-3] c.s.m.r.a.Controller.LecturerController : SMAPI -

Lecturer - Controller- listAllLecturers request processed.

2018-01-15 20:08:01.358 DEBUG 3376 --- [http-nio-8080-exec-3] o.s.w.s.m.m.a.HttpEntityMethodProcessor : Written

[[com.student.management.rest.api.Model.Lecturer@394617d5,

com.student.management.rest.api.Model.Lecturer@10b5510b, com.student.management.rest.api.Model.Lecturer@4e2068d6,

com.student.management.rest.api.Model.Lecturer@2e74c941, com.student.management.rest.api.Model.Lecturer@27858be5,

74

com.student.management.rest.api.Model.Lecturer@1d02bb17]] as "application/json" using

[org.springframework.http.converter.json.MappingJackson2HttpMessageConverter@7781e32a]

2018-01-15 20:08:01.359 DEBUG 3376 --- [http-nio-8080-exec-3] o.s.web.servlet.DispatcherServlet : Null

ModelAndView returned to DispatcherServlet with name 'dispatcherServlet': assuming HandlerAdapter completed request

handling

2018-01-15 20:08:01.360 DEBUG 3376 --- [http-nio-8080-exec-3] o.s.web.servlet.DispatcherServlet : Successfully

completed request

2018-01-15 20:08:47.965 DEBUG 3376 --- [http-nio-8080-exec-4] o.s.web.servlet.DispatcherServlet :

DispatcherServlet with name 'dispatcherServlet' processing POST request for [/studentapi/lecturer/all]

2018-01-15 20:08:47.966 DEBUG 3376 --- [http-nio-8080-exec-4] s.w.s.m.m.a.RequestMappingHandlerMapping : Looking up

handler method for path /lecturer/all

2018-01-15 20:08:47.981 DEBUG 3376 --- [http-nio-8080-exec-4] .m.m.a.ExceptionHandlerExceptionResolver : Resolving

exception from handler [null]: org.springframework.web.HttpRequestMethodNotSupportedException: Request method

'POST' not supported

2018-01-15 20:08:47.981 DEBUG 3376 --- [http-nio-8080-exec-4] .w.s.m.a.ResponseStatusExceptionResolver : Resolving

exception from handler [null]: org.springframework.web.HttpRequestMethodNotSupportedException: Request method

'POST' not supported

2018-01-15 20:08:47.986 DEBUG 3376 --- [http-nio-8080-exec-4] .w.s.m.s.DefaultHandlerExceptionResolver : Resolving

exception from handler [null]: org.springframework.web.HttpRequestMethodNotSupportedException: Request method

'POST' not supported

2018-01-15 20:08:47.986 WARN 3376 --- [http-nio-8080-exec-4] o.s.web.servlet.PageNotFound : Request

method 'POST' not supported

2018-01-15 20:08:47.987 DEBUG 3376 --- [http-nio-8080-exec-4] o.s.web.servlet.DispatcherServlet : Null

ModelAndView returned to DispatcherServlet with name 'dispatcherServlet': assuming HandlerAdapter completed request

handling

2018-01-15 20:08:47.988 DEBUG 3376 --- [http-nio-8080-exec-4] o.s.web.servlet.DispatcherServlet : Successfully

completed request

2018-01-15 20:08:47.997 DEBUG 3376 --- [http-nio-8080-exec-4] o.s.web.servlet.DispatcherServlet :

DispatcherServlet with name 'dispatcherServlet' processing POST request for [/studentapi/error]

2018-01-15 20:08:47.997 DEBUG 3376 --- [http-nio-8080-exec-4] s.w.s.m.m.a.RequestMappingHandlerMapping : Looking up

handler method for path /error

2018-01-15 20:08:47.999 DEBUG 3376 --- [http-nio-8080-exec-4] s.w.s.m.m.a.RequestMappingHandlerMapping : Returning

handler method [public org.springframework.http.ResponseEntity<java.util.Map<java.lang.String, java.lang.Object>>

org.springframework.boot.autoconfigure.web.BasicErrorController.error(javax.servlet.http.HttpServletRequest)]

2018-01-15 20:08:48.018 DEBUG 3376 --- [http-nio-8080-exec-4] o.s.w.s.m.m.a.HttpEntityMethodProcessor : Written

[{timestamp=Mon Jan 15 20:08:48 IST 2018, status=405, error=Method Not Allowed,

exception=org.springframework.web.HttpRequestMethodNotSupportedException, message=Request method 'POST' not

supported, path=/studentapi/lecturer/all}] as "application/json" using

[org.springframework.http.converter.json.MappingJackson2HttpMessageConverter@7781e32a]

2018-01-15 20:08:48.019 DEBUG 3376 --- [http-nio-8080-exec-4] o.s.web.servlet.DispatcherServlet : Null

ModelAndView returned to DispatcherServlet with name 'dispatcherServlet': assuming HandlerAdapter completed request

handling

2018-01-15 20:08:48.019 DEBUG 3376 --- [http-nio-8080-exec-4] o.s.web.servlet.DispatcherServlet : Successfully

completed request

2018-01-15 20:08:54.533 DEBUG 3376 --- [http-nio-8080-exec-5] o.s.web.servlet.DispatcherServlet :

DispatcherServlet with name 'dispatcherServlet' processing POST request for [/studentapi/lecturer/add]

2018-01-15 20:08:54.533 DEBUG 3376 --- [http-nio-8080-exec-5] s.w.s.m.m.a.RequestMappingHandlerMapping : Looking up

handler method for path /lecturer/add

2018-01-15 20:08:54.533 DEBUG 3376 --- [http-nio-8080-exec-5] s.w.s.m.m.a.RequestMappingHandlerMapping : Returning

handler method [public org.springframework.http.ResponseEntity<?>

com.student.management.rest.api.Controller.LecturerController.createLecturer(com.student.management.rest.api.Model

.Lecturer,org.springframework.web.util.UriComponentsBuilder)]

2018-01-15 20:08:54.544 DEBUG 3376 --- [http-nio-8080-exec-5] m.m.a.RequestResponseBodyMethodProcessor : Read [class

com.student.management.rest.api.Model.Lecturer] as "application/json;charset=UTF-8" with

[org.springframework.http.converter.json.MappingJackson2HttpMessageConverter@7781e32a]

2018-01-15 20:08:54.546 INFO 3376 --- [http-nio-8080-exec-5] c.s.m.r.a.Controller.LecturerController : SMAPI -

Lecturer - Controller- createLecturer request received.

2018-01-15 20:08:54.546 INFO 3376 --- [http-nio-8080-exec-5] c.s.m.r.a.S.Impl.LecturerServiceImpl : SMAPI -

Lecturer - Service- addNewLecturer method invoked.

2018-01-15 20:08:54.552 INFO 3376 --- [http-nio-8080-exec-5] c.s.m.rest.api.Manager.LecturerManager : SMAPI -

Lecturer - Manager- isValidLecturer method invoked.

2018-01-15 20:08:54.552 INFO 3376 --- [http-nio-8080-exec-5] c.s.m.rest.api.Manager.LecturerManager : SMAPI -

Lecturer - Manager- isValidLecturer method processed.

75

2018-01-15 20:08:54.702 INFO 3376 --- [http-nio-8080-exec-5] c.s.m.r.a.S.Impl.LecturerServiceImpl : SMAPI -

Lecturer - Service- addNewLecturer method processed.

2018-01-15 20:08:54.703 INFO 3376 --- [http-nio-8080-exec-5] c.s.m.r.a.Controller.LecturerController : SMAPI -

Lecturer - Controller- createLecturer request processed.

2018-01-15 20:08:54.703 DEBUG 3376 --- [http-nio-8080-exec-5] o.s.web.servlet.DispatcherServlet : Null

ModelAndView returned to DispatcherServlet with name 'dispatcherServlet': assuming HandlerAdapter completed request

handling

2018-01-15 20:08:54.704 DEBUG 3376 --- [http-nio-8080-exec-5] o.s.web.servlet.DispatcherServlet : Successfully

completed request

2018-01-15 20:09:14.490 DEBUG 3376 --- [http-nio-8080-exec-6] o.s.web.servlet.DispatcherServlet :

DispatcherServlet with name 'dispatcherServlet' processing GET request for [/studentapi/payment/all]

2018-01-15 20:09:14.490 DEBUG 3376 --- [http-nio-8080-exec-6] s.w.s.m.m.a.RequestMappingHandlerMapping : Looking up

handler method for path /payment/all

2018-01-15 20:09:14.491 DEBUG 3376 --- [http-nio-8080-exec-6] s.w.s.m.m.a.RequestMappingHandlerMapping : Returning

handler method [public

org.springframework.http.ResponseEntity<java.util.List<com.student.management.rest.api.Model.Payment>>

com.student.management.rest.api.Controller.PaymentController.listAllPayments()]

2018-01-15 20:09:14.492 DEBUG 3376 --- [http-nio-8080-exec-6] o.s.web.servlet.DispatcherServlet : Last-

Modified value for [/studentapi/payment/all] is: -1

2018-01-15 20:09:14.493 INFO 3376 --- [http-nio-8080-exec-6] c.s.m.r.a.Controller.PaymentController : SMAPI -

Payment - Controller- listAllPayments request received.

2018-01-15 20:09:14.493 INFO 3376 --- [http-nio-8080-exec-6] c.s.m.r.a.S.Impl.PaymentServiceImpl : SMAPI -

Payment - Service- findAllPayments method invoked.

2018-01-15 20:09:14.517 INFO 3376 --- [http-nio-8080-exec-6] c.s.m.r.a.S.Impl.PaymentServiceImpl : SMAPI -

Payment - Service- findAllPayments method processed.

2018-01-15 20:09:14.552 INFO 3376 --- [http-nio-8080-exec-6] c.s.m.r.a.Controller.PaymentController : SMAPI -

Payment - Controller- listAllPayments request processed.

2018-01-15 20:09:14.565 DEBUG 3376 --- [http-nio-8080-exec-6] o.s.w.s.m.m.a.HttpEntityMethodProcessor : Written

[[com.student.management.rest.api.Model.Payment@2914240, com.student.management.rest.api.Model.Payment@146bfeea,

com.student.management.rest.api.Model.Payment@12068116, com.student.management.rest.api.Model.Payment@e3abaf6,

com.student.management.rest.api.Model.Payment@6316a33, com.student.management.rest.api.Model.Payment@4d6658b1,

com.student.management.rest.api.Model.Payment@6b4e7e3a, com.student.management.rest.api.Model.Payment@30f884af,

com.student.management.rest.api.Model.Payment@3d150071, com.student.management.rest.api.Model.Payment@424974b2,

com.student.management.rest.api.Model.Payment@5a6e7d6f, com.student.management.rest.api.Model.Payment@2ec75771,

com.student.management.rest.api.Model.Payment@3b44cc50, com.student.management.rest.api.Model.Payment@3221d36e,

com.student.management.rest.api.Model.Payment@1b8d5540, com.student.management.rest.api.Model.Payment@fe5f59f,

com.student.management.rest.api.Model.Payment@125e9e7f, com.student.management.rest.api.Model.Payment@2ed895f9,

com.student.management.rest.api.Model.Payment@5f8ef237, com.student.management.rest.api.Model.Payment@7fe7ad54,

com.student.management.rest.api.Model.Payment@192c79b1]] as "application/json" using

[org.springframework.http.converter.json.MappingJackson2HttpMessageConverter@7781e32a]

2018-01-15 20:09:14.566 DEBUG 3376 --- [http-nio-8080-exec-6] o.s.web.servlet.DispatcherServlet : Null

ModelAndView returned to DispatcherServlet with name 'dispatcherServlet': assuming HandlerAdapter completed request

handling

2018-01-15 20:09:14.566 DEBUG 3376 --- [http-nio-8080-exec-6] o.s.web.servlet.DispatcherServlet : Successfully

completed request

2018-01-15 20:09:30.934 DEBUG 3376 --- [http-nio-8080-exec-7] o.s.web.servlet.DispatcherServlet :

DispatcherServlet with name 'dispatcherServlet' processing GET request for [/studentapi/department/all]

2018-01-15 20:09:30.934 DEBUG 3376 --- [http-nio-8080-exec-7] s.w.s.m.m.a.RequestMappingHandlerMapping : Looking up

handler method for path /department/all

2018-01-15 20:09:30.935 DEBUG 3376 --- [http-nio-8080-exec-7] s.w.s.m.m.a.RequestMappingHandlerMapping : Returning

handler method [public

org.springframework.http.ResponseEntity<java.util.List<com.student.management.rest.api.Model.Department>>

com.student.management.rest.api.Controller.DepartmentController.listAllDepartments()]

2018-01-15 20:09:30.935 DEBUG 3376 --- [http-nio-8080-exec-7] o.s.web.servlet.DispatcherServlet : Last-

Modified value for [/studentapi/department/all] is: -1

2018-01-15 20:09:30.935 INFO 3376 --- [http-nio-8080-exec-7] c.s.m.r.a.C.DepartmentController : SMAPI -

Department - Controller- listAllDepartments request received.

2018-01-15 20:09:30.936 INFO 3376 --- [http-nio-8080-exec-7] c.s.m.r.a.S.Impl.DepartmentServiceImpl : SMAPI -

Department - Service- findAllDepartments method invoked.

2018-01-15 20:09:30.944 INFO 3376 --- [http-nio-8080-exec-7] c.s.m.r.a.S.Impl.DepartmentServiceImpl : SMAPI -

Department - Service- findAllDepartments method processed.

2018-01-15 20:09:30.948 INFO 3376 --- [http-nio-8080-exec-7] c.s.m.r.a.C.DepartmentController : SMAPI -

Department - Controller- listAllDepartments request processed.

76

2018-01-15 20:09:30.951 DEBUG 3376 --- [http-nio-8080-exec-7] o.s.w.s.m.m.a.HttpEntityMethodProcessor : Written

[[com.student.management.rest.api.Model.Department@324b9508,

com.student.management.rest.api.Model.Department@2f437b47,

com.student.management.rest.api.Model.Department@22e4cf07,

com.student.management.rest.api.Model.Department@5a1e50d2,

com.student.management.rest.api.Model.Department@34936d4c,

com.student.management.rest.api.Model.Department@beb1da]] as "application/json" using

[org.springframework.http.converter.json.MappingJackson2HttpMessageConverter@7781e32a]

2018-01-15 20:09:30.951 DEBUG 3376 --- [http-nio-8080-exec-7] o.s.web.servlet.DispatcherServlet : Null

ModelAndView returned to DispatcherServlet with name 'dispatcherServlet': assuming HandlerAdapter completed request

handling

2018-01-15 20:09:30.952 DEBUG 3376 --- [http-nio-8080-exec-7] o.s.web.servlet.DispatcherServlet : Successfully

completed request

2018-01-15 20:10:07.986 DEBUG 3376 --- [http-nio-8080-exec-8] o.s.web.servlet.DispatcherServlet :

DispatcherServlet with name 'dispatcherServlet' processing GET request for [/studentapi/department/all]

2018-01-15 20:10:07.987 DEBUG 3376 --- [http-nio-8080-exec-8] s.w.s.m.m.a.RequestMappingHandlerMapping : Looking up

handler method for path /department/all

2018-01-15 20:10:07.989 DEBUG 3376 --- [http-nio-8080-exec-8] s.w.s.m.m.a.RequestMappingHandlerMapping : Returning

handler method [public

org.springframework.http.ResponseEntity<java.util.List<com.student.management.rest.api.Model.Department>>

com.student.management.rest.api.Controller.DepartmentController.listAllDepartments()]

2018-01-15 20:10:07.989 DEBUG 3376 --- [http-nio-8080-exec-8] o.s.web.servlet.DispatcherServlet : Last-

Modified value for [/studentapi/department/all] is: -1

2018-01-15 20:10:07.990 INFO 3376 --- [http-nio-8080-exec-8] c.s.m.r.a.C.DepartmentController : SMAPI -

Department - Controller- listAllDepartments request received.

2018-01-15 20:10:07.990 INFO 3376 --- [http-nio-8080-exec-8] c.s.m.r.a.S.Impl.DepartmentServiceImpl : SMAPI -

Department - Service- findAllDepartments method invoked.

2018-01-15 20:10:07.994 INFO 3376 --- [http-nio-8080-exec-8] c.s.m.r.a.S.Impl.DepartmentServiceImpl : SMAPI -

Department - Service- findAllDepartments method processed.

2018-01-15 20:10:07.998 INFO 3376 --- [http-nio-8080-exec-8] c.s.m.r.a.C.DepartmentController : SMAPI -

Department - Controller- listAllDepartments request processed.

2018-01-15 20:10:08.002 DEBUG 3376 --- [http-nio-8080-exec-8] o.s.w.s.m.m.a.HttpEntityMethodProcessor : Written

[[com.student.management.rest.api.Model.Department@6ccd9d5f,

com.student.management.rest.api.Model.Department@71d96829,

com.student.management.rest.api.Model.Department@71beaef5,

com.student.management.rest.api.Model.Department@3469f217,

com.student.management.rest.api.Model.Department@34ceb6a0,

com.student.management.rest.api.Model.Department@eec1830]] as "application/json" using

[org.springframework.http.converter.json.MappingJackson2HttpMessageConverter@7781e32a]

2018-01-15 20:10:08.003 DEBUG 3376 --- [http-nio-8080-exec-8] o.s.web.servlet.DispatcherServlet : Null

ModelAndView returned to DispatcherServlet with name 'dispatcherServlet': assuming HandlerAdapter completed request

handling

2018-01-15 20:10:08.004 DEBUG 3376 --- [http-nio-8080-exec-8] o.s.web.servlet.DispatcherServlet : Successfully

completed request

2018-01-15 20:10:25.952 DEBUG 3376 --- [http-nio-8080-exec-9] o.s.web.servlet.DispatcherServlet :

DispatcherServlet with name 'dispatcherServlet' processing POST request for [/studentapi/department/add]

2018-01-15 20:10:25.953 DEBUG 3376 --- [http-nio-8080-exec-9] s.w.s.m.m.a.RequestMappingHandlerMapping : Looking up

handler method for path /department/add

2018-01-15 20:10:25.953 DEBUG 3376 --- [http-nio-8080-exec-9] s.w.s.m.m.a.RequestMappingHandlerMapping : Returning

handler method [public org.springframework.http.ResponseEntity<?>

com.student.management.rest.api.Controller.DepartmentController.createDepartment(com.student.management.rest.api.M

odel.Department,org.springframework.web.util.UriComponentsBuilder)]

2018-01-15 20:10:25.956 DEBUG 3376 --- [http-nio-8080-exec-9] m.m.a.RequestResponseBodyMethodProcessor : Read [class

com.student.management.rest.api.Model.Department] as "application/json;charset=UTF-8" with

[org.springframework.http.converter.json.MappingJackson2HttpMessageConverter@7781e32a]

2018-01-15 20:10:25.957 INFO 3376 --- [http-nio-8080-exec-9] c.s.m.r.a.C.DepartmentController : SMAPI -

Department - Controller- createDepartment request received.

2018-01-15 20:10:25.958 INFO 3376 --- [http-nio-8080-exec-9] c.s.m.r.a.S.Impl.DepartmentServiceImpl : SMAPI -

Department - Service- addNewDepartment method invoked.

2018-01-15 20:10:25.958 INFO 3376 --- [http-nio-8080-exec-9] c.s.m.r.api.Manager.DepartmentManager : SMAPI -

Department - Manager- isValidDepartment method invoked.

2018-01-15 20:10:25.958 INFO 3376 --- [http-nio-8080-exec-9] c.s.m.r.api.Manager.DepartmentManager : SMAPI -

Department - Manager- isValidDepartment method processed.

2018-01-15 20:10:26.091 INFO 3376 --- [http-nio-8080-exec-9] c.s.m.r.a.S.Impl.DepartmentServiceImpl : SMAPI -

Department - Service- addNewDepartment method processed.

77

2018-01-15 20:10:26.092 INFO 3376 --- [http-nio-8080-exec-9] c.s.m.r.a.C.DepartmentController : SMAPI -

Department - Controller- createDepartment request processed.

2018-01-15 20:10:26.092 DEBUG 3376 --- [http-nio-8080-exec-9] o.s.web.servlet.DispatcherServlet : Null

ModelAndView returned to DispatcherServlet with name 'dispatcherServlet': assuming HandlerAdapter completed request

handling

2018-01-15 20:10:26.093 DEBUG 3376 --- [http-nio-8080-exec-9] o.s.web.servlet.DispatcherServlet : Successfully

completed request

2018-01-15 20:10:39.460 DEBUG 3376 --- [http-nio-8080-exec-10] o.s.web.servlet.DispatcherServlet :

DispatcherServlet with name 'dispatcherServlet' processing GET request for [/studentapi/exam/all]

2018-01-15 20:10:39.460 DEBUG 3376 --- [http-nio-8080-exec-10] s.w.s.m.m.a.RequestMappingHandlerMapping : Looking

up handler method for path /exam/all

2018-01-15 20:10:39.460 DEBUG 3376 --- [http-nio-8080-exec-10] s.w.s.m.m.a.RequestMappingHandlerMapping : Returning

handler method [public

org.springframework.http.ResponseEntity<java.util.List<com.student.management.rest.api.Model.Exam>>

com.student.management.rest.api.Controller.ExamController.listAllExams()]

2018-01-15 20:10:39.461 DEBUG 3376 --- [http-nio-8080-exec-10] o.s.web.servlet.DispatcherServlet : Last-

Modified value for [/studentapi/exam/all] is: -1

2018-01-15 20:10:39.461 INFO 3376 --- [http-nio-8080-exec-10] c.s.m.r.api.Controller.ExamController : SMAPI -

Exam - Controller- listAllExams request received.

2018-01-15 20:10:39.461 INFO 3376 --- [http-nio-8080-exec-10] c.s.m.r.a.Service.Impl.ExamServiceImpl : SMAPI -

Exam - Service- findAllExams method invoked.

2018-01-15 20:10:39.476 INFO 3376 --- [http-nio-8080-exec-10] c.s.m.r.a.Service.Impl.ExamServiceImpl : SMAPI -

Exam - Service- findAllExams method processed.

2018-01-15 20:10:39.489 INFO 3376 --- [http-nio-8080-exec-10] c.s.m.r.api.Controller.ExamController : SMAPI -

Exam - Controller- listAllExams request processed.

2018-01-15 20:10:39.492 DEBUG 3376 --- [http-nio-8080-exec-10] o.s.w.s.m.m.a.HttpEntityMethodProcessor : Written

[[com.student.management.rest.api.Model.Exam@7ae49138, com.student.management.rest.api.Model.Exam@5ec035d1,

com.student.management.rest.api.Model.Exam@2d1028a5, com.student.management.rest.api.Model.Exam@5e76a320,

com.student.management.rest.api.Model.Exam@458487, com.student.management.rest.api.Model.Exam@5ff447e3,

com.student.management.rest.api.Model.Exam@730d19b8, com.student.management.rest.api.Model.Exam@1809cb5a,

com.student.management.rest.api.Model.Exam@34c40560, com.student.management.rest.api.Model.Exam@49f29744,

com.student.management.rest.api.Model.Exam@52a9971b]] as "application/json" using

[org.springframework.http.converter.json.MappingJackson2HttpMessageConverter@7781e32a]

2018-01-15 20:10:39.493 DEBUG 3376 --- [http-nio-8080-exec-10] o.s.web.servlet.DispatcherServlet : Null

ModelAndView returned to DispatcherServlet with name 'dispatcherServlet': assuming HandlerAdapter completed request

handling

2018-01-15 20:10:39.493 DEBUG 3376 --- [http-nio-8080-exec-10] o.s.web.servlet.DispatcherServlet :

Successfully completed request

2018-01-15 20:11:05.728 DEBUG 3376 --- [http-nio-8080-exec-1] o.s.web.servlet.DispatcherServlet :

DispatcherServlet with name 'dispatcherServlet' processing POST request for [/studentapi/exam/add]

2018-01-15 20:11:05.729 DEBUG 3376 --- [http-nio-8080-exec-1] s.w.s.m.m.a.RequestMappingHandlerMapping : Looking up

handler method for path /exam/add

2018-01-15 20:11:05.729 DEBUG 3376 --- [http-nio-8080-exec-1] s.w.s.m.m.a.RequestMappingHandlerMapping : Returning

handler method [public org.springframework.http.ResponseEntity<?>

com.student.management.rest.api.Controller.ExamController.createExam(com.student.management.rest.api.Model.Exam,or

g.springframework.web.util.UriComponentsBuilder)]

2018-01-15 20:11:05.739 DEBUG 3376 --- [http-nio-8080-exec-1] m.m.a.RequestResponseBodyMethodProcessor : Read [class

com.student.management.rest.api.Model.Exam] as "application/json;charset=UTF-8" with

[org.springframework.http.converter.json.MappingJackson2HttpMessageConverter@7781e32a]

2018-01-15 20:11:05.740 INFO 3376 --- [http-nio-8080-exec-1] c.s.m.r.api.Controller.ExamController : SMAPI -

Exam - Controller- createExam request received.

2018-01-15 20:11:05.740 INFO 3376 --- [http-nio-8080-exec-1] c.s.m.r.a.Service.Impl.ExamServiceImpl : SMAPI -

Exam - Service- addNewExam method invoked.

2018-01-15 20:11:05.741 INFO 3376 --- [http-nio-8080-exec-1] c.s.m.rest.api.Manager.ExamManager : SMAPI -

Exam - Manager- isValidExam method invoked.

2018-01-15 20:11:05.741 INFO 3376 --- [http-nio-8080-exec-1] c.s.m.rest.api.Manager.ExamManager : SMAPI -

Exam - Manager- isValidExam method processed.

2018-01-15 20:11:05.811 INFO 3376 --- [http-nio-8080-exec-1] c.s.m.r.a.Service.Impl.ExamServiceImpl : SMAPI -

Exam - Service- addNewExam method processed.

2018-01-15 20:11:05.811 INFO 3376 --- [http-nio-8080-exec-1] c.s.m.r.api.Controller.ExamController : SMAPI -

Exam - Controller- createExam request processed.

78

2018-01-15 20:11:05.812 DEBUG 3376 --- [http-nio-8080-exec-1] o.s.web.servlet.DispatcherServlet : Null

ModelAndView returned to DispatcherServlet with name 'dispatcherServlet': assuming HandlerAdapter completed request

handling

2018-01-15 20:11:05.812 DEBUG 3376 --- [http-nio-8080-exec-1] o.s.web.servlet.DispatcherServlet : Successfully

completed request

2018-01-15 20:11:10.599 DEBUG 3376 --- [http-nio-8080-exec-2] o.s.web.servlet.DispatcherServlet :

DispatcherServlet with name 'dispatcherServlet' processing GET request for [/studentapi/payment/all]

2018-01-15 20:11:10.599 DEBUG 3376 --- [http-nio-8080-exec-2] s.w.s.m.m.a.RequestMappingHandlerMapping : Looking up

handler method for path /payment/all

2018-01-15 20:11:10.600 DEBUG 3376 --- [http-nio-8080-exec-2] s.w.s.m.m.a.RequestMappingHandlerMapping : Returning

handler method [public

org.springframework.http.ResponseEntity<java.util.List<com.student.management.rest.api.Model.Payment>>

com.student.management.rest.api.Controller.PaymentController.listAllPayments()]

2018-01-15 20:11:10.600 DEBUG 3376 --- [http-nio-8080-exec-2] o.s.web.servlet.DispatcherServlet : Last-

Modified value for [/studentapi/payment/all] is: -1

2018-01-15 20:11:10.600 INFO 3376 --- [http-nio-8080-exec-2] c.s.m.r.a.Controller.PaymentController : SMAPI -

Payment - Controller- listAllPayments request received.

2018-01-15 20:11:10.600 INFO 3376 --- [http-nio-8080-exec-2] c.s.m.r.a.S.Impl.PaymentServiceImpl : SMAPI -

Payment - Service- findAllPayments method invoked.

2018-01-15 20:11:10.609 INFO 3376 --- [http-nio-8080-exec-2] c.s.m.r.a.S.Impl.PaymentServiceImpl : SMAPI -

Payment - Service- findAllPayments method processed.

2018-01-15 20:11:10.643 INFO 3376 --- [http-nio-8080-exec-2] c.s.m.r.a.Controller.PaymentController : SMAPI -

Payment - Controller- listAllPayments request processed.

2018-01-15 20:11:10.645 DEBUG 3376 --- [http-nio-8080-exec-2] o.s.w.s.m.m.a.HttpEntityMethodProcessor : Written

[[com.student.management.rest.api.Model.Payment@22a212ac, com.student.management.rest.api.Model.Payment@681ff543,

com.student.management.rest.api.Model.Payment@1add4dd9, com.student.management.rest.api.Model.Payment@40520514,

com.student.management.rest.api.Model.Payment@72d748c0, com.student.management.rest.api.Model.Payment@65750e34,

com.student.management.rest.api.Model.Payment@153624c6, com.student.management.rest.api.Model.Payment@459cf9d1,

com.student.management.rest.api.Model.Payment@d4538ea, com.student.management.rest.api.Model.Payment@400c83d8,

com.student.management.rest.api.Model.Payment@64b89f0b, com.student.management.rest.api.Model.Payment@46c8b03c,

com.student.management.rest.api.Model.Payment@62ee5267, com.student.management.rest.api.Model.Payment@46581fa1,

com.student.management.rest.api.Model.Payment@66b890a6, com.student.management.rest.api.Model.Payment@65f2951d,

com.student.management.rest.api.Model.Payment@751f9eae, com.student.management.rest.api.Model.Payment@733c22bb,

com.student.management.rest.api.Model.Payment@5123a1da, com.student.management.rest.api.Model.Payment@20089c9e,

com.student.management.rest.api.Model.Payment@296b8cdf]] as "application/json" using

[org.springframework.http.converter.json.MappingJackson2HttpMessageConverter@7781e32a]

2018-01-15 20:11:10.645 DEBUG 3376 --- [http-nio-8080-exec-2] o.s.web.servlet.DispatcherServlet : Null

ModelAndView returned to DispatcherServlet with name 'dispatcherServlet': assuming HandlerAdapter completed request

handling

2018-01-15 20:11:10.646 DEBUG 3376 --- [http-nio-8080-exec-2] o.s.web.servlet.DispatcherServlet : Successfully

completed request

2018-01-15 20:11:36.159 DEBUG 3376 --- [http-nio-8080-exec-3] o.s.web.servlet.DispatcherServlet :

DispatcherServlet with name 'dispatcherServlet' processing POST request for [/studentapi/payment/add]

2018-01-15 20:11:36.159 DEBUG 3376 --- [http-nio-8080-exec-3] s.w.s.m.m.a.RequestMappingHandlerMapping : Looking up

handler method for path /payment/add

\2018-01-15 20:11:36.169 DEBUG 3376 --- [http-nio-8080-exec-3] m.m.a.RequestResponseBodyMethodProcessor : Read

[class com.student.management.rest.api.Model.Payment] as "application/json;charset=UTF-8" with

[org.springframework.http.converter.json.MappingJackson2HttpMessageConverter@7781e32a]

2018-01-15 20:11:36.170 INFO 3376 --- [http-nio-8080-exec-3] c.s.m.r.a.Controller.PaymentController : SMAPI -

Payment - Controller- createPayment request received. data id : null

2018-01-15 20:11:36.172 INFO 3376 --- [http-nio-8080-exec-3] c.s.m.r.a.S.Impl.PaymentServiceImpl : SMAPI -

Payment - Service- addNewPayment method invoked.

2018-01-15 20:11:36.172 INFO 3376 --- [http-nio-8080-exec-3] c.s.m.rest.api.Manager.PaymentManager : SMAPI -

Payment - Manager- isValidPayment method invoked.

2018-01-15 20:11:36.172 INFO 3376 --- [http-nio-8080-exec-3] c.s.m.rest.api.Manager.PaymentManager : SMAPI -

Payment - Manager- isValidPayment method processed.

2018-01-15 20:11:36.172 INFO 3376 --- [http-nio-8080-exec-3] c.s.m.rest.api.Manager.PaymentManager : SMAPI -

Payment - Manager- isValidAmount method invoked.

2018-01-15 20:11:36.172 INFO 3376 --- [http-nio-8080-exec-3] c.s.m.rest.api.Manager.PaymentManager : SMAPI -

Payment - Manager- isValidAmount method processed.

2018-01-15 20:11:36.237 INFO 3376 --- [http-nio-8080-exec-3] c.s.m.r.a.S.Impl.PaymentServiceImpl : SMAPI -

Payment - Service- addNewPayment method processed.

2018-01-15 20:11:36.238 INFO 3376 --- [http-nio-8080-exec-3] c.s.m.r.a.Controller.PaymentController : SMAPI -

Payment - Controller- createPayment request processed.

79

2018-01-15 20:11:36.238 DEBUG 3376 --- [http-nio-8080-exec-3] o.s.web.servlet.DispatcherServlet : Null

ModelAndView returned to DispatcherServlet with name 'dispatcherServlet': assuming HandlerAdapter completed request

handling

2018-01-15 20:11:36.238 DEBUG 3376 --- [http-nio-8080-exec-3] o.s.web.servlet.DispatcherServlet : Successfully

completed request

Logs Summary:

By looking at the above logs it can be categorized the services with its usage as

follows:

Service Usage

(Approximately)

Payment Service 70%

Exam Service 71%

Registration Service 80%

Student Service 90%

Lecturer Service 75%

Department Service 72%

Table 5-6: Usage Summary as a Percentage.

Above table shows how each service are used when performing above defined tasks

from the Student Data Management API. By looking at the percentages it gives slight

idea about how important is each of the service in the Student Data Management API

when performing defined tasks. Following breakdown shows as a percentage how each

service is correlated when performing a task. Those results were obtained by analyzing

the logs from the tool which described earlier.

Adding a Student:

Service Usage

(Approximately)

Registration Service 60%

Student Service 100%

Lecturer Service 65%

Department Service 55%

Table 5-7: Adding Student Usage Percentages.

80

Adding a Lecturer:

Adding a Department:

.

Adding an Exam:

Making a Payment:

Service Usage

(Approximately)

Registration Service 60%

Lecturer Service 100%

Department Service 65%

Table 5-8: Adding Lecturer Usage Percentages.

Service Usage

(Approximately)

Lecturer Service 40%

Department Service 100%

Table 5-9: Adding Department Usage Percentages.

Service Usage

(Approximately)

Payment Service 40%

Exam Service 100%

Student Service 20%

Lecturer Service 20%

Department Service 20%

Table 5-10: Adding Exam Usage Percentages.

Service Usage

(Approximately)

Payment Service 100%

Exam Service 40%

Student Service 20%

Table 5-11: Making a Payment Usage Percentages.

81

By looking at the above results it can make an assumption Student Service has

dependencies to many of the actions performed. Whereas Payment, Exam has less

interactions to other actions comparing to the Student and Lecturer Services.

Moreover, the Department Service and Registration Service have some impact when

performing above tasks but those are not significant as the Student or the Lecturer

Services interactions as the percentage wise. Hence as a summary it can be categorized

the services as follows:

1. Student Service + Lecture Service (Student - Lecture Service)

2. Department Service + Registration Service (Department - Registration

Service)

3. Exam Service

4. Payment Service

But as above the obtained results those are not accurate as much as the manual

approach. Even though those are not accurate, it can used to validate the results

obtained from the monolithic to microservice conversion tool.

5.3.3 Validation and Discussion Summary.

From the both of the manual and automated validation method suggest that the Student

Service and the Lecture Service should be merge as one microservice. Additionally,

the manual validation approach suggests that all other should be a one microservice

whereas automated approach suggest having merge of Department Service and

Registration Service. But looking at the code and the architecture of the Student Data

Management API it is clear that Department Service and the Registration Service

should keep as separate services as they don't much depend each other and easy to

separate out due to having larger self-containment.

By the method implement from the tool it has suggested different combination of

services from iteration 1, iteration 2 and iteration 3 based on the weights feed to the

tool for different quality attributes. As comparing to the methods used to validate the

tool which created from this research iteration 3 has the most accurate to the point.

82

That is because in that iteration it has fed the mode weight on the Cohesion and Self-

Containment. As per the observations and many researchers the key aspect to separate

out microservices from a existing service or to build such from the scratch the service

which chosen should have high Cohesion and Self-Containment. That is service

should be able to independently develop and deployed. No coordination should be

needed with other service teams if no breaking API changes have been made. Each

service is effectively its own product with its own codebase and lifecycle [47].

According to the iteration 3 results it suggest following results from the tool.

Figure 5-6: 3rd Iteration Final Cluster Results.

From the tool it partitions the source code of Student Management API into a set of

clusters. Each cluster is composed of one or more classes. Each resulting cluster

corresponds to one microservice. Following table shows the final and most accurate

results in terms of number of obtained microservices for the Student Management API

and the corresponding average service quality value for each of the four characteristics:

functionality, composability, self-containment and usage after the Clustering process.

The distribution rate of controllers to services is 7/4= 1.75 for the Student Management

API. Even more, it can notice that almost all classes of same service are grouped to

offer single functionality. And also, it can be noticeable that functionally relevant

classes were grouped in one cluster. For an instance similar and relevant services like

Student, Lecturer and Department has been clustered as one Microservice.

83

Microservice Functionality Composability Self-

Containment

Usage Fitness

Function

Value

1 Student -

Lecturer -

0.80 0.88 0.71 0.81 0.710

Department

Service

0.78 0.76 0.70 0.82 0.713

2 Registration

Service

0.71 0.76 0.75 0.79 0.786

3 Exam Service 0.76 0.72 0.81 0.87 0.831

4 Payment

Service

0.76 0.83 0.91 0.94 0.901

Table 5-12: 3rd Iteration Cluster Values.

And also, it is noticeable that some microservices were directly mapped to one

corresponding controller, service and related repository in the architecture, such as

Payment Service, Registration Service and Exam Service. In total, 4 services were

successfully mapped to 7 controllers or the services in the system architecture. By

looking at the further the microservices concepts it can clearly see even the 4th service

which is extracted by the tool can be make it as a more granular microservices by

separating them to 2 services such as Student Service and Lecturer Service as one

Service and Department Service as another Service as the manual validation approach

suggested. The results show that close to 80% of extracted services from the tool are

accurate. It can be assumed that by feeding context related knowledge to the tool it can

be more accurate than this, but it is too hard to implement for this research with the

given time frame.

84

Chapter 6

CONCLUSION

85

6.1 Research Contributions

The main contribution of the work presented in this paper is the identification of

microservices in legacy source code or the monolithic system source code based on

service quality characteristics. In order to achieve that for this purpose, it first set a

mapping model between java classes and microservice concepts. Then, unlike most

ad-hoc identification approaches, then in the research introduced a fitness function that

measures the quality of identified services. Initially it assumed that all of the service

classes are as one single microservice then from the method in this research it

calculates a fitness function value for each of the services on each iteration until it

exists from the program. To calculate the fitness function value as described in the

implementation section it uses 4 attributes with weighted coefficient. Then based on

the fitness function value of each of the identified services those will be clustered into

set to microservices at each of the iteration. To demonstrate the applicability of this

paper proposed approach, created a simple REST API which has the basic

functionality to manage the student data for an institute and it has proven that this

method has somewhat significant effect on filtering out microservice from the existing

legacy or the monolithic system code bases. By feeding the context knowledge to the

tool those results obtained by the tool will be more accurate, but that will some part of

the future work.

Further from this research, by trying few of the weighted values against the quality

attributes functionality, composability, self-containment and usage it has proven that

the most applicable values to identify microservices are be the self-containment and

the composability. That is because when using higher values for the composability and

the self-containment when extracting microservices from the monolithic system by

using the tool which have created in this research has given the close results as to the

same as manual identification process. Moreover, it also has proven that the attributes

like those attributes have a direct relationship with identifying the microservices. That

is when designing an microservice based architecture-based system it should design in

a way that each service in the architecture should;

1. Be able to Independently develop and deployed.

2. Loosely coupled.

86

3. Have minimal dependence on other services,

4. Have high Cohesion.

5. Closely related functionality should stay together in the same service.

6. Have high Self-Containment.

Finally, it can say that this research has proven that the converting existing monolithic

systems into microservices can be done through an automated tool with a well-defined

approach. Even though this research has somewhat accuracy around 70% to 80% it

has been able to break the myth of difficulty of converting existing monolithic systems

to microservices in an automated approach. Basically, this research has proven that we

can improve this methodology to have more accurate results with minimum effort even

though it missing documentations, peoples who developed the system etc. to convert

to microservices.

6.2 Study Limitations

For this study it has selected one type of architectural pattern and the programming

language since the given time period of this research is not feasible enough to find out

a generic solution to the problem and here it tries to prove that the feasibility of

identifying microservices in a monolithic system and the effective attributes. Hence

this research focused on java language and the MVC architecture pattern when

identifying microservices. Moreover, some of the additional features will be listed

under the future work since some interested party can continue the work on any of

those topics.

 As well as with the given time frame it was not possible to complete the

features like giving more insights about the identified services as planned. Such as

service descriptions including its usages, dependency graphs etc. That also can be

carried out as a separate project in a future research. Being the first few researches of

this kind it was a touch task to finding resources and knowledge to carry out to produce

the maximum output from the research work.

87

6.3 Future Work

As per the results obtained from the tool which developed to identify the microservices

from the existing monolithic system, it is lack of some of the key aspects to improve

its suggestions. Such as context knowledge and the previous analysis knowledge.

Since this version of this tool is not having such a capability those results can be vary

from the accuracy point of view. For the future work to improve this tool, it can

leverage some of the aspects of context knowledge and the previous analysis

knowledge.

And also, as you can see in the following picture there are few features still to be

implemented such as Description and the Importance.

Figure 6-1: Features to be Implemented.

Description is mean to be show the depended classes for each of the services and its

current usages. As well Importance is mean to be show that how much that particular

identified services are going to be important to extracted as a microservice, but in order

to implement such functionality the tool should leverage some of the aspects of context

knowledge about the monolithic system which has fed to the tool to extract the

microservices.

Moreover, the current implementation of the tool only support for the Java programs

which has the MVC architectural pattern, as a future work it can extend to accept more

languages with more architectural patterns. That also will require some aspects of the

machine learning techniques to identify the architectural patterns etc.

88

Chapter 7

REFERENCES

89

[1]. Levcovitz, Alessandra, Ricardo Terra, and Marco Tulio Valente. "Towards a

Technique for Extracting Microservices from Monolithic Enterprise Systems." arXiv

preprint arXiv:1605.03175 (2016).

[2]. Kharbuja, Rajendra. "FAKULTÄT FÜR INFORMATIK.".

[3]. Moreira, Pedro Felipe Marques, and Delano Medeiros Beder. "Desenvolvimento

de Aplicações e Micro Serviços: Um estudo de caso."Revista TIS 4.3 (2016).

[4]Micor Service Principles to Retreive, Retreive from

https://www.linkedin.com/pulse/microservices-principles-converting-monolith-arati-

joshi

[5].Key Software Principles , Retrieved from https://code.tutsplus.com/tutorials/3-

key-software-principles-you-must-understand--net-25161

[6].Convention over Configuration , Retreived from

https://en.wikipedia.org/wiki/Convention_over_configuration

[7]. Ronen, Inbal, Netta Aizenbud, and Ksenya Kveler. "Service identification in

legacy code using structured and unstructured analysis." IBM Programming

Languages and Development Environments Seminar. 2007.

[8]. Zhang, Zhuopeng, Ruimin Liu, and Hongji Yang. "Service Identification and

Packaging in Service Oriented Reengineering." SEKE. Vol. 5. 2005.

[9]. Sneed, Harry M. "Integrating legacy software into a service oriented architecture."

Conference on Software Maintenance and Reengineering (CSMR'06). IEEE, 2006.

[10]. Khadka, Ravi. "Service identification strategies in legacy-to-SOA migration." the

27th IEEE International Conference on Software Maintenance-Doctoral Consortium

(ICSM-DC 2011). 2011.

[11]. S. Brinkkemper, “Method engineering: engineering of information systems

development methods and tools,” Information and Software Technology, vol. 38, no.

4, pp. 275–280, 1996.

[12]. N. Gold, M. Harman, D. Binkley, and R. Hierons, “Unifying program slicing and

concept assignment for higher-level executable source code extraction,” Software:

[13]. M. Papazoglou and W. Van Den Heuvel, “Service-oriented design and

development methodology,” International Journal of Web Engineering and

Technology, vol. 2, no. 4, pp. 412–442, 2006.

[14]. S. P. Lee, L. P. Chan, and E. W. Lee, “Web services implementation

methodology for soa application,” in Proceeding of the 4th IEEE International

Conference on Industrial Informatics, 2006, pp. 335–340.

[15]. A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, and K. Holley,

“SOMA: A method for developing service-oriented solutions,” IBM Systems Journal,

vol. 47, no. 3, pp. 377–396, 2008.

https://www.linkedin.com/pulse/microservices-principles-converting-monolith-arati-joshi
https://www.linkedin.com/pulse/microservices-principles-converting-monolith-arati-joshi
https://code.tutsplus.com/tutorials/3-key-software-principles-you-must-understand--net-25161
https://code.tutsplus.com/tutorials/3-key-software-principles-you-must-understand--net-25161
https://en.wikipedia.org/wiki/Convention_over_configuration

90

[16]. H. Sneed, “Planning the reengineering of legacy systems,” Software, vol. 12, no.

1, pp. 24–34, 1995.

[17]. L. O’Brien, D. Smith, and G. Lewis, “Supporting migration to services using

software architecture reconstruction,” in International Workshop on Software

Technology and Engineering Practice (STEP’05). Los Alamitos, CA, USA: IEEE

Computer Society, 2005, pp. 81–91.

[18]. D. Harris, A. Yeh, and H. Reubenstein, “Extracting architectural features from

source code,” Automated Software Engineering, vol. 3, no. 1, pp. 109–138, 1996.

[19]. J. Van Geet and S. Demeyer, “Lightweight visualisations of cobol code for

supporting migration to soa,” in 3rd International ERCIM Symposium on Software

Evolution, October, 2007.

[20]. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of

reusable object-oriented software. Addison-wesley Reading, MA, 1995, vol. 206.

[21]. F. Arcelli, C. Tosi, and M. Zanoni, “Can design pattern detection be useful for

legacy system migration towards soa?” in Proceedings of the 2nd international

workshop on Systems development in SOA environments. ACM, 2008, pp. 63–68.

[22]. N. och Dag, B. Regnell, V. Gervasi, and S. Brinkkemper, “A

linguisticengineering approach to large-scale requirements management,” Software,

IEEE, vol. 22, no. 1, pp. 32–39, 2005.

[23]. U. Priss, “Formal concept analysis in information science,” Annual review of

information science and technology, vol. 40, p. 521, 2006.

[24]. S. R. Tilley, D. B. Smith, and S. Paul, “Towards a framework for program

understanding,” in 4th International Workshop on Program Comprehension

(WPC’96), 1996, pp. 19–28.

[25]. Khadka, Ravi, et al. "A structured legacy to SOA migration process and its

evaluation in practice." Maintenance and Evolution of Service-Oriented and Cloud-

Based Systems (MESOCA), 2013 IEEE 7th International Symposium on the. IEEE,

2013.

[26]. G. Lewis, E. Morris, L. O’Brien, D. Smith, and L. Wrage, “SMART: The service-

oriented migration and reuse technique,” CMU/SEI, Tech. Rep. CMU/SEI-2005-TN-

029, Sept 2005.

[27]. Q. Gu and P. Lago, “Service identification methods: a systematic literature

review,” in Towards a Service-Based Internet. Springer, 2010, pp. 37–50.

[28]. A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, and K. Holley,

“SOMA: A method for developing service-oriented solutions,” IBM Sys. J., vol. 47,

no. 3, pp. 377–396, 2008.

[29]. S. Alahmari, E. Zaluska, and D. De Roure, “A service identification framework

for legacy system migration into SOA,” in SCC’10. IEEE, 2010, pp. 614–617.

91

[30]. A. Fuhr, T. Horn, V. Riediger, and A. Winter, “Model-driven software migration

into service-oriented architectures,” CSRD, vol. 28, no. 1, pp. 65–84, 2011.

[31]. A. Marchetto and F. Ricca, “Transforming a java application in an equivalent

web-services based application: toward a tool supported stepwise approach,” in

WSE’08. IEEE, 2008, pp. 27–36.

[32]. C. Zillmann, A. Winter, A. Herget, W. Teppe, M. Theurer, A. Fuhr, T. Horn, V.

Riediger, U. Erdmenger, U. Kaiser et al., “The SOAMIG Process Model in Industrial

Applications,” in CMSR’11. IEEE, 2011, pp. 339–342.

[33]. L. Aversano, L. Cerulo, and C. Palumbo, “Mining candidate web services from

legacy code,” in WSE’08. IEEE, 2008, pp. 37–40.

[34]. Z. Zhang, H. Yang, and W. Chu, “Extracting reusable object-oriented legacy

code segments with combined formal concept analysis and slicing techniques for

service integration,” in QSIC’06. IEEE, 2006, pp. 385– 392.

[35]. J. Van Geet and S. Demeyer, “Lightweight visualisations of COBOL code for

supporting migration to SOA,” in Soft Evol’07, 2007.

[36]. Q. Gu and P. Lago, “Service identification methods: a systematic literature

review,” in Towards a Service-Based Internet. Springer, 2010, pp. 37–50.

[37] A. Marchetto and F. Ricca, “Transforming a java application in an equivalent

web-services based application: toward a tool supported stepwise approach,” in

WSE’08. IEEE, 2008, pp. 27–36.

[38]. Z. Zhang, R. Liu, and H. Yang, “Service identification and packaging in service

oriented reengineering,” in SEKE’05, 2005, pp. 219–26.

[39]. R. Khadka, G. Reijnders, A. Saeidi, S. Jansen, and J. Hage, “A method

engineering based legacy to SOA migration method,” in ICSM’11. IEEE, 2011, pp.

163–172.

[40]. A. Jansen and J. Bosch, “Software architecture as a set of architectural design

decisions,” in WICSA’05. IEEE, 2005, pp. 109–120.

[41]. F. Chen, Z. Zhang, J. Li, J. Kang, and H. Yang, “Service identification via

ontology mapping,” in COMPSAC’09. IEEE, 2009, pp. 486–491.

[42]. H. Sneed, “COB2WEB a toolset for migrating to web services,” in WSE’08.

IEEE, 2008, pp. 19–25.

[43]. H. Sneed, “A pilot project for migrating COBOL code to web services,” STTT,

vol. 11, no. 6, pp. 441–451, 2009.

[44]. F. Cuadrado, B. Garc´ıa, J. Dueas, and H. Parada, “A case study on software

evolution towards service-oriented architecture,” in AINAW’08. IEEE, 2008, pp.

1399–1404.

92

[45]. R. Heckel, R. Correia, C. Matos, M. El-Ramly, G. Koutsoukos, and L. Andrade,

“Architectural transformations: From legacy to three-tier and services,” in Soft. Evol.

Springer, 2008, pp. 139–170.

[46]. Patidar, K., R. Gupta, and Gajendra Singh Chandel. "Coupling and cohesion

measures in object oriented programming." International Journal of Advanced

Research in Computer Science and Software Engineering 3.3 (2013).

[47]. Bieman, James M., and Byung-Kyoo Kang. "Cohesion and reuse in an object-

oriented system." ACM SIGSOFT Software Engineering Notes. Vol. 20. No. SI. ACM,

1995.

[48]. Sahni, V. (2017). Best Practices for Building a Microservice Architecture.

[online] Vinay Sahni. Available at: https://www.vinaysahni.com/best-practices-for-

building-a-microservice-architecture#independent [Accessed 6 Jun. 2018].

	DECLARATION
	Abstract
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	Chapter 1 INTRODUCTION
	1.1 Background
	1.2 Problem Statement
	1.3 Motivation
	1.4 Objectives
	1.5 Research Scope

	Chapter 2 LITREATURE REVIEW
	2.1 Extracting Microservices
	2.2 Service Identification Techniques
	2.2.1 Structured and Unstructured Analysis Approach
	2.2.2 Architecture based Approach
	2.2.3 Service Identification with Domain analysis
	2.2.4 Semi-Automated Approach

	2.3 Summary of Service Identification
	2.4 Challenges in Service Identification
	2.5 Migration Techniques used in Legacy Systems Migration
	2.6 Challenges in Choosing Implementation Techniques
	2.7 Overview of the Current Practices on Legacy Systems Migration.

	Chapter 3 METHODOLOGY
	3.1 Proposed Solution
	3.1.1 Overview of Proposed Solution
	3.1.2 Scrutiny of Proposed Solution

	Chapter 4 ARCHITECTURE AND IMPLEMENTATION
	4.1 System Architecture
	4.2 Solution
	4.2.1 Mapping of Object to Services
	4.2.2 Fitness Function
	4.2.3 Service Clustering

	4.3 Implementation
	4.3.1 Frontend
	4.3.2 Backend
	4.3.3 Algorithms

	Chapter 5 SYSTEM EVALUATION
	5.1 Overview of Test Project
	5.1.1 DDL for Student Management API
	5.1.2 File Structure of Student Management API.

	5.2 Microservice Identification
	5.2.1 Results

	5.3 Discussion and Validation
	5.3.1 Discussion
	5.3.2 Validation
	5.3.3 Validation and Discussion Summary.

	Chapter 6 CONCLUSION
	6.1 Research Contributions
	6.2 Study Limitations
	6.3 Future Work

	Chapter 7 REFERENCES

