FEATURE ORIENTED SOFTWARE DEVELOPMENT
METHODOLOGY FOR STOCK EXCHANGE SYSTEMS

Lasitha Harinda Konara

(168235T)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

June 2018

FEATURE ORIENTED SOFTWARE DEVELOPMENT
METHODOLOGY FOR STOCK EXCHANGE SYSTEMS

Lasitha Harinda Konara

(168235T)

Thesis submitted in partial fulfillment of the requirements for the

degree Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

University of Moratuwa

Sr1 Lanka

June 208

DECLARATION

I declare that this is my own work and this thesis does not incorporate without
acknowledgement any material previously submitted for a Degree or Diploma in any other
University or institute of higher learning and to the best of my knowledge and belief it does
not contain any material previously published or written by another person except where the

acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and
distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the

right to use this content in whole or part in future works (such as articles or books).

Signature: Date:ooeenvnnnin

Name: K.M.G.L.H. Konara (168235T)

The above candidate has carried out research for the Masters Dissertation under my

supervision.

Name of the supervisor: Dr. Indika Perera

Signature of the supervisor:c.ccevvvvviniennn... Date: ...

Abstract

Many organizations that develop software use the traditional method of layered methodologies to
develop their end software product or solution. In doing so, the code will be a more general one and
there will be a lot of unnecessary elements included which make the system heavy and dirty. This
would result in a lot of issues .Also there is a requirement to implement a system with a concept of
features. The end system will be delivered as a set of features and the feature set could be decoupled

at any time, according to the current requirement without harming any existing functionality.

This research has been narrowed down to a particular domain which is the stock exchange or trading
domain. By narrowing down the domain, the end software product could be delivered in a tailor made
manner so that its effectiveness will be very high. The final software product would be a feature

oriented domain specific language (DSL).

The objective of the feature oriented DSL is to make it very effective even for business analysts to
introduce new features without getting help from core software developers. The feature layer will be
purely decoupled and presented in an independent way so that the end users will have full flexibility
to introduce changes very easily. There is a clear separation between core code segments and auto
generated code segments. Auto generated files serve the different features and core code segments
will enable those features to function on top of them. Auto generated code should not be changed

manually under any circumstance as per this design.

A code generator and the core controller is developed throughout this research exhibiting the above

mentioned feature oriented software development principles and domain specific language principles.

Keywords : FOSD, DSL,FOP, AOP, ANTLR,Entity, Instance

ii

ACKNOWLEDGEMENT

My heartfelt gratitude is given first and foremost to the academic supervisor of this research
Dr.Indika Perera for his immense help, support and advice given throughout the course of this
research. His encouragement and contribution in the form of alternative methods, ideas and

concepts provided motivation for us to move forward with this research.

My special thanks goes out to my external research supervisors/advisors, Mr.Manoj Bandara,
Mr.Sujith Gunawardhane, Mr.Surith Pinto and Mr.Sampath Thilakumara for giving me the
opportunity to work on this research, providing the guidance .Also I would like to thank all

the staff members in MillenniumIT Software (Pvt) Ltd.

Academic staff members' valuable guidance and advice since the very beginning of this
research seminar series is also highly appreciated. Specially I should appreciate the support

and advice given by Dr. Malaka Walpola for encouraging us to do research.

My gratitude is also extended to all the staff members of the Computer Science and
Engineering Department who provided us with numerous advice and feedback, especially at

reviews, feasibility study. I appreciate your guidance.

iii

TABLE OF CONTENTS

Declaration i
Abstract i
Acknowledgement iii
List of Figures viii
List of Tables ix
List of Abbreviations X

1 Introduction 1
1.1 Background 2

1.2 Problem Statement 2

1.3 Objectives 4

1.4 Feature Oriented Software Development (FOSD) 4
1.4.1 What is Feature Oriented Software Development? 4

1.4.2 How FOSD could be used to provide a solution 5

1.5 Outline 5

2 Literrature Review 6
2.1 Overview 7
2.2 What s a feature ? 7
2.3 Different phases of feature oriented software development 8
2.3.1 Feature Modeling 11

2.3.2 Feature Interaction 11

v

2.3.3 Feature Implementation
2.4 Related Implementations
2.4.1 FeatureC++
2.4.2 Feature Implementation
2.4.3 Algebraic Hierarchical Equations for Application Design
(AHEAD)
2.4.4 Model Concepts
2.5 Access Control in Feature Oriented Programming
2.6 Domain Specific Languages (DSL)

2.7 Summary of the Literature Review

Research Methodology

3.1 High Level Architecture
3.2 Progress

3.3 Evaluation Methodology

3.4 Time line

System Architecture and Implementation
4.1 System Overview
4.2 System Architecture
4.2.1 Architecture of Code Generator & Controller
4.2.2 Class Diagram of Code Generator
4.2.3 Class Diagram of Controller
4.3 System Implementation
4.3.1 Implementation of Code Generator
4.3.2 Introduction of Domain Specific Language (DSL)
4.3.3 Use of Antlr to define the grammar
4.3.4 Sample DSL Code
4.3.5 Auto generated C++ code
4.3.6 Auto generated C++ header

4.3.7 Use of StringTemplates to generate the code

12
13
13
13

14
14
16
18
19

20
21
22
22
24

25
26
26
26
28
29
30
30
30
31
35
36
38
38

4.3.8 Challenges faced
4.3.9 Key assumptions made
4.3.10 Implementation of Controller

4.3.11 Summary of implementation

5 System Evaluation
5.1 Overview
5.2 Evaluation of Code Generator
5.3 How to provide inputs
5.4 Evaluating the outputs
5.4.1 How to evaluate the outputs
5.4.2 Automated validator
5.4.3 Comparison between manually calculated results,automated
test results and actual results

5.4.4 Evaluation of results

6 Conclution
6.1 Contribution
6.2 Study limitations

6.3 Future work
BIBILOGRAPHY
APPENDIX

A Detailed Test Results

vi

39
39
39
50

51
52
52
52
55
55
55

56
57

59
60
60
61

62

67

68

LIST OF FIGURES

Figure 1.1

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11

Figure 3.1
Figure 3.2

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

Layered product architecture

Problem space and solution space [8]
Domain analysis [3]

Domain design and specification [3]
Domain implementation [3]

Product configuration and generation [3]
Feature Modeling [3]

Feature Implementation [3]
Convergence of each step in FOSD [3]
Stack of Mixin Layers [9]

Organization of AHEAD generators. [12]
Energy Aware Feature Model [26]

Code generation based on selected features [3]

Research Time-line

Architecture of Code Generator

Code Generator

Controller

Entity

Features

Feature Container

Order,Instrument, Trading Parameter Instances
Reference Data Container

Order Book

vii

10
10
11
12
12
13
15
19

21
24

27
28
29
40
41
42
43
44
45

Figure 4.10 Order Book Side
Figure 4.11 Directional Map
Figure 4.12 Order Handler
Figure 4.13 Order Injector
Figure 4.14 Logger

Figure 5.1 Evaluation methodology

Figure 5.2 Summary of test results

Figure A.1 Automated test result for test case in Table 5.1

Figure A.2 Actual result extracted from log file for test case in Table 5.1
Figure A.3 Automated test result for test case in Table 5.2

Figure A.4 Actual result extracted from log file for test case in Table 5.2
Figure A.5 Automated test result for test case in Table 5.3

Figure A.6 Actual result extracted from log file for test case in Table 5.3
Figure A.7 Automated test result for test case in Table 5.4

Figure A.8 Actual result extracted from log file for test case in Table 5.4
Figure A.9 Automated test result for test case in Table 5.5

Figure A.10 Actual result extracted from log file for test case in Table 5.5
Figure A.11 Automated test result for test case in Table 5.6

Figure A.12 Actual result extracted from log file for test case in Table 5.6
Figure A.13 Automated test result for test case in Table 5.7

Figure A.14 Actual result extracted from log file for test case in Table 5.7
Figure A.15 Automated test result for test case in Table 5.8

Figure A.16 Actual result extracted from log file for test case in Table 5.8
Figure A.17 Automated test result for test case in Table 5.9

Figure A.18 Actual result extracted from log file for test case in Table 5.9
Figure A.19 Automated test result for test case in Table 5.10

Figure A.20 Actual result extracted from log file for test case in Table 5.10

viii

45
47
49
49
50

55
56

68
68
69
69
70
70
71
71
72
72
73
73
74
74
75
75
76
76
77
77

LIST OF TABLES

Table 2.1 Problems and Solutions given by FeatureC++ [9]
Table 2.2 Which members of class could be accessed by a refinement in

each language[10]

Table A.1 Putting a limit new order

Table A.2 Putting limit new order with higher priority

Table A.3 Putting sell order for partial match

Table A.4 Putting a sell order for full match

Table A.5 Putting a sell order for full match and adding remaining quantity
to order book

Table A.6 Putting a sell order with a higher priority

Table A.7 Order amend without losing priority

Table A.8 Order amend while losing priority

Table A.9 Market order with expiry

Table A.10 Order cancellation

X

14

17

68
69
70
71

72
73
74
75
76
77

LIST OF ABBREVIATIONS

Abbreviations Description

FOSD Feature Oriented Software Development

FOP Feature Oriented programming

AQOP Aspect Oriented Programming

AHEAD Algebraic Hierarchical Equations for
Application Design

DSL Domain Specific Language

VPL Visual Programming Language

CHAPTER 1

INTRODUCTION

1.1 Background

In most of the product based software development organizations,there is a hierarchical
code structure which has several layers included. One layer is built on top of another
by using the capabilities provided by the previous or below layer. This hierarchical
model helps the developers to use the abstractions and lower level code segments to
customize their own code.

Many organizations use this method in order to re-use common software compo-
nents which later could be customized at higher levels. Hence the lower level coding
must be done very carefully, because if there is a mistake in that layer,it will propagate
to all the layers which are built on top of it. Coding optimizations and many good
practices have to be used when developing lower level codes.

For an example In MillenniumIT Software (Pvt) Ltd ,mainly there are 3 layers.
Namely;

* Solution layer

* Product layer

* Technology layer

It could be visually shown as per Fig. 1.1

Solution Layer (Business Layer)

Produet Layver

3 Layers

Technology Layer

Figure 1.1: Layered product architecture

1.2 Problem Statement

As per the above mentioned layered architecture, the top layers are currently built
blindly without analyzing what are the needy code segments and what are the non-

needy code segments.

There are so many capabilities that have been provided by product layer, which
could be used by the solution layer. But the question arises, "Are those code segments
really needed to implement a solution?"

Product layer will provide a complete generalized code, that could be used by any
solution layer implementation .What a developer could do is, either comment the un-
necessary code segments or not calling the methods that are not required for the par-
ticular solution. The solution layer will ignore the unnecessary functionality and im-
plement only the features that are requested by the client.

This is not just related to the codes. The problem exists in middle layer messages
too. The message may include some information which are not needed for a partic-
ular solution.Also there is a lot of unnecessary components in the business rules and
configurations .

There are so many problems that have been raised because of this generalized prod-
uct components.

This problem also applies to technical documentation. For an example , the product
layer documents will have all the functional and non functional information about the
product. If some solution layer needs a document which only contains the information
about its required features,they will have to manually remove the unnecessary parts of
the document to clean it up.

As a summary this will result in following drawbacks in this layered traditional

method of software development.

1. Unnecessarily bulky code.

2. Hard to understand by the developers as there are so many unnecessary code

segments which are not even used.

3. Increase the size of the messages that are used in the middle-ware which will

result in high latency in transmission.
4. Increase the probability of introducing bugs to the existing code.
5. Increase the complexity of code, business rules,configurations and messages.

6. Lengthy technical documentation which contain a lot of unnecessary information

which may even confuse the client or even require additional work to clean the

document.

1.3 Objectives

The objective of this research is to find a solution to overcome the above mentioned
problems. The solution must cover all the following areas;

* Code.

* Messages.

» Configurations.

* Business rules.

* Documentation.

These could be overcome by a concept called " Feature Oriented Software Devel-

opment" .The ultimate objective is to provide;

1. A light weighted code that could be easily understood which will only contain

the needy features.

2. Light weighted messages that could be easily transmitted which will ultimately

help to increase the throughput.

3. Business rules which is only relevant to the particular solution which even could

be understood by the clients.
4. High maintainability and clean software components.

5. Capabilities which enhances easy debugging and auditing.

1.4 Feature Oriented Software Development (FOSD)
1.4.1 What is Feature Oriented Software Development?

Feature-oriented software development (FOSD) is a paradigm for the construction,customization,
and synthesis of large-scale software systems [1] . A software program is built as a
stack of layers. In each layer ,new functionality is added to the bottom or previous

layer[2] . Different composition of these layers will create different solutions.

A feature could be described as a unit of functionality in a software program, which
will satisfy some particular requirements or any other design goal [1]. After some de-
velopment, each above mentioned layers could be even considered as a feature. The
main idea behind FOSD is to decompose the software program into these little fea-
tures that could be re-used whenever needed.Ideally from a set of features ,we could
develop many different versions of the software and present to the client as per their
requirements.

The concept of feature oriented software development has a big history. As per a
research carried out by Muller when he worked at Philips research laboratories [22]
in 1997,the effort we put to come up with a end software product should be mini-
mal. Therefore FOSD should provide such mechanism to develop a software product

in its easiest way consuming minimum effort and cost.

1.4.2 How FOSD could be used to provide a solution

To overcome the issues mentioned in previous sections, we could use this concept of
FOSD. Software development could be carried out as a series of feature developments
by the product development team. Whereas solution development team can select only

the features that have to be delivered to the client.

1.5 Outline

The rest of the report will contain mainly the literature review about the existing and
similar solutions which have been already implemented or currently in research. Chap-
ter 2 will give an overview and a detailed summary of the current development in this
feature driven software development implementations

Chapter 3 will give a basic insight about the architecture of the proposed solution
which is followed by another section that describes the current progress of the research.
A detailed time-line as to how this research will be carried out,has been presented in
Chapter 3.

In chapter 4, the implementation details of both controller and code generator have

been included . Finally in chapter 5 the evaluation of the research has been carried out.

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

The very basic idea of Feature Oriented Software Development is to decompose a
bigger system in to some smaller features [3]. Then the end system or the product is
composed using those basic features.FOSD basically aims at three properties;
* Structure - Features could be structured in order to come up with the desired
architecture
* Reuse - Features can be reused throughout the development process
* Variation - With various combinations of features, the designer or the program-

mer could come up with different variations of the end system

2.2 Whatis a feature ?

FOSD is not a single method of developing software systems, instead its a combination
of many different methodologies , languages,tools,theories,ideas etc.[3]. A feature
connects all the above mentioned different elements.There are several definitions of a

feature.

1. Kang et al. - A prominent or distinctive user-visible aspect, quality, or charac-

teristic of a software system or systems [5]

2. Kang et al. - A distinctively identifiable functional abstraction that must be im-

plemented, tested, delivered, and maintained [4]

3. Bosh - A logical unit of behavior specified by a set of functional and non-

functional requirements [7]

4. Classen et al. - A triplet, f = (R,W, S), where R represents the requirements the
feature satisfies, W represents the assumptions that the feature takes about its

environment and S represents its specification [6]

The feature definitions could be even classified in the perspective of Problem Space
and Solution Space [8] . As per Fig. 2.1 , the problem space describes the basic

requirements of a software system whereas the solution space describes how those

problems have been satisfied or solved and how the requirements have been fulfilled &
implemented.

The first three definitions of a feature, which are described above, could be classi-
fied in the problem space whereas the last definition could be classified in the solution

space.

Solution space
|

Problem space ||

| implementation—
Mapping oriented

abstractions

domain—specific
abstractions |
J

r"

Figure 2.1: Problem space and solution space [8]

The mapping should be done carefully and in an efficient manner which maintains

the software or documentation re-usability.

2.3 Different phases of feature oriented software development
As per the journal paper [3] , there are 4 main phases in FOSD, namely

1. Domain analysis

N
__—————‘t‘::f”' ""-_-.".r‘}‘ —
Body | Transmission | | Pulls Trailer |

| Automatic | | Manual | | Gasoline | | Eleciric|

Keyless Entry => Power Locks

Feature Modeling
Domain Scoping
Automated Reasoning

Figure 2.2: Domain analysis [3]

2. Domain design and specification

List List List
tiat: Node lnst: Node first ; Mo
pushin: Hode) :wald shup in : Hoda) :wokd WETHI
e — | PR M) i
= | shupin : Hode) ; wti
[Node | [Node | Nods
[et Hosks [prew :Hode | newd : Hoda

prov ; Mode

swilchGlx

1
2| threshl | & haunae|

thresfie

Modeling / UML
Formal Specification
Model-Driven Development

Figure 2.3: Domain design and specification [3]

3. Domain implementation

feature modules annotated features

=l
Sl

layer Rewverse;
raefines class List { ... |}
refines class Node { ... |

Feature Modules, Aspects, ...
Annotations, Preprocessors
Lifters / Derivatives

Figure 2.4: Domain implementation [3]

4. Product configuration and generation

Feature Selection, Optimization
Composition, Transformation
Type Checking, Testing

Figure 2.5: Product configuration and generation [3]

In each step, the features that are needed to build an end software product or a soft-

ware product line ,are identified.The supportive features and non supportive features

10

are identified correctly.

More importantly there are 3 main lines of research in FOSD,namely;

1. Feature Modeling
2. Feature Interaction

3. Feature Implementation

2.3.1 Feature Modeling

From the research that has been carried out by Kang et al [S] ,they have structured the
problem space using the concept of features. A standard example is shown in Fig. 2.6

by using feature diagram notations [8]

Car
sneueidl ..) @) - 7__7__7__‘. O optional
Body Transmission Pulls Trailer Engine ® mardaton
= s A XOR
Automatic Manual Gasoline Electric A OR

Figure 2.6: Feature Modeling [3]

2.3.2 Feature Interaction

The concept of feature interactions arise from the field of telecommunication.The soft-
ware based researches have used the same concept in order to develop feature oriented
software development methodologies.

Feature Interaction is where two features show different unexpected results or out-
comes when they are interconnected, compared to the behavior that could be observed
when the two features function independently.The basic example they have taken is,
call forwarding and call waiting functionality. We can clearly predict the behavior
when the two functionality is run independently. But we cannot exactly predict what

could happen if the two functions run interdependently. [19]

11

Therefore we must keep in mind that feature interaction is a major problem in

feature oriented software development.

2.3.3 Feature Implementation

feature implementations program program program

derivation A 4 9
B B E

> Emm||D
: F

user's feature
selection

Figure 2.7: Feature Implementation [3]

Finally comes the feature implementation, which separates the base code from its ad-
ditional features as per Fig. 2.7.Prehofer was the first one to introduce the concept of
features in software context [3].

These above main lines of researches converge to build an end feature oriented

software development methodology as per Fig. 2.8

Feature Feature Feature
Modeling Interaction Implementation
1990 1]
2000 1
N Convergence
2010 7 =
(FOSD \
/ H________,/

Figure 2.8: Convergence of each step in FOSD [3]

12

2.4 Related Implementations
2.4.1 FeatureC++

FeatureC++ is an extension to C++ which supports feature oriented programming
(FOP) [9] and aspect oriented programming (AOP). FeatureC++ has many features
like multiple inheritance etc.Here AOP is a similar concept same as FOP which tried
to solve problems such as increased complexity of software programs,reduced under-
standability and customizability [13] [14]

FeatureC++ has been implemented using a concept called Mixin Layers.Mixins
implements the class fragments as per Fig. 2.4. It shows a stack of three mixing layers

[9]. Similarly they are talking about child and parent mixing layers too.

2.4.2 Feature Implementation

class A class B class C

layer 1

layer 2

layer 3

Figure 2.9: Stack of Mixin Layers [9]
In order to develop FeatureC++ they have used Jak [12] syntaxes which are accepted

by several parties.They have mainly focused on resolving the problem which are men-

tioned in Table 2.1

13

Problem Solution

Homogeneous crosscuts Pointcuts and advices

Interface extensions Method interception, argument passing by aspects

Hierarchy conformity Refine only structure relevant Mixins
Dynamic crosscutting Use specific pointcuts (cflow , etc.)
Method extensions Wildcards in pointcut expressions

Table 2.1: Problems and Solutions given by FeatureC++ [9]

Even though FeatureC++ has some insights about the problem, it does not directly
solve our main problem and does not indicate how FOSD could be used to come up

with the required solution.

2.4.3 Algebraic Hierarchical Equations for Application Design (AHEAD)

In AHEAD, they have used a concept called "Step Wise Refinement" [12] . Step
Wise Refinement is used to develop a complex system from a simple system by adding
required features incrementally. AHEAD shows that a software can have a hierarchical
mathematical structure which could be expressed as a nested set of equations.

Mainly this paper describes how step wise refinement scales to the simultaneous
synthesis of multiple programs and multiple non-code representations written in dif-
ferent languages

They start their research using GenVoca model [15] which describes how an in-
dividual program could be represented using an equation. Then they move on to
Algebraic Hierarchical Equations for Application Design model that generalizes the

equational specification of multiple software programs.

2.4.4 Model Concepts

- The initial program is just constants and they have used refinements to add features

to the initial program to come up with the desired end program.

14

f // program with feature f
g // program with feature g
Then refinements take the program as an input and then make a feature augmented
program as the output
i(x) // adds feature i to program x
j(x) // adds feature j to program x
Then a multi-feature program can be expressed as per below equations.
appl = i(f) // appl1 has features i and f
app2 = j(g) // app2 has features j and g
app3 =i(j(f)) / app3 has features i, j, f

The equations show both the implementations and the features. Apart from that they
have used following 4 ideas to generalize the GenVoca model.
1. An application has other representations beyond source code

2. A module is a containment hierarchy of artifacts that can include multiple repre-

sentations of an application

3. A scalable notion of refinement should be able to refine all representations in a

consistent fashion

4. Principle of Uniformity

Figure 2.5 illustrates how AHEAD composer tool works.

A h .g If
' , *——>[Code eneratoﬂ—» code
"!’, hegef —» 1 < |
= %'LJ‘Rule generatoﬂ—» rule
Engineer composer .

h,eQ,ef
tool &’I:Make generatoﬂ—> make

Figure 2.10: Organization of AHEAD generators. [12]

15

2.5 Access Control in Feature Oriented Programming

In feature oriented software development process, a program could be decomposed
in to a set of features. Those features could be developed in an isolated manner or
independently.A feature module encapsulates exactly the code that contributes to the
implementation of a feature[10] [16]. Access control plays a major role in these mod-
ularity concept in order to provide required visibility to expose or hide internal details
of each module or feature. In other words this is a function which exhibits the encap-
sulation of each feature or module.If those encapsulations are not done properly the
end program could mis-behave unexpectedly.

Many feature oriented languages such as FeatureC++ [9] ,AHEAD/Jak [12] and
FeatureHouse [17] aim at feature modularity. Those feature modules have to be im-
plemented in such a way that their internal implementation details are hidden and the
functionality is provided via interfaces[18]. However it is really hard to implement
such features which exhibits correct modularity. Those feature interactions and access
controlling is described in this research paper.

As per Table 2.2 we can compare different feature oriented languages with respect
to their rules in accessing filed from refinement and program behavior [10] . Therefore
it is clear that when we design or come up with a feature oriented language ,we need
to pay our attention on well defined semantics. There must be access modifies that are
more specific to the feature oriented software development methodologies.

In the above mentioned research paper they have focused on some access modifiers
that helps feature oriented programming,namely [10]

* Modifier feature

* Modifier subsequent

* Modifier program

16

Table 2.2: Which members of class could be accessed by a refinement in each

language[10]

|
L'I'Jf.;&:m_ ¥ b G
?.I'h/-'l.'g}‘?l‘wh N e e N i._\l_h
o)
ﬂ_;h'?q'-ir.f_‘lg__,.l. S \h s q
i
rrl}\’f.llﬂ
o, N R
(¥
g iy, N N[O
f‘.'j'rff{.
- -
({qf;l’:} b
r-}’i,}r.‘
g
e
i v B =
3 8=
2§ 98§
6 ooolo

17

http:/fcassar] . .org’

'_1 http: ffacg. miba. ch/research/classboxas/
Bt bp: ff www . ob | sctteans . orgs

http:/feww. cs. utexas. edu/-schwartz/ATS . html

“http:S eww. foad. de/fhy
:;hLLp:f'f'-.'-.'-.'.I-:-sd.n.la;"rcc.f

2.6 Domain Specific Languages (DSL)

Domain specific languages are implemented in order to hide low level language details
and present it in a abstract way to its users.There are domain specialists and there are
also language specialists. But there is very few who is good at both programming
language and the domain. The domain specific languages helps to fill this technical
gap and provide very advance solutions.

The domain specific language goes in line with feature oriented software develop-
ment as per the research paper based on the third international workshop on feature
oriented software development [20] . It could be developed to a database system,
banking system or even for a text processing system.It is mentioned that conference
was held in order to enhance their collaboration in doing researches in feature oriented
software development.

But in contrast some argue how to develop domain independent feature oriented
program .Mehran and his team has developed a concept called ciFeature which is
an abbreviation for context independent features [23].They have developed something
called a feature factory and have described how those could be used to develop context
independent features.

Feature oriented software development methodologies could be even used to ana-
lyze a particular domain or a context [24]. As per Herbert and his team,FOSD could
be used to analyze their energy aware self adoptive software.They use a concept called
energy aware feature modeling in order to develop their research.This has also been
described in section 2.3.1 too. They claim that a feature can be made of several sub

features as per the equation 2.1 [26]

fi={firfiz fiz o fim} 2.1)

where i denotes any feature and m denotes a finite number related to its sub features.
As per Fig. 2.11 each feature could be analyzed in a particular domain using its sub
features.It could be even analyzed as a divide and conquer method as small features

will eventually develop the entire system as per equation 2.2.

18

2.7

8. frocation = {CoarseGrained, FineGrained } 2.2)

_Energyﬁ.warEMc:bI!E

— -_1-"*-.":"-_—-. =
..-.—' :_' ..:"_ |"_:|'." = “l:.l == —....,
Display | Email "lﬁdEﬂG’raﬂ Location Intemet
'“;'\... ...‘___.--"._." Call] -3
./ ‘- .:"‘-. ..-""J.- % o ’ "
Text | Multimedia CoarseGrained FineGrained | 2G Wil | 3G
e . Legend:
. < —>]
| GSMLocation | | WifiLocation | | GPSLocation | | ® Mandatory
—] e === O Optional
VideaChat = Multimedia A Or
- (WifiLocation A 2G) [\ Alternative
Abstract
Concrete

Figure 2.11: Energy Aware Feature Model [26]

Summary of the Literature Review

The literature review mainly focuses on feature oriented software development con-

cepts and what are the existing solution or related work. By referring to the research

papers it can be seen that there is no proper solution to our initial problems which are

mentioned in the problem statement (section 1.2).

Therefore the main motivation to continue the research is to find the desired solu-

tions to the mentioned problems in a more realistic way.The existing researches cannot

be directly applicable to resolve them.

19

CHAPTER 3

RESEARCH METHODOLOGY

20

3.1 High Level Architecture

The ultimate objective of this research would be to develop some kind of a code or text
generator which will collect and correlate different features to build a complete end
product. In order to implement this, the product layer will have to be decomposed into
several features. It will be a challenging task and sometimes some features may not be
able to decompose due to their complexity. In such scenarios we will have to develop

some complex features which will provide a set of features instead of one feature.

) TTE— Akl
| i " e B o e

bl s e =
s e —
Engineer Declarative

Specification
of Application

Efficient
Application

Figure 3.1: Code generation based on selected features [3]

Solution layers of the organization will use each feature provided by the product
layer in order to come with the desired solution. As per Fig. 3.1, a code generator
will be the final outcome of this research, which will let the user to generate the final
efficient code based in the selected features. As per Fig. 2.7 the developers in the upper
layers could select the required features from a pool and then generate the code as per
the requirement.

For the software development organizations there will be some added advantages
because of this feature oriented software development methodology. Each feature
could be developed using each scrum team in accordance with the agile methodolo-
gies.The team will have to take responsibility of each feature and there will be an
architect who will manage the interoperability and interaction of features.

Once the code generator generates the code, those could be injected to a core con-

21

troller where the features could present their behavior. The controller will be im-
plemented in such a way that ,it could load the instruments and other data first and
facilitate the features to function properly.

As per the requirement of a stock exchange , the core controller should be imple-
mented using a language which could run very fast . For that purpose C++ language is
chosen to develop the core controller.

The code generator will be implemented using the Java language in order to facili-

tate the features in Antlr and StringTemplates parser .

3.2 Progress

Currently the detailed literature review has been carried out and a background search
about the existing implementations have been analyzed. After those preliminary stud-
ies, a detailed design has been drafted before implementing the final products, core
controller and the code generator. First the code generator was implemented and then
the core controller is developed in order to evaluate the auto generated codes.

Apart from main controller and the code generator, a Java based automated testing
tool has been developed in order to validate the results.The research has been fully
implemented under the selected criteria and limitations. The study limitations has

been mentioned in the chapter 6 under study limitations.

3.3 Evaluation Methodology

For the final evaluation for this research, I have planned to provide a code generator
or a text generator which helps to develop feature oriented software programs. Each
feature will have to implement independently .When the required features are selected,
the final product will be generated automatically.

Apart from that, I have planned to demonstrate how the code generator works . A
user manual will be presented along with full documentation.

In order to evaluate the code generator the core controller could be used. The initial
design itself helps to evaluate the system and it is a real advantage of this design.

The auto generated code will provide the inputs to the core controller so that it can

22

exhibit the behavior of each feature. Several combinations of the features could be
evaluated and results could be compared either with manually calculated results or
even against a controller which has been implemented without using feature oriented
designs.For that, an automated testing tool has been designed and developed so that the
testing process becomes more professional and accurate. The expected results will be
compared against the actual results. If the model is correct and accurate, both expected
results and the actual results should be the same.

A time line as to how this research has been carried out is shown in Fig. 3.2 in
section 3.4. The research time-line was maintained smoothly through the period by

getting feedback from different parties in order to come up with the optimum solution.

23

3.4 Time line

I @seld Buinoaduy
8 ¥oeqppaay Bunjen

10JBI3UaS) apo) Jo | aseyd Bunuawajdu

\ Gunuawajduy)

2poa aseq

doas ayj szneuy pue ubisag hww"ﬂ.

M3IATY
aineiay]

Jaquedssaq

JaquiaAoN

1800300

Jaquiaydasg

1snbny

Ainp

aunp

Aepy

pady

yose

Aeniqed

fAenuep

Figure 3.2: Research Time-line

24

CHAPTER 4

SYSTEM ARCHITECTURE AND IMPLEMENTATION

25

4.1 System Overview

The system can be mainly divided in to two components. Namely;

* Code Generator

* Controller

Code generator generates the main feature classes using the defined grammar and
the templates. Controller is the one which facilitates the functions of each feature
.Therefore the implementations are discussed in separate sections in order to have a

better understanding.

4.2 System Architecture

The over-roll architecture could be described with respect to the code generator and

the controller.

4.2.1 Architecture of Code Generator & Controller

The main objective of this research is to develop a feature oriented and domain spe-
cific methodology to build a stock exchange system. In order to implement that goal
we have to come with a domain specific language (DSL) which will help to include
business logic and components in to the system.

As per figure 4.1 the main input for the system is the DSL. The DSL input is
given to a parser. For this purpose we could use any parser but we have selected Antlr
version 4.7 (Antlr4) as the parsing tool in order to implement this research.The code
generation process has been explained by P. W. Burke in his research on automatic
code generation using model driven design[43] . The automatic code generation could
be considered as an art. Its really fascinating when the final code is generated as per
the given DSL.The implementation of the DSL has been described in section 4.3.1 in
detail.

Antlr parses the DSL and information is retrieved . Once the information is re-
trieved , the Java code will convert it to the required output language using String
Templates. The translation is done smoothly with adhering to the final requirement of

being feature oriented.

26

Generated Code

DSL
£ STRING
h’ TEMPLATE Semantic Model
ANTLR * Feature handling
Antlrd Parser StringTemplate Code
Generator
* Contextfree
* Topdown - e Tree
parsing Construction

Figure 4.1: Architecture of Code Generator

Now that we have our generated code we can use them along with the semantic
model in order to make the Controller. The controller will have its semantic model
in order to provide its core functionality whereas generated codes provide the features
that could be used by the core.

There are specific properties that should be there in any feature. The feature must
be described in such a way that it could be solely implemented independent of the other
features. For an example if we declare a variable ,we have to include it in all features
which requires that field. In that case we can take the union of the fields where we
could come up with the class structure which has all the required fields.

The self explanatory Fig. 4.1 shows how DSL is parsed using Antlr parser and
how StringTemplates would help to generate the output codes, also how the generated
codes are combined with the semantic model to implement the controller.

Implementations of each component will be described in section 4.3 onward.

27

4.2.2 Class Diagram of Code Generator

AttributeRenderer Grammarliste

Figure 4.2: Code Generator

Code generator is the main achievement in this research. It will help to generate feature
oriented software components when the input is injected through a domain specific
language.

As per Fig. 4.2 code generator implements AtributeRenderer and a listener called
GrammarListner. GrammarListner that has been inherited from ParseTreeListner, is
the listener which has all the callback functions of Antlr4 grammar. Code generator
will receive all the callbacks as an when the grammar is parsed through and we can use
those callbacks in order to generate the required output.

Also Code Generator has implemented AttributeRenderer class which is used to
manipulate and change the formats at code generation run time. For an example,the
cases of each word can be manipulated using this attribute renderer.The word can be
either converted to upper case,lower case or even camel case or into pascal case de-
pending on the application .Another example is, the prefixes of each attribute have
been changed at code generation in order to provide a code which adheres to the C++
coding standards and practices.

The renderer is used at the run time of code generation with StringTemplates. It

will render the output using the renderer before generating the final output.

28

4.2.3 Class Diagram of Controller

| OrderInjectorCaliback 2 |
Class

= Methods
@ OnCrder() : void

public

b

| Controller
Class
=+ OrderlnjectorCallback

= Fields
ﬂa |_FeaturelList: list<Feature™»
| TriggeredFeaturelist: list<Feature®>
‘i'ﬂ p_FeatureContainer : FeatureContaine...
@ OrderHandler : OrderHandler
= Methods
@ ~Controller)
CheckTriggeredFeatures() : void
Controller()
OnOrder() : void
Run() : void

o.aa

Figure 4.3: Controller

The controller consists of the semantic model and the generated codes. The gener-
ated code is directly taken from the code generator .Controller has a callback from
OrderlInjector which will help to receive incoming orders to the system.

It has a list of features and also a list of triggered features. The list of features will
contain all the features that have been generated by the code generated in the previous
stage. Apart form that, it also has a triggered feature list in order to maintain the list of
features that are applicable to the current order injected by the OrderInjector.

It is strongly advised not to change any of the generated codes when implementing
any feature throughout the life cycle of the exchange product. The reason for that is

when you change the auto generated code segments the users will have to manually

29

merge the components when generating the code again.
The complete implementation of this controller is described in section 4.3.3 on-

ward.

4.3 System Implementation
4.3.1 Implementation of Code Generator

Implementation of the code generator is quite interesting as it has some unique fea-
tures. It is not just converting some piece of code to another existing language. It has
several elements which makes it more advanced in several ways.

The starting point of the code generator is the introduction of a domain specific
language (DSL). The domain that is addressed throughout this research is the stock
exchanges domain.

This implementation can also be considered as a code refactoring ,which means
non feature oriented software product could be converted to a feature oriented software
product throughout this research. Similar concepts have been discussed by Roberto and

his team from which I have taken references [28]

4.3.2 Introduction of Domain Specific Language (DSL)

When the focus is narrowed down to a specific domain , it will be easier to develop a
language that is tailor made to that domain .It will also be more effective when it comes
to use the language by the users because of its domain specific nature. The language
will contain some key words which are related to that domain.

Code generation would be much efficient and effective when the key words are
defined in the correct way. Also it is advised not to use keywords everywhere , which
will confuse the end users.

There is an interesting research carried out to investigate when and how to develop
domain specific languages by Mernik, Marjan, and his team [39]. They claim that there
is a massive gain and advantages in developing a domain specific language compared

to using a general purpose language to a particular industry.

30

The business rules will be presented in the form of DSL. These will be later con-

verted to actual code in order to use it in our semantic model.

4.3.3 Use of Antlr to define the grammar

When a domain specific language is developed , we may have to use a parser to parse
through the newly defined keywords and rule. Parsing a word set is not the main part of
this research hence I have used a parser called Antlr. Antlr has some advanced features
that will help us to parse through the rule or the DSL. In the research Antlr 4.7 is used
which is the latest version.

There is a lot of research done using this Antlr tool. A domain specific language has
been developed using Antlr in order to process transactions by Neeraj and his team [37]
.They have developed a language called XBRL in order to program transaction process-
ing system even without having much knowledge about low level programming.This
research paper has shown how a domain specific language should develop and each
step is described in a very descriptive way.The way a domain specific language should
be developed is also mentioned by Van Deursen and his team [38]. Another applica-
tion of Antlr parser is described in a research by Danyang Cao and Donghui Bai which
explains how a SQL parser is developed [40].Another application is, use of Antlr to
transform C language to a high level language which has been implemented by Yuem-
ing Zhao and his team [41]. These researches describe the use of parsers and how to
parse the domain specific language in order to extract the required information.

Another advantage in using Antlr as the parser, we could directly get the class
object as the parsed output. In that case the listener output will be a Java object not
just a string output. In the implementation I have tried to push more things to the Antlr
grammar and to the templates by keeping the Java code generator clean.

In Antlr, we define the keywords that were mentioned in the above section. Use of
keywords will be described in section 4.3.3 which also shows a sample code written
using the newly introduced DSL.

Mainly there are several types of data structures or reference data containers used

in the DSL and also we will have to define some actions that has to be performed

31

throughout the execution of the controller.Below sub sections will describe how the

reference data is loaded and how the behavior is defined.

Defining required reference data.

Namely there are two major types of entities that we have to define in our domain

specific language.

1. Base type entities.

Base type entities will not be loaded by the reference data loader. The user will
have to provide the input when he uses the entity in the semantic model. Base
type entities could be loaded either using an external xml file or using some other
output generated at the controller. The keyword for a base type entity is defined

as per the below example of an Order entity.

eg:
Entity Order (Type = Base)
{

/I Fields

2. Persistent type entities.

In contrast ,persistent type entities are loaded directly from the reference data
loader. The inputs are loaded from an xml files using c++ boost library features.
The keyword for a persistent type entity is defined as per the below example of

an Instrument entity.

eg:
Entity Instrument (Type = Persistent)

{
// Fields

32

In the same way there are three types of fields used.

1. Key fields. When we define an entity we need to have a key in order to identify
the entity uniquely. In order to have that ability we use a key field for each of the
entities. A key field helps the entity to get loaded to the reference data containers
and also when the entity information is retrieved. A key field is defines as per

the below example.

eg:
String instancelD (Key Field);

2. Base fields. Base fields are directly loaded from the external xml files same as
base entities and they are converted to both object type and value type in the
generated outputs.As they are the most common field type ,we are not defining

the field as base type field explicitly. They are defined as per below

eg:

Integer side;

3. Stat fields. Some fields are not loaded from the exiting entities. Therefore these
have to be handled separately and they are not loaded from the reference data

containers. They are defined as stat fields as per below

eg:
OrderBook orderBook (Stat Field);

Defining behavior.

The reference data is there and now we need to define the behavior or actions. Ac-
tions are defined inside an event. There are pre-defined events as per below which are
specific to the stock exchange domain.

e Init

e PreMatch

33

* Match

* PostMatch

* Clear

These predefined events could either be loaded from an xml file or just hard code
as per the initial implementation.Inside an event we can define user actions. There
can be either validations or any other action. There are some events like OnOrder and
AddToOrderBook etc. The users could use the keywords in their DSL code in order to
generate the required feature.

An event is defined as per below format.

Event event_name

{

/] actions to be performed

Apart from these, there can be feature specific attributes. These can also be defined
as per the example shown in section 4.3.4. The example shows how the limit order

functionality has been implemented as a feature using our domain specific language.

34

4.3.4 Sample DSL Code

Feature LimitOrder // Feature name

{

Define Integer orderTypeLimit = 1;

Entity Order (Type = Base) //Defining a "Base" type entity

{
String instrumentSymbol:
String orderID (Key Field); // Defining the key field of the entity
Integer side:
Integer size;
Integer orderType:
Integer tif ;
Instrument instrument ;
Integer action :
Float price :
Integer orderStatus (Stat Field); // Defining fields that have be set by the user
}
Entity TradingParameter (Type = Persistent) // Defining a " Persistent " type entity
{
String instancelD (Key Field);
Boolean enableLimitOrders ;
}
Entity Instrument (Type = Persistent)
{
String symbol;
TradingParameter tradingParameter ;
Integer instrumentIndex (Key Field);
String lastTradingDate ;
OrderBook orderBook (Stat Field);
)
Event Init
{
Validate order.orderType equals to orderTypeLimit,5001/ Invalid Order Type hence feature not triggered ;
}
Event OrderSubmit
{
Validate order . instrument . tradingParameter . enableLimitOrders equals to true.2031/Limit Orders Trading Parameter is not enabled:
)
Event Match //Defining an event
{
OnOrder(order); // Feature actions
}
Event PostMatch
{
AddToOrderBook(order);
)

Order order: // Feature attributes

Using the DSL , following code segments will be automatically generated which

are shown in section 4.3.5 and 4.3.6 Only the main auto generated code segments are

included in the report.

35

4.3.5 Auto generated C++ code

#include "LimitOrderFeature.h"

#include "Logger.h"

/= —— —— —— —— —— —— —— ——

V4
LimitOrderFeature :: LimitOrderFeature ()
{
p_OrderHandler = nullptr ;
p_Order = nullptr ;

LimitOrderFeature ::~ LimitOrderFeature ()
{
)

/" Get Methods

/= —— —— —— —— —— —— —— ——

"
Orders+ LimitOrderFeature :: GetOrder_p()
{

return p_Order;

/I Set Methods

I
I
void LimitOrderFeature :: SetOrder(Orders order)
{
p_Order = order;
}

// Set Context

Vi
I
void LimitOrderFeature :: SetContext(Orders order)
{
SetOrder(order):
}

/1 Set Order Handler
1l
1l
void LimitOrderFeature :: SetOrderHandler(OrderHandlers pOrderHandler)
{
p_OrderHandler = pOrderHandler;

/lEvents

1l

1l

bool LimitOrderFeature :: Onlnit ()

{
CLogger::GetLogger()—>Log("LimitOrderFeature firing Event:OnInit for Order ID: [%s]",p_Order—>GetOrderID().c_str()) ;

if (!(GetOrder_p()—>GetOrderType() == orderTypeLimit))
{

36

CLogger::GetLogger()—>Log("LimitOrderFeature Event:OnInit Returning false due to : /Invalid Order Type hence feature not triggered : Order ID:
[%s] Reject Code: [%d]".p_Order—>GetOrderID().c_str().5001) ;
p_Order—>SetOrderStatus(ORDER_STATUS_REJECTED);

return false ;

CLogger::GetLogger()—>Log("LimitOrderFeature Event:OnInit — Returning true for Order ID : [%s]",p_Order—>GetOrderID().c_str());

return true ;

}
"
Vi
bool LimitOrderFeature :: OnOrderSubmit()
{
CLogger::GetLogger()—>Log("LimitOrderFeature firing Event:OnOrderSubmit for Order ID: [%s]",p_Order—>GetOrderID().c_str()) ;
if (!(GetOrder_p()—>GetInstrument_p()—>GetTradingParameter_p()—>GetEnableLimitOrders() == true))
{
CLogger::GetLogger()—>Log("LimitOrderFeature Event:OnOrderSubmit Returning false due to : /Limit Orders Trading Parameter is not enabled: Order
ID: [%s] Reject Code: [%d]",p_Order—>GetOrderID().c_str().2031);
p_Order—>SetOrderStatus(ORDER_STATUS_REJECTED);
return false :
}
CLogger::GetLogger()—>Log("LimitOrderFeature Event:OnOrderSubmit — Returning true for Order 1D : [%s]",p_Order—>GetOrderID().c_str()) ;
return true ;
)
I
I
bool LimitOrderFeature :: OnPreMatch()
{
CLogger::GetLogger()—>Log("LimitOrderFeature firing Event:OnPreMatch for Order ID: [%s]",p_Order—>GetOrderID().c_str()) ;
CLogger::GetLogger()—>Log("LimitOrderFeature Event:OnPreMatch — Returning true for Order ID : [%s]".p_Order—>GetOrderID().c_str()) :
return true :
)
I
I
bool LimitOrderFeature :: OnMatch()
{
CLogger::GetLogger()—>Log("LimitOrderFeature firing Event:OnMatch for Order ID: [%s]",p_Order—>GetOrderID().c_str());
p_OrderHandler—>OnOrder(p_Order);
CLogger::GetLogger()—>Log("LimitOrderFeature Event:OnMatch — Returning true for Order ID : [%s]",p_Order—>GetOrderID().c_str()) ;
return true ;
}
= - - - - - - - - -
"
bool LimitOrderFeature :: OnPostMatch()
{

CLogger::GetLogger()—>Log("LimitOrderFeature firing Event:OnPostMatch for Order ID: [%s]",p_Order—>GetOrderID().c_str()) ;
p_OrderHandler—>AddToOrderBook(p_Order);

CLogger::GetLogger()—>Log("LimitOrderFeature Event:OnPostMatch — Returning true for Order ID : [%s]",p_Order—>GetOrderID().c_str()) ;

return true ;

37

4.3.6 Auto generated C++ header

#pragma once

#include "Feature.h"

#include "Order.h”

#define orderTypeLimit 1

class LimitOrderFeature : public Feature

{
public :

/I Constructor

LimitOrderFeature () ;

/I Destructor

~LimitOrderFeature () ;

/" Get Methods
Orders GetOrder_p();

/I Set Methods
void SetOrder(Order: order);

/I Set Order Handler
void SetOrderHandler(OrderHandlers pOrderHandler);

// Events

bool Onlnit () override ;

bool OnOrderSubmit()override;
bool OnPreMatch()override;
bool OnMatch()override;

bool OnPostMatch()override;

/I Set Context

void SetContext(Orders order);

private :

/] Attributes
Orders p_Order;

OrderHandler: p_OrderHandler;

4.3.7 Use of StringTemplates to generate the code

Now that we parsed the DSL using Antlr, we have to convert the code into required
output language form. In our case, we will need to convert the code to c++ as our
Controller is written in c++ language. We can convert to any language by just changing
the template that we use. That is a major advantage in using this kind of a design. It

could be either converted to c++, Java or even Python depending on the application.

38

We have used StringTemplates as our template tool.

4.3.8 Challenges faced

One of the challenges I had to face is to implement the conditional statement inside a
validation. The conditional statement will need to be converted in to a c++ code in the
code generation time. The conditional statement would be a complex one,but we need
to convert it somehow to our desired output type. This was bit challenging.

Also the reference data loading was very challenging as to how each type of refer-
ence data is automatically loaded without very less user interaction.

Initially I had to analyze how a controller should work and also acquire the domain
knowledge on stock exchanges. That was also a challenge for me and I had to develop
a separate application in Java in order to understand the behavior of a matching engine

in a stock exchange system.

4.3.9 Key assumptions made

There are some key assumptions that we are relying on throughout this research. These
assumptions can be removed one by one by doing further research in the future.

One such key assumption is that, we assume that there will be no interaction of
features with each other. We are not addressing the cross behavior of features in this
research. When features are integrated to the semantic model, each feature is inde-
pendent and does not reply on any other feature. Each feature can be run without

depending on any of the other feature event,action or validation.

4.3.10 Implementation of Controller

Implementation of the controller is described by using each class diagram as per be-
low. The role of each class is defined separately in order to present how it has been
implemented.Mainly the systems of MillenniumIT was studied in order to implement
this controller . Apart from that Swiss stock exchange system [35] and Nepol stock ex-
change system [36] were studied in order to have a better understanding and to gather

necessary requirements in developing this domain specific language.

39

First an entity class is defined as per Fig. 4.4 .An entity can have multiple instances.
Each instance will have a unique identity and each instance will be stored in a list and
also in a map . There are two maps used in order to find instances by their index or
name (Unique keys).

List of entities is used to send as an input to the StringTemplate for the code gen-

eration.An entity is used to store information of an order or an instrument etc.

» |

" Entity

Class

= Fields
@ |ist_Instances: list<Instance™s
. map_InstanceBylndex : map<int, Instance™>
@ map_InstanceByName : map<string, Instance*s
e s EntityMame : string
= Methods
@ ~Entity()
Addlnstancel) ; void [+ 1 overlcad)
Entity()
FindInstance() : Instance™ [+ 1 overload)
GetEntityMame() : string
Getlnstancelist]) : list<Instance™>
SetEntityMame() : void

eaeaeaad

Figure 4.4: Entity

Next the feature implementation will be taken into consideration which is one of
the main components in this design. A feature is something which can provide some
functionality to a specific order. Each feature that is implemented using the domain
specific language will be inherited from the "Feature" class.

The parent class will contain the common virtual methods. Each virtual methods
are used to express how each feature will implement each task in a different way. As
per in section 4.3.1, there is a lot of events that the system will go through when an
order is submitted. Those events will appear in the actual code in these feature class.

Fig. A.20 shows how Limit Order Feature and Market Order Feature have been

inherited from their parent feature class. A limit order is added to the order book once

40

it gets matched with its remaining size whereas a market does not get added to the

order book even though it does not get matched at OnMatch function.

b

| Feature
Class

= Methods

~Feature()

Feature()

OnClear() : bool
OnlInit() : bool
CnMarketClose() : bool
OnMatch() : bool
OnOrderSubmit() : bool
OnPostMatch() ; bool
CnPreMatch() : bool
SetContext() : void
SetCrderHandler() ; void

f

eeaceeoeeeaenaea

public public
(LimitOrderFeature A (MarketOrderFeature A)
Class Class
—t Feature =+ Feature
= Fields = Fields

liia p_Order ; Crder”

@ p_CrderHandler: OrderHandler®
= Methods
~LimitCrderFeature()
GetOrder_p() : Crder®
LimitOrderFeature])
Onlnitf) : bool
COnMatch() : bool
OnOrderSubmit() : bool
CnPostMatchi) : bool
CnPreMatchi) ; bool
SetContext() : void
SetOrder() : void
SetOrderHandler() : void

a0

Oa p_Crder: Crder”

@ p_OrderHandler: OrderHandler®
= Methods
~MarketOrderFeature()
GetOrder_p(} : Crder”
MarketCrderFeature()
Cnlnitf) : bool
COnMatch() : bool
COnOrderSubmit() : bool
CnPostMatch() : bool
CnPreMatchi) ; bool
SetContext() : void
SetOrder() : void
SetOrderHandler() : void

eoaeacceaeaeqee

Figure 4.5: Features

Above features have to be included in a feature container. The initialization of
features and the main data handler will be the feature container class. When an order
is submitted to the controller, it will first check what are the features that are applicable
to that specific order. It uses the Onlnit function in order to add each applicable feature

to a separate list called triggeredFeatureList.

41

Class diagram of the feature container is shown in Fig. 4.6 . It contains a list of

features and helps to load them when they are require by th controller.

b

FeatureContainer
Class

=l Fields

@ | Featurelist: list<Feature*>
= Methods
~FeatureContainer()
AddToFeaturelist]) : void

FeatureContainer()
GetFeaturelistl) : list<Feature™=

LoadFeatures() : void

aeaead

Figure 4.6: Feature Container

An entity can be in the form of different instances. Each instance will have its
unique identity and they are inherited from their parent class called "Instance".

As per Fig. 4.7 there can be "Order" instances , "Instrument” instances or even
"TradingParameter" instances with unique IDs.As per in section 4.3.1, there can be
two types of instances. Base type entity instances are loaded using an external xml
where as persistent type entity instances have to be set by the controller as an when
they are required.Getter and setter methods get differed depending on the type. All
these are handled automatically by the code generator. The user will only have to

indicate its type.

42

Instance A
Class.

& Fields

@ | InstancelD: int

@, p Entity: Entity*

@ s InsntancelD: string
E Methods
~Instance()
getEntity() : Entity™
getintiD() : int
getSHiD() : string
Instance()
SetEntity() : void
setlntiD() : void
SetMonPrimitiveFields]) : void
setStD() ; void

Lo B B B R o B o O

public

Order
Class
- Instance

S Fields

f_Price: float

i_Action : int

i_OrderStatus : int
i_OrderSubType: int

i_ OrderType: int

i Side: int

i_Size: int

i_Tifrint

p_Instrument : Instrument®
p_RefDataContainer : RefDataContainer®
< Instrument : string

< InstrumentSymbol : string
s_KeyField : string

s OrderlD: string

ethods

~Order()

Create() : Order”

GetAction() : int
Getlnstrument() : string
Getnstrument_p() : Instrument®
GetlnstrumentSymbal() : string
GetKeyField() : string
GetOrderID() : string
GetOrderStatus() : int
GetOrderSubTypel) : int
GetOrderType() : int
GetPrice() : float

GetSide(]) : int

GetSize() : int

GetTif() : int

Order{) (+ 1 overload)
SetAction() : void
Setlnstrument() : void (+ 1 overload)
SetlnstrumentSymbol() : void
SetKeyField(} : void
SetMonPrimitiveFields() : void
SetCrderD() : void
SetOrderStatus() : void
SetOrderSubType() : void
SetOrderType() : void
SetPrice() : void

SetSide() : void

SetSize() : void

SetTiF(]) ; void

m‘ m‘ m‘ m‘ m‘ m‘ m‘ mn m‘ mﬂ m‘ n‘ n0 m‘

=2

000 RERRERLRRERLERERR @

public public
Instrument TradingParameter
Class Class
< Instance -+ Instance
= Fields S Fields
@ | Instrumentindex ; int @ b EnablelimitOrders : bool
@ p OrderBook : OrderBook™ @ b _EnableMarketOrders : bool
LN p_RefDataContainer : RefDataContainer® L" p_RefDataContainer : RefDataContainer®
@, p_TradingParameter : TradingParameter* @ = InstancelD: string
@, < KeyField : string @, s KeyField : string
@, < lastTradingDate:: string & Methods
:‘ sﬁSyle)oI {2ty . @ ~TradingParameter()
a = Tadinglarameter; stong & Create() : TradingParameter®
B Methods @ GetEnablelimitOrders() : bool
@ ~Instrument() @ GetEnableMarketOrders() : bool
@ Create() : Instrument™ @ GetlnstancelD() : string
@ Getlnstrumentindex() : int @ GetKeyField() : string
@ GetKeyField) : string @ SetEnableLimitOrders() : void
@ GetlLastTradingDate{) : string @ SetEnableMarketOrders() : void
@ GetOrderBook() : OrderBook™ @ SetlnstancelD() : void
& GetSymbol() : string @ SetkeyField() : void
@ GetTradingParameter() : string @ TradingParameter() (+ 1 overload)
@ GetTradingParameter_p() : TradingParameter™
@ Instrument() (+ 1 overload)
@ Setlnstrumentindex() : void
@ SetKeyField() : void
@ SetlastTradingDate() : void
@ SetNonPrimitiveFields() : void
@ SetOrderBook() : void
@ SetSymbol() : void
@ SetTradingParameter() : void (+ 1 overload)

Figure 4.7: Order,Instrument, Trading Parameter Instances

43

B

[RefDataConitainer
Class

= Fields
@ map Entity : map<string, Entity™>
= Methods
@ ~RefDataContainer()
AddEntity() : void
AddInstance() : void [+ 1 overload)
FindEntity() : Entity™
FindInstancel) : Instance™ (+ 1 overload)
RefDataContainer()

20 eaa

Ly

pulklic

.

B

Loader
Class
—+ RefDataContairer

= Methods

~Loader{)

LoadEntities() : void

Loader()

LoadInstruments() : void
LoadMonPrimitiveFields() : void
LoadTradingParameters() : void
SetMonPrimitiveFields() : void

eoadadd

Figure 4.8: Reference Data Container

Reference data has to be stored in some container in order to use in run time. For
that purpose RefDataContainer class is used as per Fig. 4.8 . In order to load the
reference data from external sources like xml files, a class called "Loader” is used. It
has been inherited from the RefDataContainer class.

Loader can load several attributes and it is an automatically generated class by the
code generator. When user adds new entity , it will be reflected in the Loader class
automatically. It helps to load both entities and its instances.

RefDataContainer helps the controller to find instances of each entity as and when

they are required by the injected order.

44

| OrderBook A |
Class

= Fields
@ i Instrumentlndex : int
aﬂ m_BuySideCrderBook | OrderBookSide®
@ m_SellSideCrderBook | OrderBookSide™
= Methods
~OrderBook()
GetBuySideCrderBook{) : OrderBookSide™
GetSellSideCrderBook() : OrderBookSide®
CrderBook()

20 e

Figure 4.9: Order Book

[OrderBookSide &
Class

= Fields
@ i Instrumentindex ; int
@ | Side:int
aa m_CurrentCrder : Crder®
aﬁ m_CurrentOrderList ! list<Order®=*
@ m_CurrentOrderListiterator : iterator
99 m_CurrentCrderMaplterator : iterator
aﬁ m_CrderMap : DirecticnalMap <float, list<Crder®>»

= Methods

~OrderBookSide()
AddCrder{) ; void
AmendCurrentOrder{) : void
GetCurrentOrder() : Crder®
GetlnstrumentIndex() : int
GetMextBestOrderl) : Order®
GetOrderBookSide() : int
GetCrderMap() : DirectionalMap <float, list<Order™s>
CrderBockSide()
Preparelterator() : bool
PrintCrderBookSidel) : void
RemaoveCurrentCrder() : void
SearchCrder() ; bool
SetCurrentOrder() : void
SetlnstrumentIndex() ; void
SetOrderBookSide]) : void

feegaededeedaeanee

Figure 4.10: Order Book Side

Now that all the reference data is ready, there should be a mechanism for an or-
der to be placed after its execution.An order book is a data container which has two

sides,namely, buy side order book and sell side order book. As per Fig. 4.9 there are

45

two class members assigned for that.Each side will have separate entries in such a way
that buy side has all its orders in the descending order and sell side will be ordered in
ascending order. The purpose for that is, the best order in buy side would be the order
that has the maximum price and in sell side, the best order would be the order that has
the minimum price.

Each order book side has been implemented as per Fig. 4.10 by having a "Direc-
tional Map" in it.Directional map is shown in Fig. 4.11 .The use of directional map is

to store the orders in ascending and descending order as per the above explanation.

46

[DirectionalMap < KeyType, ValueType> A
Template Class

= Fields

@ m_dir: Direction

@ m_map: MapType
= Methods
~DirectionalMap()
begin{) : iterator
DirectionalMap()
empty() : bool
end() : iterator

eaeaoedae

gethapl) : MapTypedi [+ 1 overload)
= Nested Types

forward _iterator : typename MapTypeziterator
Typedef

iterator : Iterator
Typedef

Iterator R
Struct

= Fields

@ m_dir; Direction

@ m forwardlt: forward_iterator

@ m_reverselt ; reverse iterator
= Methods
~Iterator()
Iterator() (+ 2 overloads)
operatori={) : bool
operator™() : value_typelt
operator++() : Iterator&
operator=() : keratordt
operator==() : bool
operater->{) : value_type®

eeeeeaee

MapType : std=map < KeyType, ValueType >
Typedef

reverse_iterator : typename MapTypezreverse_iterator
Typedef

Figure 4.11: Directional Map

The direction of the map has to be defined when order book class is created. After
that directional map will handle all its iterator and standard maps itself.
OrderBookSide is one of the main classes in this design. It has several methods to

perform actions upon injected orders.Mainly this controller will have following action

47

when an order is submitted.

1. New Order : - A new order is an order which could be executed with the orders
in the order book or even get added to the order book if the feature permits to
to so. For an example, a leave order will be added to the order book after its
execution whereas market orders will get expired if it does not fully matched

with an order that exists in the counter order book side.

When a new order is submitted, the controller will find its best counter order and
tries to match it. For that the directional map will help to get the next best order

by providing the correct map iterator.

When the order is partially executed, that will be added to the order book based
on its price. Price will be the key to the map. The map will have separate lists for
each price point. The list will make sure that the price priority and time priority
of each order is maintained correctly. More priority will be given to best price

and for the order that came early when choosing the next best order for match.

2. Amend Order :- The users could amend the existing orders in any order book
side by providing its order ID. When such request comes, the controller will
first find that order and then amend the price or size based on the request.If the
order price is different than the original order price,it will be removed from the
existing list and put in the list with the new price point. The time priority will get
changed in this case. If order size is less than the original size, the size will get
amended without loosing the time priority. If the size is greater than the original

order size, the time priority will get changed.All are handled by the controller.

3. Cancel Order :- The user can cancel an order by providing its respective order
ID.Then the order will be found from the directional map and get removed. If

the corresponding order list is empty , the respective list will be removed too.

The above mentioned operations are handled by the Order Handler class as per in
Fig. 4.12. The operations on each order book side have been handled separately by

considering their data structure.

48

[OrderHandler A
Class

= Fields
'ii'a f Price: float
ﬂa i_Operation : int
@ Side:int
'i'a i_Size:int
@ map_Instruments : map <int, Instrument™
e p_BuyCrderBokSide ;: OrderBookSide™
L p_Crder: Crder”
'i'a p_5ellCrderBokSide : CrderBookSide™
ﬂa s OrderlD: string
= Methods
~CrderHandler()
AddToOrderBook() : void
DoOperationsCnAmendCrder() : veid (+ 1 overload)
DoOperationsOnBuyMewOrder() : void
DoOperationsOnCancelCrder() @ void
DoQperationsCnMNewCrder() : void
DoCperaticnsOnSelNewCrder() : void
OnOrder() : void
CrrderHandler()
SetOperation(} : void
SetSide() : void

e eaaefaaead

Figure 4.12: Order Handler

In order to inject orders to the main system or the controller, an Order Injector class
is used as per Fig. 4.13 which will provides a callback function to the controller. That

was designed using the "observer" design pattern.

(Orderlnjector A
Class

= Metheds
@ ~Orderlnjector()

@ OnStarilnjectingCrders() : void
g Orderlnjector()

Figure 4.13: Order Injector

49

In order to provide a visible output as to what has been happened in the controller, a
logger class is used. Singleton design pattern is used in order to implement the logger,
which will have only one instance to log the event for the whole controller. The output
is written to a file so that the users could get an idea on how the outputs are generated

from the controller for each feature.

» |

(ClLogger
Class

= Fields

@ m_Logfile: ofstream

¥ m_pThis: CLogger®

EL m_sFileMame : const string
= Methods

mﬂ CLegger() [+ 1 overload)
GetlLogger() : CLogger™
Log() : void (+ 1 overload)
operator<<() : Clogger®

&S & &

= operator=() : CLoggerft

Figure 4.14: Logger

4.3.11 Summary of implementation

The controller consists of two components.Namely auto generated codes and the core.
Auto generated codes are generated from the code generator and they are generated
using the domain specific language which are defined using Antlr4 grammar and then
converted to C++ using StringTemplates.

It is advised not to change any auto generated code segments in order to maintain
the controller in a proper way. Each feature must be defined independently and could
be used in the controller without any other input from any other feature.

The domain specific language could be even converted to languages other than C++
because of its design and use of StringTemplates.

Two separate applications were developed for the controller in C++ language and
the code generator in Java language. Therefore in the evaluation, first the code generator

behavior is evaluated and then the controller behavior is evaluated in chapter 5.0

50

CHAPTER 5

SYSTEM EVALUATION

51

5.1 Overview

After carrying out a research , the results should be evaluated and checked whether the
results are accurate and valid.That is a very important component of any research and
justification is a must.

In this section, the research which I have carried out will be evaluated and justified
to be true. The main implementation of this research is the code generator. The seman-
tic model has been developed along with the main controller. The controller could be

used here to validate and evaluate the results. It is an added advantage of this design.

5.2 Evaluation of Code Generator

As I already mentioned in the previous section,the code generator could be evaluated
using the main controller itself. The below section will describe the inputs are injected
to the system in order to evaluate the results.

For this evaluation, some important researches were refereed in order to get ideas
on how to test and evaluate this research accurately.One of the researches were done
by Ludvig which describes how to test domain specific languages [42] was analyzed in
this regard. They have describes a concept called software product lines [27]. Not like a
one off development, the software product lines are developed like a series of software
products.Model driven testing scenarios has also been studied in order to carry out this

research [31] [32].

5.3 How to provide inputs

The inputs are injected using the xml files. The controller will read the input data and
process using the auto generated code files.The auto generated code files which are
generated by our code generator are integrated before running the main controller.The

inputs are injected as per below xml format.

<? ="1.0" encoding="utf—8"?>
<Instances>
<Instance>
<instrumentSymbol>10YR_CRO02</instrumentSymbol>
<instrument>23</instrument>

<orderType>1</orderType>

52

<size>100</size>
<price>12.5</price>
<tif >1</tif >
<side>1</side>
<orderID>1q2yu4</orderID>
<orderSubType>1</orderSubType>
<action>I</action>
</Instance >
<Instance>
<instrumentSymbol>10YR_CR02</instrumentSymbol>
<instrument>23</instrument>
<orderType>1</orderType>
<size>200</size>
<price>13.7</price >
<tif >1</tif >
<side>1</side>
<orderID>2t6as8</orderID>
<orderSubType>1</orderSubType>
<action>1</action>
</Instance>
<Instance>
<instrumentSymbol>10YR_CRO2</instrumentSymbol>
<instrument>23</instrument>
<orderType>1</orderType>
<size>100</size>
<price>13.5</price>
<tif >1</tif >
<side>2</side>
<orderID>3r8gr9</orderID>
<orderSubType>1</orderSubType>
<action>I</action>
</Instance >
<Instance>
<instrumentSymbol>10YR_CRO2</instrumentSymbol>
<instrument>23</instrument>
<orderType>I</orderType>
<size>150</size>
<price>12.5</price>
<tif >1</tif >
<side>2</side>
<orderID>4p3tr6</orderID>
<orderSubType>1</orderSubType>
<action>I</action>
</Instance>
<Instance>
<instrumentSymbol>10YR_CR02</instrumentSymbol>
<instrument>23</instrument>
<orderType>1</orderType>
<size>200</size>
<price>11.75</price>
<tif >1</tif >
<side>2</side>
<orderID>5y9ew6</orderID>
<orderSubType>1</orderSubType>
<action>l</action>
</Instance >
<Instance>
<instrumentSymbol>10YR_CRO2</instrumentSymbol>
<instrument>23</instrument>
<orderType> | </orderType>
<size>100</size>

<price>10.25</price>

53

<tif>1</tif >
<side>2</side>
<orderID>6q7ui7</orderID>
<orderSubType>1</orderSubType>
<action>I</action>

</Instance>

<Instance>
<instrumentSymbol>10YR_CRO02</instrumentSymbol>
<instrument>23</instrument>
<orderType> I </orderType>
<size>100</size>
<price>9.50</price>
<tif >1</tif >
<side>2</side>
<orderID>6q7ui7</orderID>
<orderSubType>1</orderSubType>
<action>2</action>

</Instance >

<Instance>
<instrumentSymbol>10YR_CRO02</instrumentSymbol>
<instrument>23</instrument>
<orderType> | </orderType>
<size>100</size>
<price>15.5</price>
<tif >1</tif >
<side>2</side>
<orderID>6q7ui7</orderID>
<orderSubType>1</orderSubType>
<action>2</action>

</Instance >

<Instance>
<instrumentSymbol>10YR_CRO02</instrumentSymbol>
<instrument>23</instrument>
<orderType>2</orderType>
<size>100</size>
<price>10.0</price >
<tf>1</tif >
<side>2</side>
<orderID>7j5aq6</orderID>
<orderSubType>1</orderSubType>
<action>l</action>

</Instance >

<Instance>
<instrumentSymbol>10YR_CRO02</instrumentSymbol>
<instrument>23</instrument>
<orderType>1</orderType>
<size>100</size>
<price>15.5</price>
<tif >1</tif >
<side>2</side>
<orderID>6q7ui7</orderID>
<orderSubType>1</orderSubType>
<action>3</action>

</Instance>

</ Instances >

54

5.4 Evaluating the outputs
5.4.1 How to evaluate the outputs
The stock exchange system that has been developed supports 3 basic operations.Namely;

1. Putting a new order.
2. Amend an existing order.

3. Cancel an existing order.

Above basic operations should be validated using the controller.The test cases are
manually created for each operation as per following tables. Apart from the manual test

cases another tool has been written in order to validate the results automatically.

5.4.2 Automated validator

This automated validator has been written in Java language in order provide same
inputs and get the results so that we could compare the results with the actual out-
comes taken from our controller. The validator accepts two csv files for orders and
instruments whereas actual system accepts xml files for order input.Validator has been
implemented without any feature interaction and the design is completely different.
Similar functionality has been implemented in both controller and in validator, so that

the comparison is valid and done under same conditions along with same inputs.

Black Box 1

Automated Validator

Black Box 2

Figure 5.1: Evaluation methodology

55

Actually this validator has been developed prior to the research in order to identify

as to how the controller should break into separate features .As per Fig. 5.1 if both the

results are same we can conclude that our controller has been implemented accurately.

After calculating the results manually and using the above mentioned automated

test results we can have a comparison as per in section 5.4.3 . When evaluating the

results we could use this comparison as a proof.

5.4.3 Comparison between manually calculated results,automated test results

and actual results

Below in Fig. 5.2 has a summary of results obtained by carrying out several test cases.

Test Scenario

Actual results from Controller

1 | Putting a new order (Order type :- Limit).

FTTTITIT ++ Order Book of Instrument:

23 5ide @ 1

(3

Putting another new order with higher
priority

++++++4+4+4 Order Boo

Order ID: lq2yu4 | Size : 100

Order ID: Jtéas8 | Size : 200 | Price : 13.700000

3 | Partial match with previous order

F3377444++ Order Book of I

Order ID:

Order ID: Itéasg | Size : 100 |

gavud | Size : 1

4 | Fully match with previous order

ord

44444444444 Order Book of Instrument:

Order ID: lqZyu4 | Size : 50

Price : 12.50

5 | Full match with add to order book AR % (QEARE Baok 0L TNNEVOMAN:

Ozder ID: SySewé | Size :

150

6 | Putting a sell order with a higher priority

+ Order Book of Instr

Order ID: éq7ui? | Size : 100 | Price : 10.250000

Sydewé Size :

7 | Amending the previous order (Without
losing priority)

Order Book o

Order ID: €q7ui7 | Size : 100

8 | Amending the previous order (Loosing
priority)

9 | Put a buy market order

10 | Order cancellation.

Figure 5.2: Summary of test results

Results from automated validator

Each of above test cases exhibits a different behavior of main controller.The system

evaluation could be based on the above obtained results. The details of each test case

has been included in Appendix A.

56

5.4.4 Evaluation of results

In order to evaluate the results, information extracted from the log file is being used.

The log file is generated by the controller along with the time of each event happened.

Each of above scenarios could be run and results could be evaluated with the expected

outcomes.Expected outcomes have been both automatically calculated using an ex-

ternal validator and manually calculated .If there is no difference between the results

generated by the controller and the expected results , we could validate that the results

are accurate.

The results of each of the above 10 scenarios can be evaluated as follows;

As per Table 5.1 when putting the new order , there is no counter order to get
matched and also it is a limit order so it directly added to the order book.

When putting the second order at a higher price than the previous order it gets
added to the top of the order book as per in Table 5.2

A partial match happens when a sell order is put for a matching quantity of 100
and the existing order size gets reduced by 100 as per Table 5.3

With putting an order with size 150, order ID 2t6as8 gets fully matched as per
Table 5.4. This could be further evaluated by performing another full match in
such a way that the remaining quantity of the sell order gets added to the sell
side of the order book as per the Table 5.5

Now we add another sell order with a higher priority (which is priced at 10.25) .
In sell side,higher priority means lower price and in the buy side , higher priority
is given to the orders with high prices. It reflects in Table 5.6

Now that new order functionality is being evaluated, we could move on to the
next functionality which is order amendment. When we change the order price
to a lower value , the priority won’t change as per Table 5.7.

Again when we change the price of order 6q7ui7 from 9.5 to 15.5, it’s priority
gets reduced as per Table 5.8. Therefore order amendment is also evaluated and
then moving on to market orders.

A market order is an order which gets expired when it is not matched with the

existing orders in the order book. So either it gets fully matched or partially

57

matched otherwise it will get expired as per Table 5.9

¢ Finally order cancellation functionality is being evaluated as per Table 5.10 and
it could be seen that each and every above 10 scenarios are validated with the
respective figures extracted from its log file.

With the use of the manually calculated expected results and the automated test
results we could conclude that the research is a success as the results are accurate.It
means that the automatically generated code segments from our code generator have
been properly worked.

This evaluation has been done considering two features which are Limit Order
Feature and Market Order Feature. It could be even modeled using more than two

features .

58

CHAPTER 6

CONCLUSION

59

6.1 Contribution

This research has been a success for various reasons. Firstly , a massive stock exchange
system has been decoupled or modeled in terms of a set of features.If a particular
feature is not required, the feature could be easily decoupled from all the code segments
with minimum manual intervention.

Secondly the code is being automatically generated which supports even business
analysts to add business logic themselves using the language I have introduced.This
could be further enhanced by introducing graphical user interfaces which I have been
mentioned in section 6.3 as future improvements to the system.

Thirdly ,the end outcome or the code generator has provided an efficient and clean
way to manage the codes in the newly introduced feature oriented software develop-
ment methodology. Before compiling the code, the code generator will generate the
required files in accordance with the feature list required to implement a solution.There
will not be any code segment which is not used or functioning inside the main code
hereafter. The code will be clean and easy to understand even by a new developer.

Many languages and technologies were used in carrying out this research. Mainly
the code generator has been developed using Java,StringTemplates and Antlr . The
code generator has been developed using another language (C++) in order to exhibit
that the output of the code generator could be provided in any user defined language.
The auto generated code could be in any language and it is a real advantage of this

methodology.

6.2 Study limitations

This research has been limited to the stock exchange systems domain. The results
obtained in section 5 is applicable in stock exchange systems and also each feature
must not interact or interfere with one another. Feature interaction has been presented

in the next section under future work.

60

6.3 Future work

This research mainly focuses on a code generator which provides better structuring and
feature oriented capabilities to stock exchange based systems. This research could be
improved further if the code base is changed to a graphical model or visual program-
ming language (VPL) model. In the current implementation, the person who wants to
enter the logics ,has to code according to the given syntaxes .If the coding method is
changed to a visual programming model , the users would be able to drag and drop the
functionality modules and implement the system which will replace the Antlr parser
in the current implementation.If this is converted to a such model ,it could be even
used to promote the product to customers mentioning that they will also be capable of
introducing changes by themselves using the graphical drag and drop coding model.
Further there is a limitation which has not been addressed by this research. That is,
how to handle the features which are dependent on another feature.This kind of feature
interaction problem has been evaluated by T. Bowen and his team in their research on
how to solve feature interaction in telecommunication systems [19] .How to detect such
interactions have been described by Sven Apel and his team,in their research [29].They
have described on how to separate each concern and how to detect dependencies and
interactions between features.An efficient way to detect the feature interaction has also
been explained by Cynthia Disenfeld and team [33].Even there are researches done
in order to find out how much these features are inter-related .One such research is
done by Joanne and team [34] The cross functionality has not been considered in this
research and as a future improvement , that function could be added. The feature
interactions have to be taken into account and it should be implemented with more
care because the combined feature should give the desired result without causing any

error in output.

61

Bibliography

[1] Sven Apel, Christian Kastner,"An Overview of Feature Oriented Software Devel-
opment", in Journal of Object Technology, vol. 8§, no. 4, pages 1-36,July - August
20009.

[2] Feature-oriented programming From Wikipedia [Online] Available

https://en.wikipedia.org/wiki/Feature-oriented_programming

[3] Eth Zurich,Chair of Engineering,"An Overview of Feature-Oriented Software De-

velopment",Journal of Object Technology Vol 8 ,Augest 2009

[4] K. Kang, S. Kim, J. Lee, K. Kim, G. Kim, and E. Shin." FORM A Feature-
Oriented ReuseMethod with Domain-Specific Reference Architectures", Annals of

Software Engineering, pages 143 - 168, 1998.

[5] . Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. "Feature-Oriented Domain
Analysis (FODA) Feasibility Study", Technical Report CMU/SEI-90- TR-21, Soft-

ware Engineering Institute, Carnegie Mellon University, 1990.

[6] A.Classen, P. Heymans, and P. Schobbens. "What is in a Feature- A Requirements
Engineering Perspective"”, In Proceedings of the International Conference on Fun-
damental Approaches to Software Engineering (FASE), volume 4961 of Lecture

Notes in Computer Science, pages 16 to 30. Springer Verlag , 2008.

[7] J. Bosch. Design and Use of Software Architectures - Adopting and Evolving a
Product-Line Approach. ACM Press / Addison-Wesley, 2000.

[8] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and

Applications. Addison-Wesley, 2000.

62

[9] Sven Apel, Thomas Leich, Marko Rosenm uller, Gunter Saake, "FeatureC++: On
the Symbiosis of Feature-Oriented and Aspect-Oriented Programming"”, in: Pro-
ceedings of the International Conference on Generative Programming and Compo-

nent Engineering (GPCE), Vol. 3676 of LNCS, Springer-Verlag, 2005

[10] Sven Apela, Sergiy Kolesnikova, J.org Liebiga, Christian K.astnerb, Mar-
tin Kuhlemannc, Thomas Leichd,"Access Control in Feature-Oriented Program-

ming" Elsevier,August 11, 2010

[11] SVEN APEL,DELESLEY HUTCHINS,"A Calculus for Uniform Feature Com-
position,ACMTransactions on Programming Languages and Systems", Vol. 32, No.

5,Article 19, Publication date:May 2010.

[12] Don Batory, Member, IEEE, Jacob Neal Sarvela, Student Member, IEEE, and
Axel Rauschmayer, Student Member, IEEE,Scaling Step-Wise Refinement,JEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 6, JUNE
2004

[13] A. Colyer and A. Clement. "Large-Scale AOSD for Middleware",Proceedings
of the 3rd international conference on Aspect-oriented software development,Pages

56-65 , 2004

[14] R. Laddad,"Aspect] in Action Practical Aspect-Oriented Program-
ming.",Manning Publications Co.Greenwich, CT, USA , 2003

[15] D Batory and S O Malley, "The Design and Implementation of Hierarchical Soft-
ware Systems with Reusable Components" , ACM Trans. Software Eng. Methodol-
ogy, Oct. 1992.

[16] S. Apel, T. Leich, G. Saake, Aspectual Feature Modules, IEEE Transactions on
Software Engineering (TSE) 34 (2) (2008) 162 - 180.

[17] S. Apel, C. K.astner, C. Lengauer, "FeatureHouse: Language-Independent, Au-
tomated Software Composition", in: Proceedings of the International Conference

on Software Engineering (ICSE), IEEE Computer Society, 2009, pp. 221 - 231.

63

[18] R. Lopez-Herrejon, D. Batory, W. Cook, Evaluating Support for Features in Ad-
vanced Modularization Technologies, in: Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), Vol. 3586 of LNCS, Springer-Verlag,
2005, pp. 169 -194

[19] T. Bowen, F. Dworack, C. Chow, N. Griffeth, and G. Herman Y.J. Lin. "The Fea-
ture Interaction Problem in Telecommunications Systems", In Proceedings of the
International Conference on Software Engineering for Telecommunication Switch-

ing Systems (SETSS) , pages 59 - 62 ,IEEE CS Press, 1989.

[20] Sven Apel; Florian Heidenreich; Christian Kastner; Marko Rosenmuller , "Third
International Workshop on Feature-Oriented Software Development",15th Interna-

tional Software Product Line Conference,Pages: 337 - 338,2011

[21] Keisuke Yano; Akihiko Matsuo,"Labeling Feature-Oriented Software Clusters
for Software Visualization Application",Asia-Pacific Software Engineering Confer-

ence (APSEC),Pages: 354 - 361,2015

[22] J. K. Muller,"Feature - Oriented Software Structuring”" Computer Software and
Applications Conference, COMPSAC *97. Proceedings, The Twenty-First Annual
International,Pages: 552 - 555,1997

[23] Mehran Kavand; Saeed Paarsa; Ahmad Faraahi,"A context-independent feature-
oriented software development approach”,6th International Conference on Com-

puter Science & Education (ICCSE),Pages: 1115 - 1122 ,2011

[24] M. Mezini and K. Ostermann. Variability Management with Feature-Oriented
Programming and Aspects. In Proceedings of the International Symposium on

Foundations of Software Engineering, pages 127-136.ACM Press, 2004.

[25] Christian Kastner; Thomas Thum; Gunter Saake; Janet Feigenspan; Thomas
Leich; Fabian Wielgorz; Sven Apel,"FeatureIDE: A tool framework for feature-
oriented software development",IEEE 31st International Conference on Software

Engineering,Pages: 611 - 614,2009

64

[26] C. Marimuthu; K. Chandrasekaran,"Feature-Oriented Domain Analysis Frame-
work for Energy-Aware Self-Adaptive Software",IEEE International Conference
on Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData),Pages: 773 - 776,2016

[27] Beatriz Perez Lamancha; Oscar Diaz; Maider Azanza; Macario Polo,"Software
product line testing: A feature oriented approach",JEEE International Conference

on Industrial Technology,Pages: 298 - 305,2012

[28] Roberto E. Lopez-Herrejon; Leticia Montalvillo-Mendizabal; Alexander
Egyed"From Requirements to Features: An Exploratory Study of Feature-Oriented
Refactoring”,15th International Software Product Line Conference,Pages: 181 -

190, 2011

[29] Sven Apel; Wolfgang Scholz; Christian Lengauer; Christian Kastner,"Detecting
Dependences and Interactions in Feature-Oriented Design",,IEEE 21st International

Symposium on Software Reliability Engineering,Pages: 161 - 170,2010

[30] Herbert Prahofer; Daniela Rabiser; Florian Angerer; Paul GrAijnbacher; Pe-
ter Feichtinger,"Feature-oriented development in industrial automation software
ecosystems: Development scenarios and tool support",,IEEE 14th International

Conference on Industrial Informatics (INDIN),Pages: 1218 - 1223,2016

[31] P. Sochos; M. Riebisch; I. Philippow,"The feature-architecture mapping (FArM)
method for feature-oriented development of software product lines",13th Annual
IEEE International Symposium and Workshop on Engineering of Computer-Based

Systems (ECBS’06),Pages: 9 pp. - 318,2006

[32] Sven Apel; Dirk Beyer,"Feature cohesion in software product lines: an ex-
ploratory study",2011 33rd International Conference on Software Engineering

(ICSE),Pages: 421 - 430,2011

[33] Cynthia Disenfeld; Ioanna Stavropoulou; Julia Rubin; Marsha Chechik,"FPH:

Efficient Detection of Feature Interactions through Non-Commutativity",2017

65

IEEE/ACM 39th International Conference on Software Engineering Companion
(ICSE-C),Pages: 225 - 225,2017

[34] Joanne M. Atlee; Uli Fahrenberg; Axel Legay,"Measuring Behaviour Interac-
tions between Product-Line Features",IEEE/ACM 3rd FME Workshop on Formal
Methods in Software Engineering,Pages: 20 - 25,2015

[35] R. Piantoni; C. Stancescu,"Implementing the Swiss Exchange trading sys-
tem",Proceedings of IEEE 27th International Symposium on Fault Tolerant Com-

puting,Pages: 309 - 313,1997

[36] Bikash Dhakal; Manoj Kumar Gupta,"A system model of online trading system
for Nepal Stock Exchange",International Conference on Computing for Sustainable

Global Development (INDIACom),Pages: 367 - 372,2014

[37] K R Neeraj; P S Janardhanan; Anu Bonia Francis; Reena Murali,"A domain
specific language for business transaction processing",JEEE International Con-
ference on Signal Processing, Informatics, Communication and Energy Systems

(SPICES),Pages: 1 - 7,2017

[38] Van Deursen, Arie, Paul Klint, and Joost Visser," Domain-specific languages An

annotated bibliography", ACM Sigplan Notices,pages 26-36,

[39] Mernik, Marjan, Jan Heering, and Anthony M. Sloane ,"When and how to de-
velop domain specific languages",ACM computing surveys (CSUR),pages 316-
344,2000

[40] Danyang Cao; Donghui Bai,"Design and implementation for SQL parser based
on ANTLR",2010 2nd International Conference on Computer Engineering and
Technology, Volume: 4,Pages: V4-276 - V4-279,2010

[41] Yueming Zhao; Teng Wang; Xiaoyu Ni; Xin’an Wang; Zheng Xie,"Syntactic
Representation Transformation in Operator Design Method Based on ANTLR
Tool",IEEE 12th International Conference on Computer and Information Technol-

ogy,Pages: 115 - 118,2012

66

[42] Ludvig Kihlman,"A test model for domain-specific language development",2017
9th Computer Science and Electronic Engineering (CEEC),Pages: 207 - 212,2017

[43]] P. W. Burke and P. Sweany, "Automatic Code Generation Through Model-
Driven Design", University of North Texas, Denton, Texas, October 23, 2007.

67

Appendix A

DETAILED TEST RESULTS

1. Putting a new order (Order type :- Limit)

Order Book
Buy Side Sell Side
Order ID | Size Price Price | Size | Order ID

1q2yud | 100 | 12.500000

Table A.1: Putting a limit new order

Figure A.1: Automated test result for test case in Table 5.1

201 7-12-02.18:27:54: ++++4++44+44++ Oxrder Book of Instrument: 23 Side @ 1 +4+++4+4+4+4+4++
Z017-12-02.18:37:54: Order ID: 1gZ2yud | Size : 100 | Price : 12.500000
201 7-12-02.18:37:5%: +++++++++++++HHH AR AR

Figure A.2: Actual result extracted from log file for test case in Table 5.1

68

2. Putting another new order with higher priority(Order type :- Limit)

Order Book
Buy Side Sell Side
Order ID | Size Price Price | Size | Order ID
2t6as8 | 200 | 13.700000

1q2yu4

100 | 12.500000

Table A.2: Putting limit new order with higher priority

2017-12-62.18:27:54:
2017-12=-02.18:27 54
2017-12-82.18:27 54
2017=12=-02.1827 54

+++++++++++ Order Book of Imstrument: 23 Side : 1 +44+4+++++4+44
Order ID: Zt6as8 | S5ize : 200 | Price : 13.700000
Order IB: Ig2yu4d | Size : 100 | Price : 1Z2.500000

Figure A.4: Actual result extracted from log file for test case in Table 5.2

3. Partial match with previous order

Here we put a sell order for the same instrument with size 100 and price 13.5 .

The resulting order book should have following figures.

69

Order Book

Buy Side Sell Side
Order ID | Size Price Price | Size | Order ID
2t6as8 | 100 | 13.700000
1q2yu4 | 100 | 12.500000

Table A.3: Putting sell order for partial match

thbbt bt

2017-12-02.18:27:54:

E017-1Z-02.18:27:54:;

E017-1Z-0Z.18:E27:54:

E017T-12-02.18:E7:54:;

++++4+4+++++ Order Book of Imstrument: 23 Side : 1 ++4444+4+++4
Order ID: Zt6asf | Size : 100 | Price : 13.T700000

Order ID: 1lg2yu4d4 | Size : 100 | Price : 12.500000

Figure A.6: Actual result extracted from log file for test case in Table 5.3

4. Fully match with previous order

Now we put a sell order with size of 150 at a price of 11.5 and the resulting order

book should have following figures

70

2017-12-62.18:

2017=-12-62.18:

2017=-12-62.18:

Order Book

Buy Side Sell Side
Order ID | Size Price Price | Size | Order ID
1g2yu4 50 | 12.500000

Table A.4: Putting a sell order for full match

s

1 +tdtttest

T

Figure A.7: Automated test result for test case in Table 5.4

I3
=1
4]
S

i BHET R H

13

I3
=1
42}
S

+++++++++++ Order Book of Instrument:

Crder ID: lgZyvud

23 Side @ 1 4+t

Size 90 | Price 12.500000

e T e

Figure A.8: Actual result extracted from log file for test case in Table 5.4

S. Full match with add to book

Here we can test a full match of a order in its counter order book side and the

remaining quantity being added to the respective side. An order having size of

200 is put at a price of 11.75. Resulting orderbook can be seen as per table 5.5.

71

Order Book

Buy Side Sell Side
Order ID | Size | Price Price Size | Order ID
11.750000 | 150 | 5y9ew6

Table A.5: Putting a sell order for full match and adding remaining quantity to order

book

Figure A.9: Automated test result for test case in Table 5.5

Z017-12-02.18:27:54: +HHHH

2017-12-02.18:37:54: Ordexr ID: Sy%ewe | Size

2017-12-02.18:27:54:

Crdexr

Book of Instrument:

: 150 | Price :

23 Side : 2

11.750000

LI I e e e e e e

Figure A.10: Actual result extracted from log file for test case in Table 5.5

6. Putting a sell order with a higher priority

Here an order is placed which is a sell order. The order has a higher priority than

exisiting orders in the current order book.

72

Order Book

Buy Side Sell Side
Order ID | Size | Price Price Size | Order ID
10.250000 | 100 | 6q7ui?
11.750000 | 150 | 5y9ew6

Table A.6: Putting a sell order with a higher priority

Figure A.11: Automated test result for test case in Table 5.6

2017-12-02.18:27:54: +++++++++++ Order Book of Instrument: I3 Side A R o
2017=-12-02.18:27:54: Order ID: 6g7ui7? | Size 100 | Price
2017-12-D2.18:27:54: Order ID: S5yY%s=wé& | Size 150 | Price
2017-12-D2.18:27:54: 2 Ehe el e ol g e phe el b el e ol i S i el £ g el e b e ol phe £l g el el e sl g 2l ph £l g el o e i e e phe el g e ol S e i e e gl e

Figure A.12: Actual result extracted from log file for test case in Table 5.6

73

7. Amending the previous order (Without losing priority)

Now we amend order 6q7ui7 changing its price to 9.5

Order Book
Buy Side Sell Side
Order ID | Size | Price Price Size | Order ID
9.500000 | 100 | 6q7ui7
11.750000 | 150 | 5y9ew6

Table A.7: Order amend without losing priority

e

RS E T

Figure A.13: Automated test result for test case in Table 5.7

2017-32-02.18:27:54: +++++++++++ COrder Book of Inmstrument: 23 Side ! 2 +44+44+++4+4+++
201712021827 :54: Order ID: 6gTui7 | Size 100 | :Price : -9.500000
2017-12-02.18:27:54: Crder ID: SySewd | Size 150 | Price : 11.750000
2017-32-0Z2.18:27:54: B T I e T e e e e e e e e e e

Figure A.14: Actual result extracted from log file for test case in Table 5.7

74

8. Amending the previous order (Loosing priority)

Now the price of the same order is increased in such a way that its priority is

reduced

Order Book

Buy Side Sell Side

Order ID

Size | Price Price Size | Order ID

11.750000 | 150 | 5y9ew6

15.500000 | 100 | 6q7ui7

Table A.8: Order amend while losing priority

R R

R R s

Figure A.15: Automated test result for test case in Table 5.8

Z017=-1Z2-=02. LE-T 2

[}
&3]
[
=1

LR 1

et
£
La
=1

Z017-1Z2-0Z2.

HE=E 2

[84]
I
=1

Z2017=12-02.1

2017-12-02.1 H-1-

(4]
L
=]

+++4+4+++++++ Order Book of Imstrument: Z3 5ide @ 20 +44++++H4444
Order ID: SySew& | Size : 150 | Priece : 11.750000
Order IDP: ‘6g7ui? | Size @ 1I00 | Priece : 15.500000

s

Figure A.16: Actual result extracted from log file for test case in Table 5.8

75

9. Put a buy market order

Now a market order feature is tested and put in size of 100 which priced at 10

Order Book

Buy Side Sell Side

Order ID | Size | Price Price Size | Order ID

11.750000 | 150 | 5y9ew6

15.500000 | 100 | 6q7ui7

Table A.9: Market order with expiry

bttt

S

2017-12-62.18:27:54: +++++++++++ Order Book of Instrument: 23 5ide @ 2 ++4+++H++4+
201712021827 :54: Order IDP: 5¥8ewe | Size @ 150 | Priee @ 11.750000
2017-1Z2-02.18:27:54: Qrder ID: ‘6g7ul? | Size : 108 | Priece : 15.500000
2017-12-02.18:27:54: D D D e e D e D o

Figure A.18: Actual result extracted from log file for test case in Table 5.9

76

10. Order cancellation

Now order 6q7ui7 is canceled and following should be the outcome

Order Book

Buy Side Sell Side

Order ID | Size | Price Price Size | Order ID

11.750000 | 150 | 5y9ew6

Table A.10: Order cancellation

2 £ oL IR o o e

S

Z017-12-02.18:27:54: +++++++++++ Order Book of Imstrument: Z3 Side @ Z +++++++++++
2017-12-D2.18:27:54: Order ID: Sy%ewé | Size : 150 | Price : 11.750000
2017-12-D2.18:27:54: e o o o T o o o o o T b o o T o o o o o o o o o o B o o o o o o o

Figure A.20: Actual result extracted from log file for test case in Table 5.10

77

	1
	2
	3

