
Translation of Named Entities Between Sinhala and
Tamil for Official Government Documents

Thayaparan Mokanarangan

(178089G)

Degree of Master of Science (Research)

Department of Computer Science And Engineering

University of Moratuwa
Sri Lanka

August 2018

Translation of Named Entities Between Sinhala and
Tamil for Official Government Documents

Thayaparan Mokanarangan

(178089G)

Thesis submitted in partial fulfillment of the requirements for the
Degree of Master of Science (Research) in Computer Science and Engineering

Department of Computer Science And Engineering

University of Moratuwa
Sri Lanka

August 2018

Declaration

I, Thayaparan Mokanarangan, declare that this is my own work and this dis-
sertation does not incorporate without acknowledgement any material previously
submitted for a Degree or Diploma in any other University or institute of higher
learning and to the best of my knowledge and belief, it does not contain any
material previously published or written by another person except where the ac-
knowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to repro-
duce and distribute my dissertation, in whole or in part in print, electronic or
other medium. I retain the right to use this content in whole or part in future
works (such as articles or books).

Signed:

Date:

The above candidate has carried out research for the Masters Dissertation under
my supervision.

Name of Supervisor: Dr. Surangika Ranathunga

Signature of supervisor: Date:

Name of Supervisor: Dr. Uthayasanker Thayasivam

Signature of supervisor: Date:

i

“It was awesome, but also.. it wasn’t?”

Troy from Community

UNIVERSITY OF MORATUWA

Abstract

Faculty Of Engineering
Department of Computer Science And Engineering

Master of Science

by Thayaparan Mokanarangan
(178089G)

Analyzing existing machine translation approaches for Sinhala-Tamil official gov-
ernment documents have revealed the shortcomings when translating named en-
tities. The diverse nature of the domain coupled with the lack of resources and
morphological complexity are the key reasons for this problem. Our research fo-
cuses on translating named entities for official government documents between
Tamil and Sinhala. In this research, we focus on identifying and translating
named entities to improve the translation performance. We present a novel tag
set specific to official government documents and also propose a graph-based
semi-supervised approach that works better than state-of-the-art approaches for
low-resource settings. We employed this approach to build a large annotated cor-
pus in a cost-effective manner from a smaller amount of seed data and was able
to build an annotated corpus of over 200K words each for Tamil and Sinhala.
We also implemented a deep-learning approach for Named Entity Recognizer
that gave the best output for a completed corpus. Since the deep-learning ap-
proach was a generic solution for sequential tagging, we also employed it to build
a Part-of-Speech tagger that outperforms existing systems. The University of
Moratuwa already has a system for translating official government documents
called SiTa. Finally, we incorporated the aforementioned models to build a mod-
ule that translated named entities and integrated it to SiTa. We empirically show
that our modules improve over the baseline for Tamil → Sinhala and Sinhala →
Tamil translation tasks by upto 0.5 and 1.4 BLEU scores, respectively.

Keywords: Machine Translation. Named Entity Recognition, Graph-Based
Semi-Supervised Learning, Deep Learning, Named Entity Translation

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
mokanarangan@cse.mrt.ac.lk
mokanarangan@cse.mrt.ac.lk

Acknowledgements

I would never have been able to finish my dissertation without the guidance, sup-
port and encouragement of numerous people including my mentors, my friends,
colleagues and support from my family. At the end of my thesis I would like
to thank all those people who made this thesis possible and an unforgettable
experience for me.

First and foremost, I would like to express my sincere gratitude to my supervisors
Dr. Surangika Ranthunga and Dr. Uthayasanker Thayasivam, for the continuous
support given for the success of this research both in unseen and unconcealed
ways. This would not have been a success without your tremendous mentorship
and advice from the beginning. Your wide knowledge and logical way of thinking
have been of great source of inspiration for me. You have always extended his
helping hands in solving research problems. The in-depth discussions, scholarly
supervision and constructive suggestions received from you have broadened my
knowledge. I strongly believe that without your guidance, the present work could
have not reached this stage.

I wish to thank Prof. Gihan Dias and Prof. Sanath Jayasena for their supervision,
advice, and guidance from the very early stage of this research as well as giving
me extraordinary experiences through-out the work. This research was supported
by the Department of Official Languages and the University of Moratuwa Senate
Research Grant. I sincerely thank the colleagues from the Department of Official
Languages for the support given.

I would like to thank Ms. Fathima Farhath, Ms. Nimasha Dilshani and Ms.
Yashothara Shanmugarajah, who as good friends from my graduate studies, were
always willing to help and give their best suggestions.

Thank you!

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures viii

List of Tables ix

Abbreviations x

1 Introduction 1
1.1 Overview of Named Entity Recognition 1
1.2 Overview of Machine Translation 3
1.3 Motivation . 4
1.4 Research Objectives . 4
1.5 Contributions . 5
1.6 Articles . 5
1.7 Organization of the Thesis . 6

2 Literature Review 7
2.1 Named Entity Recognition . 8

2.1.1 Challenges in NER . 8
2.1.2 Datasets . 9

2.2 Existing Approaches for Named Entity Recognition 10
2.2.1 Rule-based Approaches . 11
2.2.2 Machine Learning Approaches 11
2.2.3 Semi-supervised Approaches 15
2.2.4 Unsupervised Approaches 16
2.2.5 Cross Lingual Approaches 17

v

Contents vi

2.2.6 Deep-Learning Approaches 18
2.2.7 Existing Approaches Used for Tamil and Sinhala NER . . 19

2.2.7.1 Tamil . 19
2.2.7.2 Sinhala . 20

2.2.8 Existing Approaches Used in Different South Asian Lan-
guages . 20

2.2.9 Features in NER . 21
2.2.9.1 Local Features 21
2.2.9.2 Global Features 22
2.2.9.3 Resources . 23

2.2.10 Available Platforms and Toolkits 23
2.2.10.1 Stanford NER 23
2.2.10.2 GATE Named Entity Recognizer 24
2.2.10.3 Natural language Toolkit (NLTK) 24

2.2.11 Evaluation Measures . 24
2.2.12 Summary . 25

2.3 Graph Based Semi-Supervised Learning (GSSL) 26
2.3.1 Graph-based Approach for Sequential Tagging 27
2.3.2 Summary . 29

2.4 Distributional Semantic Models - DSM 29
2.4.1 Pointwise Mutual Information (PMI) Vector 30
2.4.2 Word2Vec . 31
2.4.3 FastText . 31
2.4.4 Wang2Vec . 32
2.4.5 ELMo . 32
2.4.6 Summary . 33

2.5 Machine Translation . 33
2.5.1 Statistical Machine Translation - SMT 34

2.5.1.1 Moses . 35
2.5.2 Neural Machine Translation - NMT 36

2.5.2.1 Encoder-Decoder Model 37
2.5.3 Evaluation . 37

2.5.3.1 BLEU Score . 37
2.5.3.2 NIST Score . 38

2.5.4 Existing Machine Translation Systems for Tamil-to-Sinhala
Translation . 39
2.5.4.1 SiTa SMT system 41

2.5.5 Existing Approaches to Translate Named Entities 41
2.5.6 Summary . 43

3 Methodology 44
3.1 Identifying the Tag Set . 46

Contents vii

3.2 Annotated Dataset . 47
3.3 Building the Named Entity Recognizer for Tamil and Sinhala . . 49

3.3.1 Graph Based Semi-Supervised Learning 49
3.3.1.1 Representing Nodes of Graph 49
3.3.1.2 Creating Edges of the Graph 50
3.3.1.3 Label Propagation 52

3.3.2 Bi-directional LSTM CRF Sequential Tagging 52
3.3.2.1 Character Embedding 54
3.3.2.2 Predicting the Tags 56
3.3.2.3 Tuning the Hyper-parameters 57

3.4 Translating Identified Named Entities 58
3.4.1 Unsupervised Morphology Induction 59
3.4.2 Integrating to Moses . 60

4 Implementation 62
4.1 Building the Corpus . 62
4.2 Building the Named Entity Recognizer 62

4.2.1 AllenNLP Research Library 62
4.2.2 Building the Word embedding Models 64
4.2.3 Modifying the metric-learn library 65
4.2.4 Implementing Graph Based Semi-supervised Sequential Tag-

ging Algorithm . 66
4.2.5 Implementing BiLSTM CRF Tagging 67

4.3 Integrating to Moses . 67
4.3.1 SiTa System . 67

5 Experiments and Results 69
5.1 Graph Based Semi Supervised Learning 70
5.2 Bi-directional LSTM CRF Tagging 76

5.2.1 NER . 76
5.2.2 POS . 77

5.3 Integrating to Moses . 79
5.3.1 Sinhala → Tamil Translation 80
5.3.2 Tamil → Sinhala Translation 80

6 Conclusion 82

7 Future Works 84

Bibliography 104

List of Figures

1.1 An example of NER application on an example text 2

2.1 CBOW Vs Skip-gram models . 32
2.2 Neural Machine Translation . 37

3.1 Outline to build the NER . 46
3.2 Named entity tag distribution for Sinhala 48
3.3 Named entity tag distribution for Tamil 49
3.4 A bidirectional LSTM network 53
3.5 A BiLSTM-CRF model . 54
3.6 Architecture of the BiLSTM network with a CRF Classifier . . . 55
3.7 Character-based representation using convolutional neural network 56
3.8 Character-based representation using BiLSTM networks 57
3.9 Preprocessing the input data . 61

4.1 The Tagtog annotation tool . 63

5.1 English POS accuracy for GSSL Vs LSTM-CRF 74
5.2 English chunking F1-Score for GSSL Vs LSTM-CRF 75
5.3 English NER F1-Score for GSSL Vs LSTM-CRF 75

viii

List of Tables

2.1 Different approaches for NER in Indian languages 21
2.2 SMT and GIZA++ based approaches for Sinhala-Tamil Translation 40

3.1 NER Tag set . 47
3.2 Corpus Kappa scores . 48

4.1 Perplexity scores for ELMo Model 64

5.1 Comparison of different methods to represent nodes and their re-
spective accuracy for different tasks in English. A - Single Vector,
B - Dimension reduced Single Vector, C - Concatenated n-gram
vectors, D - Dimension reduced concatenated n-gram vectors. . . 72

5.2 Comparison of different methods to represent nodes and their re-
spective accuracy for Tamil and Sinhala POS tagging. A - Single
Vector, B - Dimension reduced Single Vector, C - Concatenated
n-gram vectors, D - Dimension reduced concatenated n-gram vectors. 73

5.3 Comparison of different methods to represent nodes and their re-
spective F1-scores for Tamil and Sinhala NER tagging. A - Single
Vector, B - Dimension reduced Single Vector, C - Concatenated
n-gram vectors, D - Dimension reduced concatenated n-gram vectors. 74

5.4 Comparison of different vectors and their respective accuracy for
Tamil and Sinhala NER tagging with BiLSTM CRF. A - FastText,
B - Wang2Vec, C - ELMo, D - ELMo + Wang2Vec, E - ELMo +
FastText . 76

5.5 Comparison of different vectors and their respective accuracy for
Sinhala POS tagging with BiLSTM CRF. A - FastText, B - Wang2Vec,
C - ELMo, D - ELMo + Wang2Vec, E - ELMo + FastText 77

5.6 Comparison of different vectors and their respective accuracy for
Tamil POS tagging with BiLSTM CRF 78

5.7 SMT integration experiments . 79
5.8 Sinhala→Tamil translation scores after named entity translation

integration . 80
5.9 Tamil→Sinhala translation scores after named entity translation

integration . 80

ix

Abbreviations

NLP Natural Langaguge Processing

NER Named Entity Recognition

NE Named Entities

BLEU Bi-Lingual Evaluation Understudy

MT Machine Translation

CRF Conditional Random Field

LSTM Long Short Term Memory

GSSL Graph Based Semi-Supervised Learning

CBOW Continous Bag Of Words

ME Maximum Entropy

HMM Hidden Markov Model

POS Parts Of Speech

SMT Statistical Machine Translation

NMT Neural Machine Translation

x

Chapter 1

Introduction

This thesis focuses on enhancing statistical machine translation for official gov-

ernment documents between Sinhala and Tamil by identifying and translating

Named Entities (NEs).

Our research has been divided into two main parts: named entity recognition and

translation. This chapter introduces the tasks, the motivation, research method-

ology and contributions made by this research.

1.1 Overview of Named Entity Recognition

Named Entity Recognition (NER) is the process of identifying named entities

in natural language text. Typical named entities can be classified as Person,

Organization and Location [1]. Figure 1.1 illustrates a simple example of named

entity recognition on a sample text.

Introduced with the 6th Message Understanding Conference, 1995 [2], NER has

become an integral part of many natural language processing challenges including

question answering [3, 4], information extraction [5] and opinion mining [6].

Earlier NER approaches centered on using manually coded rules and mapping

of dictionaries [7]. While giving better results for restricted domains, these ap-

proaches failed to detect complex named entities.

1

Introduction 2

Figure 1.1: An example of NER application on an example text
Source: http://imanage.com/wp-content/uploads/2014/10/NER1.png

Hence, researchers seek to solve this by employing machine learning algorithms

using large annotated corpus (a large and structured set of texts used to do statis-

tical analysis and hypothesis testing, checking occurrences or validating linguistic

rules within a specific language territory). These approaches are more robust,

efficient and effective when compared to rule-based approaches. Hidden Markov

Model (HMM) [8], Maximum Entropy (ME) [9] and Conditional Random Fields

(CRF) [10] are popular machine learning approaches. Out of these approaches

CRF has been the most successful [1].

However, recently most of machine learning has been engulfed by the performance

of deep-learning methods. Deep learning allows computational models that are

composed of multiple processing layers to learn representations of data with multi-

ple levels of abstraction [11]. The current state-of-the-art approach [12] employs

a deep learning method comprised of Bi-directional Long Short Term Memory

(LSTM) CRF and deep contextual vectors. Meanwhile researches for Sinhala and

Tamil NER have been limited to traditional sequential tagging algorithms [13–16].

Despite its performance, deep-learning methods require a large amount of anno-

tated data to produce the best results. Building an annotated corpus consumes

resources and requires expert knowledge.

In such cases, where supervised data is scarce, it has been common to employ

semi-supervised learning (SSL) techniques for many different Natural Language

Introduction 3

Processing (NLP) tasks [17, 18]. In general, graph-based semi-supervised learn-

ing (GSSL) techniques have shown better performance than other SSL tech-

niques [19]. But the key challenge on employing GSSL with regards to NER

is to build a graph that is capable of capturing the contextual information.

1.2 Overview of Machine Translation

Machine Translation is the process of translation from one language to another

with the aid of computer. Early translation techniques that focused on word-to-

word substitutions between the two languages failed to produce accurate trans-

lations.

The short comings of this approach led to Rule Based Machine Translation

(RBMT) that generates the output based on morphological, syntactic, and se-

mantic analysis of both the source and the target language [20]. But RBMT

proved to be difficult to incorporate rule interactions in big systems, ambiguity,

and idiomatic expressions.

In recent times, MT turned to the use of corpus to ensure translation of whole

phrases of text to their closest counterparts in the target language. For nearly two

decades, Statistical Machine Translation (SMT) has been the widely used method.

It generates translation based on on statistical models with parameters derived

from the analysis of bilingual and monolingual corpora [21]. But SMT systems

are domain dependent and fails to translate between language with significant

grammatical different like Romance and Dravidian languages.

The current research trend in MT is Neural Machine Translation (NMT). NMT

builds a single neural network that is trained using deep-learning techniques to

maximize the translation accuracy. The models proposed recently for neural

machine translation often belong to a family of encoder-decoders and consist of

Introduction 4

an encoder that encodes a source sentence into a set of annotation vectors from

which the decoder generates translation [22].

Despite the promises of NMT, it requires a very large parallel corpus to train.

This requirement is a setback language pairs that lack the luxury of having a

large parallel corpus. For instance, NMT [23] for Sinhala-Tamil language has

given significantly low output when compared to a SMT system [24]. The SMT

system proposed by Farhath et al. [24] called SiTa was developed by the University

of Moratuwa for translating official government documents. It employs the Moses

translation system [25] for its translation purposes.

1.3 Motivation

The current SiTa system’s performance suffers because of its inability to translate

named entities. Unlike general domain documents, official government documents

have diverse set of named entities. Analyzing SiTa had revealed its shortcomings

in translating varying person names like ùமாÁ Āç¹கா/ʈමාɣ Ȭද්ධිකා and town

locations like சëமாèýைற/සමන්තුෙə. This is because with every document there is

a new name or location to identify and translate. Though there has been research

conducted for NER in Sinhala and Tamil, they are primarily concerned with

general domain. There is no corpus available for official government documents.

Couple this with the lack of performance of the existing systems means, if used

in translation process, it would reduce the translation quality.

1.4 Research Objectives

1. Identify a named entity tag set for the domain of official government doc-

uments

Introduction 5

2. Implement a machine learning technique that performs well in low-resourced

settings and use that to annotate data, which will then be cleaned by human

annotators.

3. Apply state-of-the art deep-learning approaches for NER, once a sufficiently

large data set is created

4. Design a translation and transliteration mechanism for identified named

entities

5. Integrate the above-mentioned approaches to the existing SMT system.

1.5 Contributions

1. Identified a unique tag set specific to official government documents

2. Designed a novel graph-based sequential tagging approach that outper-

formed the state-of-the-art approaches for low-resource settings

3. Designed a deep-learning based named entity recognizer and Part-of-Speech

(POS) tagger for Tamil and Sinhala

4. Developed an unsupervised approach to identify morphological transforma-

tions and build a named entity translation module

5. Improved the translation quality of the existing SMT system

1.6 Articles

• Presented our paper “Graph based semi-supervised learning for Tamil POS

tagging” in LREC-2018 conducted at Miyazaki, Japan

– H-Index : 43

– World Rank 5th on Computational Linguistics

Introduction 6

1.7 Organization of the Thesis

This thesis shows how named entities can be identified and translated in Sinhala-

Tamil official government texts. The organization of this thesis is as follows.

• Chapter 2 discusses the literature related to identifying and translating

named entities. The summary and conclusion drawn with regard to each

aspect of our literature is also briefly explained. The methodology was

derived from these conclusions.

• Chapter 3 explains the method employed to achieve the research objective.

It details out each aspect of our research and how it pertains to the goal.

• Chapter 4 briefly shows the implementation decisions taken to realize the

methodology in code.

• Chapter 5 lists the experiments and results carried out with respect with

to the methodology and the research. An in-depth analysis derived from

each results is also listed.

• Chapter 6 concludes our research with the empirical information obtained

from the experiments.

• Chapter 7 lays out the plan for future work that could be accomplished

as an extension of this research.

Chapter 2

Literature Review

This chapter details the literature related to identify and translate named entities.

It has been divided into 5 main sections.

Section 2.1 introduces the theory and rationale behind Named Entity Recognition.

It discusses common challenges with regards to designing a NER system and also

introduces some contemporary corpus related to this research.

Section 2.2 discusses the research conducted so far related to identifying named

entities. While the research has been extensive, one of the recurring challenges

was that most of them yielded poor results in low resource settings. Hence we

branched out to find semi-supervised approaches that are proven to work well in

low resource settings.

Section 2.3 delves into a special branch of the semi-supervised approach, Graph-

based Semi Supervised (GSSL) approach. In this section, we briefly discuss dif-

ferent approaches conducted with regards to NLP tasks and sequential tagging

in particular.

One of the key factors we identified in Section 2.3 is the need to represent words

effectively in machine learning models. Section 2.4 details the existing distri-

butional semantic models proven to effectively capture syntactic and semantic

information of words.

7

Literature Review 8

Finally, in Section 2.5 we discuss the literature that pertains to Machine Trans-

lation (MT). The section lists out two of the most popular MT approaches -

Statistical Machine Translation (SMT) and Neural Machine Translation (NMT).

We also discuss existing approaches for Sinhala-Tamil translation and translating

named entities. The section then concludes with the conclusion derived regarding

MT for Sinhala-Tamil NEs.

2.1 Named Entity Recognition

Named entity recognition (NER) is the problem of locating and categorizing im-

portant nouns and proper nouns in a text [26]. NER plays a vital role in NLP

tasks. It helps in extracting information, identifying relationships between dif-

ferent information and decision making. NER has been used as a key feature for

Question Answering [3, 4], Information Extraction [27] and Opinion Mining [6].

2.1.1 Challenges in NER

Following are some of the general challenges with regards to NER.

• Generative in Nature

Day-to-day named entities grow in size. For example, when a baby is born,

if the parents keep a unique name for that baby, the name is a new addition

to the named entity set. Similar logic applies also for organization and date.

This makes the named entity Recognition task more complex [28].

• Variations of Named Entities

The same named entity can be represented using various different forms.

For example Prof. Malith Fernando can also be represented as Dr. Malith

Fernando, Dr. Fernando, Malith Fernando and A.P.J. Malith Fernando [28].

Literature Review 9

• Ambiguity Named Entity Types

There is a possibility that more than one entity type can have the same

names. For example, ”May” can represent the month, but can also represent

a person [28].

• Morphological Complexity

This is an issue that occurs with morphologically complex languages like

Tamil or Sinhala. Consider the example ேமாக»டë/ අȽලට and ேமாகனாï /

අȽලෙගන්, both represent the same person with different inflection.

• Lack of Resources

The best approaches require labeled data [10]. The higher the amount of

data, the better the performance. This again is a challenge for low resource

languages like Tamil and Sinhala. For instance, the CoNLL NER corpus [1]

for English has over 300K tokens, whereas the FIRE Corpus for Tamil only

has 80K tokens [29].

2.1.2 Datasets

This section details some of the prominent datasets used in contemporary re-

searches.

MUC-6 Corpus NER came into focus during the 6th Message Understanding

Conference, 1995 [2]. As a part of the proceedings MUC-6 corpus was built with

the following tag set:

• ENAMEX - organizations, persons, locations

• TIMEX - times (dates, times)

• NUMEX - quantities (monetary values, percentages)

Literature Review 10

CoNLL Dataset Introduced as a part of the CoNLL 2003 shared task [1], CoNLL

dataset is widely considered as a benchmark for testing new approaches. It has

a very simple tag set with 4 different tags: Person, Location, Organization and

Miscellaneous. The follow listing shows a small snippet of the corpus. Here

each columns denote the token, POS, Chunking and NER tags respectively. This

corpus consists of over 300K tokens.

1 . . .

2 Derbyshire NNP I−NP I−ORG

3 and CC I−NP O

4 Surrey NNP I−NP I−ORG

5 a l l DT O O

6 . . .

Listing 2.1: CoNLL 2003 Dataset Snippet

FIRE Corpus Designed by the Forum for Information Retrieval (FIRE) [29], this

provides tagged data for major Indian languages including Tamil, Malayalam,

Telungu and Hindi. The data is arranged in a similar manner to the CoNLL

corpus but with a different tag set. Unlike the CoNLL corpus, this has 87 different

tags including GOVERNMENT, VEG, INDIVIDUAL, NATION and PLACE. It

consists of 80K tokens.

SiTa Parallel Corpus Used by Farhath et al. [24] and Tennage et al. [23] to

design their SMT and NMT Sinhala-Tamil translation system respectively. This

is a parallel corpus housing over 25000 sentences primarily focusing on official

government documents. Its currently been used to train the SiTa system.

2.2 Existing Approaches for Named Entity Recognition

Recognizing previously unknown entities is an essential part of the NER system.

While early studies mostly relied on handcrafted rules, most recent ones employ

Literature Review 11

deep-learning approaches. The rest of this subsection details the literature related

to building NER systems.

2.2.1 Rule-based Approaches

Rule-based systems are based on manually coded rules and manually compiled

corpora. The output is produced based on matching of the rules and dictionary

entries. These systems generally consist of a set of patterns using grammatical

(e.g. part of speech), syntactic (e.g. word precedence) and orthographic features

(e.g. capitalization) in combination with dictionaries. They give better results for

restricted domains, and are capable of detecting complex entities that learning

models have difficulty with. Also, they are ideal for the languages and domains

for which there are limited linguistics resources available [7].

Appelt et al. [30]’s FASTUS was one of the earliest systems for NER that relied

on handcrafted regular expressions. Later, Grishman [31] improved upon the

approach by incorporating dictionary and Part of Speech (POS) tags.

However, these systems are less portable and robust. Furthermore, the main-

tenance of the rules costs a lot as even a slight change in the data requires an

intense manual work. These types of approaches are often domain and language

specific. Consequently, they do not necessarily adapt well to new domains and

languages [32]. Hence, researches turned to machine learning approaches that

would scale up to new data and identify hidden information between words.

2.2.2 Machine Learning Approaches

In Machine Learning based approaches, the identification problem is converted

into a classification problem and statistical classification models are used to solve

it. In this type of approach, the systems look for patterns and relationships

within the text to make a model using statistical models and machine learning

Literature Review 12

algorithms. Since these approaches function on the statistical details, they are

more domain and language independent than that of rule-based ones.

NER is a sequential tagging problem. In sequential tagging problems, the label of

a word is predominantly determined by its context. Thus, syntactic relationships

between word tokens play a major role. For example, consider the NEs “Central

Bank spokesman” and “The Central African Republic”. Here, the word ‘Central’

is used as part of both an Organization and Location, depending on the context.

Thus, without referring to the context, the exact NER tag of the word cannot be

determined.

Hence, researchers employed structured prediction algorithms that encode the

sequence information. Hidden Markov Model (HMM) was the earliest approach

used to solve NER. HMM is a graphical model, where the conditional dependence

between random variables can be expressed by a graph, that allows expressing

the conditional probability distributions based on a limited history (the Markov

property) [8].

Bikel et al. [33]’s IdentiFinder was the earliest model that attempted to solve

NER using HMM. It uses the locality of phenomena that indicates names in text.

For example, if a word is preceded by “Mr.” or “Mrs.”, then, it is bound to be a

person’s name.

Within each of the word context regions, they use the statistical bi-gram language

model for computing the likelihood of words occurring with each named entity.

This statistical model computes the likelihood of sequence of words by employing

a Markov Chain. The Viterbi algorithm [34] was used to efficiently search the

entire word space for possible named entity assignments. Bikel et al. [33] had

reported an accuracy of 94.69% and 90% for a mixed case English and mixed

case Spanish MUC-6 data.

Later, Zhou and Su [35] modified this approach by incorporating the internal

feature of the words such as capitalization, digitalization, semantic feature of

Literature Review 13

important triggers and gazetteers. They had reported an accuracy increase of 2%

and 4% than Bikel et al. [33]’s approach.

Though Zhou and Su [35] used a wide variety of features, their model performed

poorly for the CoNLL 2002 data. This was largely due to the machine learning

method rather than the feature set [9]. One of the main challenges with HMM is

that it fails to incorporate a diverse set of overlapping features [9]. On the other

hand, the Maximum Entropy (ME) model handles a diverse set of overlapping

features easily.

Unlike HMM, ME models discriminate. It directly learns the weight of features

for classification based on the training data. Objective of the ME model is to

generalize as much as possible for training data by maximizing the entropy for

data. Curran and Clark [9] employed the maximum entropy model to design a

language independent named entity tagger. They had reported an F1-Score of

84.9 for CoNLL-2003 English and 68.4 for CoNLL-2003 German data.

But ME models have a weakness called the label bias problem. It fails to identify

the global context of transition properties [36]. In some cases the role of the

second token will be lost in distinguishing the entity type. To counter this problem

researchers used Conditional Random Fields (CRF).

Introduced by Lafferty et al. [36] as a statistical modeling tool for pattern recog-

nition and machine learning using structured prediction [10], until recently CRF

are considered to be the most successful classification for NER [8]. The concept

of CRF is based on ME. The key difference is that while ME models use per-state

exponential models, CRF uses a single exponential model for an entire label se-

quence label [37]. This allows CRF to classify the whole sequence at once unlike

ME, thus helping to sidestep the label bias problem. Implemented by Stanford

University, Stanford NER is one of the widely used CRF based NER Tagger (See

Section 2.2.10.1).

Literature Review 14

While all the above-mentioned approaches are based on structured prediction al-

gorithms, McNamee and Mayfield [38] proposed Support Vector Machines (SVM)

as a potential candidate for NER. In contrast to the above-mentioned approaches,

SVM are incapable of directly capturing sequence. To overcome this issue, Mc-

Namee and Mayfield [38] came up with 258 different features that would poten-

tially capture the sequential information. Following are some of the features:

• Token length equal to 0-9

• Token length between 10 and 15, or greater than 15

• Whether the token was preceded by comma, a full stop, a question mark,

an exclamation mark or other punctuation

• Whether the token is succeeded by comma, a full stop, a question mark, an

exclamation mark or other punctuation

For CoNLL 2003 [1] they had reported a F1-Score of 57.8 and 59.2 for Spanish and

Dutch datasets respectively. Thus, gaining parity with contemporary machine

learning approaches.

Each approach has its own strengths. Researchers tried to combine the strength

of every approach and create a hybrid approach called the Vote based classifier

ensemble technique [39]. The key idea behind the classifier ensemble technique is

that this is often much more precise than other individual classifiers that make

them up. Generalization accuracy of ensemble is high. It mainly depends on

the diversity of each individual classifier as well as on their individual perfor-

mance [39]. Hence, appropriate classifier selection for constructing an ensemble

system remains a difficult problem. In addition, not all classifiers are good to de-

tect all types of output classes. For example, some classifiers are more precise at

detecting organization names whereas some are more precise at detecting person

names. Thus, in a voted system, a particular classifier should only be allowed to

vote for that output class for which it performs well.

Literature Review 15

Saha and Ekbal [39] proposed a model where there was one classifier for each kind

of named entity. For instance, there were different classifiers for person, organi-

zation, and location. The resulting system was an ensemble system of classifiers.

This approach had yielded good results for Bengali, Hindi and Telungu [39].

In an ensemble system, it is necessary to find out either the set of classes for

which a classifier is most suitable to vote or to search for the appropriate weights

of votes for all the classes in each classifier.

2.2.3 Semi-supervised Approaches

When labeled data is scarce, its common to employ semi-supervised approaches [40,

41]. Semi-supervised algorithms used both labeled and unlabeled corpus during

classification.

Carreras et al. [42] proposed one of the earliest semi-supervised approaches that

used AdaBoost [43] with confidence rated predictions as the learning algorithm

for the classifier. Three binary classifiers corresponded to Beginning (B), Inside

(I) and Outside (O) of NE Tag. Orthographic and semantic features were used

over boosting algorithm combining several fixed-depth decision trees. Although

simple in nature, the approach relied heavily on hand-crafted language features.

On the other hand, Graph based Semi-Supervised Learning (GSSL) is a branch

of semi-supervised learning that uses graphs to solve NLP problems. Researchers

have shown that these methods are generally more effective than traditional semi-

supervised approaches [44]. Talukdar and Pereira [41] had introduced a language

independent (GSSL) approach for NER that uses WordNet to build graphs and

subsequently employ label propagation algorithms for classification. This ap-

proach only considers the surface form of words and is incapable of capturing the

local context information necessary for a sequential tagging problem like NER.

GSSL and GSSL for sequential tagging are discussed in detail at Section 2.3.

Literature Review 16

2.2.4 Unsupervised Approaches

In contrast to supervised and semi-supervised approaches, unsupervised approaches

do not require any labeled data. The general approach in this learning is clus-

tering. For example, these approaches tend to gather NEs from clustered groups

based on the similarity of context. These methods typically rely on lexical re-

sources (e.g. WordNet), lexical patterns and statistics computed on a large cor-

pus [45].

Alfonseca and Manandhar [46] proposed an approach based on WordNet. This

approach assigns a topic to each WorNet synset by listing words that frequently

co-occur with it in the corpus. Then, based on the input word, the word context

was compared to the type signatures and clustered under the same label.

Alfonseca and Manandhar [46]’s approach requires WordNet, which is a resource

that is still lacking for many languages. Meanwhile, Shinyama and Sekine [47]

used the observation that NEs often appeared synchronously in news articles

when compared to the common nouns. They exploited this approach to cluster

the NEs in an unsupervised manner.

Based on the same correlation observation, Etzioni et al. [48] proposed an ex-

perimental system called KNOWITALL. This approach uses Pointwise Mutual

Information and Information Retrieval (PMI-IR) to assess the correlation be-

tween words and classify them. Though this approach has been promising, the

precision of this system is as low as 0.57 [48].

The inability to define a custom tag set and the general lack of performance have

been the major setbacks with unsupervised methods.

Literature Review 17

2.2.5 Cross Lingual Approaches

Cross lingual approaches attempt to transfer the learning from one language to

the another. In this case, it transfers from a high-resource language like English to

a low-resource language like Catalan or Galician so as to increase the accuracy of

the latter system. This cross lingual approach is also aided with the vast amount

of parallel data that can be extracted for free from Wikipedia.

Cotterell and Duh [49] proposed a solution, given a low-resource target language,

they additionally offer large amounts of annotated data in languages that are

genetically related to the target language. Using this approach, they have shown

to increase accuracy for Indo-European (Catalan, Galician) and Austronesian

(Tagalog, Cebuano) languages.

This approach was an extension of work done by Pan et al. [50], where the authors

had carried out experiments for 282 languages. Provided a document in any of

the given languages in Wikipedia, their framework was able to identify name

mentions, assign a coarse or fine-grained type to each mention and link it to an

English knowledge base. This approach performed well for Wikipedia text but

under performed for non-Wikipedia text.

Both of these approaches are based on building a knowledge base and then trans-

ferring the knowledge. In contrast, Yang et al. [51] built a Long Short-Term

memory based CRF system that encodes both character-level and word-level in-

formation across languages. They then used the leverage of training with lan-

guages that share same character-level morphology to increase the accuracy.

All these approaches have performed well within genetically similar language fam-

ilies but fail across different ones. For instance, Pan et al. [50]’s cross lingual ap-

proach yielded a F1-Score of 93.9 for Spanish but only yielded a F1-Score of 77.0

for Tamil. This under performance also aggravated by the questionable quality

of the parallel text available in Wikipedia.

Literature Review 18

2.2.6 Deep-Learning Approaches

In recent years, deep-learning methods have proven to be more effective than tra-

ditional machine learning in various branches of Computer Science [11, 12, 52].

Deep-learning allows computational models that are composed of multiple pro-

cessing layers to learn representations of data with multiple levels of abstrac-

tion [11]. It has improved the results in speech recognition, object detection,

machine translation and other complex machine learning related problems.

One of the first approaches with deep-learning for sequential tagging was pro-

posed by Huang et al. [52]. They had proposed a bi-directional Long Short Term

Memory (LSTM) with a CRF layer. In contrast to traditional machine learning

algorithms, LSTM are capable of storing long-term dependencies thus connecting

with previous learned information to the current task. This property has helped

to effectively capture the long-term context of each word and yield state-of-the-art

results for POS, Chunking and NER.

Later Lample et al. [53] extended this research by proposing a Convolutional

Neural Network (CNN) to encode the characters and capture the morphological

information. Similarly, Ma and Hovy [54] proposed an LSTM network to encode

the characters instead of a CNN. Both of these approaches increased the F1-Score

points by 2 for English [53, 54].

With a lot of hyper parameters to tune, Reimers and Gurevych [55] ran bench-

mark tests to identify which of them were optimal. Their research revealed that

using CNN or LSTM for character encoding had little over bearing to the system

performance. In contrast, usage of distributional semantic vectors like (See Sec-

tion 2.4) GLoVe [56], FastText [57] or Word2Vec [58] produced varying results for

different tasks.

Recently, Peters et al. [59] had proposed a deep contextual vector representation

called ELMo (See Section 2.4.5). Unlike other existing neural word embedding,

Literature Review 19

this approach takes the context of word into account while producing the vector.

Plugging this vector to the bi-directional LSTM CRF has produced the best

results so far with 91.93 % for CoNLL 2003 NER task and 96.37% for CoNLL

2000 Chunking task. But, when they sampled 1% of the CoNLL 2003 data set,

their performance dropped down to 71.01%.

2.2.7 Existing Approaches Used for Tamil and Sinhala NER

All of the above mentioned approaches centered on English or other Latin lan-

guages like German and Spanish. Both Sinhala and Tamil pose different chal-

lenges when compared to these languages. The rest of the section details the

research carried out for these languages.

2.2.7.1 Tamil

All the approaches used for Tamil had employed sequential tagging algorithms.

Vijayakrishna and Sobha [16] and Malarkodi et al. [60] had employed CRF, mean-

while Theivendiram et al. [13] had used Margin Infused Relaxation Algorithm

(MIRA). The differentiating factors are the domain, tag set and features used.

Vijayakrishna and Sobha [16] and Malarkodi et al. [60] had used a hierarchical tag

set of 106 different tags. While the previous one focused specifically on tourism

domain, the latter was a general tagger. Vijayakrishna and Sobha [16] had used

roots of words, Parts of Speech tags and word patterns as their features. On the

other hand, Malarkodi et al. [60] had used morphological and POS features.

Theivendiram et al. [13] used a simpler tag set consisting of Individual, Place,

Organization, Time and Count. In addition to the features proposed by Malarkodi

et al. [60], they had also used suffix as features. They had reported the best

F1-Score of 80.38 for Forum for Information Retrieval (FIRE) [29] NER Tamil

corpus.

Literature Review 20

2.2.7.2 Sinhala

Similar to Tamil, all the research conducted with regard to NER centered on

sequential tagging algorithms. Dahanayaka and Weerasinghe [15] and Manamini

et al. [14] had experimented with CRF and ME for different feature, tag and

corpus set.

Dahanayaka and Weerasinghe [15]’s feature set includes the word suffix and bi-

gram features. They had built a binary classification corpus with 75K words

and reported an F1-Score of 68.04. Manamini et al. [14] on the other hand had

employed a richer feature set including length of word, frequency of word, POS

tags and gazetteers. They had built a corpus of over 110K tokens with Location,

Organization and Person as their tag set to report a F1-Score of 78.

2.2.8 Existing Approaches Used in Different South Asian Languages

South Asian languages also face the same challenges faced by Sinhala and Tamil.

Table 2.1 details different techniques and features used with NER for some pop-

ular South Asian languages.

Most of the research conducted, especially with regards to Tamil and Sinhala,

have used different tag sets and the corpus used with these approaches are not

also publicly available. This makes it hard to come to a conclusion on which

feature set works the best. But the advantage of CRF over other machine learning

algorithms is evident. As noted by Dahanayaka and Weerasinghe [15] ambiguities

with words, free word order, agglutintative nature and lack of resources are some

of the common problems faced when designing NER for Sinhala and Tamil.

Literature Review 21

Implementation Languages Method Features
Li and McCallum [61] Hindi CRF Word text (prefix, suffix), gazetteer,

Features at the current, previous and
next sequence positions

Saha et al. [62] Hindi ME Statistical linguistic feature set,
gazetteer, context patterns

Patel et al. [63] Hindi,
Marathi

Inductive
Logic Pro-
gramming(ILP)

Manually extracted rules from tagged
corpus

Saha and Ekbal [39] Bengali,
Hindi,
Telungu

ME, CRF and
SVM (Weighted
ensemble model)

Word text, context information

Gali et al. [64] Bengali,
Hindi,
Telungu,
Oriya

CRF Language specific heuristics

Nayan et al. [65] Hindi Rule Based Matching similar phonetic with differ-
ent languages

Table 2.1: Different approaches for NER in Indian languages

2.2.9 Features in NER

Various features have been used for NER. Based on the context of the features,

they are categorized as local or global. If only a small neighborhood is consid-

ered, it will be categorized as local, whereas if the whole document or corpus is

considered, then it is categorized as global features [32]. In addition to these local

and global features, resources have also been used. The rest of the section details

some of the common features and resources used for NER.

2.2.9.1 Local Features

Orthographic features : They are based on the appearance of the word, which

mainly focusing on the characteristics of the characters that make the word (E.g.

Begins with upper case, mixed cases, all in upper case, word with mixed digits).

This is a simple and language independent feature but not effective for many

languages where capitalization is not applicable.

Literature Review 22

Affixes : The begin pattern or ending pattern of the word is considered. This

feature is also language independent, but the pattern of the prefix or suffix has

to be selected with careful consideration of the language and domain.

Word : The characteristic of the word in multiple instances can be considered

as another feature (e.g. the capitalization of the first letter of a word at the

beginning of the sentence as well as in the middle).

N-grams : Two types of N-grams are used in NER. They are character N-gram

and word N-gram. Character N-grams capture the inner structure of the word.

Affix can be considered as a special case of character N-gram. Word N-gram are

used to identify the word sequence of NEs.

Part of speech and morphology : Part of speech helps to identify the nouns

and adjectives that are most likely to be NE candidates and tags like verbs and

prepositions that are less likely to be the candidate. Morphology helps to detect

the constructive words that in turn can help to improve the detection of NEs.

Patterns : Pattern is a string of category characters. Rule-based systems are

mostly pattern based. In machine learning, patterns can be used as a feature by

using some automatic pattern extracting mechanisms.

Word Embedding : Using word embedding models with machine learning ap-

proaches has yielded the state-of-the-art results for NER [12]. Their ability to

capture syntactic and semantic information is discussed in detail at Section 2.4.

2.2.9.2 Global Features

Previous appearance : If a text is marked as NE previously, then another

instance of the same text has the most likelihood to be a NE. This is mostly

used in the classification in defining the class to which it belongs to, than in

recognition.

Literature Review 23

Meta Information : Meta information can be used directly to retrieve NEs,

such as mail headers. But these features are heavily domain dependent [32, 45].

2.2.9.3 Resources

Gazetteers : Gazetteers are a list of NEs. For a word to be a candidate, it should

exactly match with an element existing within the list. But some normalization

procedures (i.e. stemming, lemmatization) may be required before matching.

Trigger Words : These are a list of words that are not NEs but they are often

found in the neighborhoods of the NEs. E.g. the word ‘Honorable’ can trigger

a Person NE. These rules either can either be handcrafted or learned through a

corpus.

2.2.10 Available Platforms and Toolkits

Software reuse helps to efficiently circumvent pre-existing trivial challenges like

reading data sets, setting up configuration and defining features. It also helps in

organizing the implementation. In that aspect, following are some famous toolkits

and platforms available for NER.

2.2.10.1 Stanford NER

Stanford NER [66] is a Java Implementation of CRF based tagger, implemented

by Stanford University. This is licensed under GNU General Public License.

The pre-existing model for English is designed to identify Person, Location and

Organization. Following are some of the features used.

Literature Review 24

• Word Features: Current word, previous word, next word, left three words,

and all words within a window

• Orthographic features: John → Xxxx

• Prefixes and Suffixes: Brown → < B,< Br,< Br,own >,wn >, n >

2.2.10.2 GATE Named Entity Recognizer

Gate [67] is a project of the University of Sheffield. Unlike Stanford NER, this

project supports many tasks related to NLP. Gate provides the infrastructure for

developing and deploying applications for Natural Language Processing. It can

identify Date, Location, Money, Organization, Percentage, Person, and Time.

2.2.10.3 Natural language Toolkit (NLTK)

This toolkit contains features that are needed for natural language processing

including named entity recognition. It is purely based on Python and there are

many corpus available for the public usage. 90% of the corpus is for the English

language and 10% of the remaining corpus is for other languages [68]. This toolkit

has many features including concordance (mostly occurring pair words), tagged

corpus and the techniques to extract the information from corpus and conditional

frequency distributions of corpus. These types of features are very helpful for the

development of a proper NER.

2.2.11 Evaluation Measures

For the the first named entity recognition system in MUC-6 [69], both the pre-

cision and recall were reported as outputs. Here, precision is the percentage of

correctly named entities found by the system. Recall is the percentage of named

Literature Review 25

entities in the corpus that have been extracted by the system. The entity is

considered as correct only if it has the exact same span and type.

But since the CoNLL 2003 Shared Task [1], F1-measure has been the evaluation

benchmark for recent researches [12, 52]. The performance of the system was

measured with Fβ=1 rate as shown in Equation 2.1. In order to benchmark our

results with contemporary researches, we have adopted the F1-measure as the

evaluation measure for our NER.

Fβ =
(β2 + 1) ∗ precision ∗ recall

β2 ∗ precision+ recall
(2.1)

2.2.12 Summary

Relevant literature has revealed that the deep-learning approach of bi directional

LSTM sequential tagging with character embedding [12] to be the ideal candidate

for building a NER. Its language and task independent approach coupled with

the high output makes it a viable candidate for other languages. This approach

can also be extended to other sequential tagging tasks like POS and Chunking.

The only hindrance in this approach is that it requires a high amount of data to

perform optimally.

Either cross lingual or semi-supervised approaches can solve the low resource

problem. However, cross lingual approaches require high-resource languages from

the same language family. There is no high-resource language available from

the Indo-Aryan or Dravidian language family to which Sinhala and Tamil belong

respectively. Hence, the natural candidate be a semi-supervised approach.

As discussed, even within semi-supervised approaches, GSSL has proven to be

more effective and simple to design. The next section details the literature with

regards to GSSL with NLP.

Literature Review 26

2.3 Graph Based Semi-Supervised Learning (GSSL)

Graph theory and Natural Language Processing are well-studied disciplines, but

commonly perceived as distinct with different algorithms and applications [70].

But recent research has shown that these disciplines are connected and graph-

theoretical approaches can be employed to find efficient solutions for NLP prob-

lems. In many NLP problems, entities are connected by a range of relations

in many NLP problems and a graph is a natural way to capture the relation-

ship between the entities. GSSL has been used in word sense disambiguation,

entity disambiguation, thesaurus construction, textual entailment and semantic

classification.

GSSL builds graphs connecting labeled and unlabeled data points, and perform

classification by propagating the labels. The graph is constructed to reflect our

prior knowledge about the domain. The intuition is that similar data points have

similar labels. We let the hidden/observed labels be random variables on the

nodes of this graph. Labels are injected to unlabeled nodes from labeled nodes.

Graphs provide a uniform representation for heterogeneous data and are easily

parallelizable [71].

One of the challenges of a graph-based approach is building the graph that reflects

the relationship between entities. Depending on the task, the nodes and edges

may represent a variety of language related units and links. Different NLP tasks

have approached this challenge in different ways.

For example, consider text normalization in social media languages. The social

media language is constantly evolving with new phonetic substitutions and slang

words. Text normalization helps increase the performance of processes that rely

on these data, like machine translation. Hassan and Menezes [72] had proposed

a method that propagated the correct word forms to alternative spellings. The

graph for this approach was built from social media text extracted and a large

Literature Review 27

clean corpus where each nodes are either denoted by correct word forms or slangs.

Here the correct words are connected to the unlabeled noise words. Label prop-

agation was then employed to identify the correct versions of unlabeled nodes.

Another example is text summarization, where unlike the previous example, just

denoting each nodes by words is not appropriate. We will have to represent

sentences or phrases with each node. Zhu et al. [73] constructed a graph of

sentences linked by edges whose weight combines the term similarity and objective

orientation similarity. In this approach, a set of leaders is iteratively extracted

from a graph communities of a sentence. After generating the community leaders

using link propagation, they are selected to generate the summary.

Taking it to the next level, consider the challenge of discourse identification.

Discourse is not merely based on sentences but also on the context of the conver-

sation. Hence representing each node with sentences will not be enough. Elsner

and Charniak [74] predicted the probabilities for pair of utterance as belonging

to the same conversation thread or not based on lexical, timing and discourse-

based features. They then constructed a graph with each node representing the

utterances and the edges representing the probability score between the nodes.

These examples depict how different challenges have attempted different graph

building methods. As stated earlier, named entity recognition is a sequential

tagging approach, so it is paramount to build a graph that is capable of captur-

ing context information. The following section details the research carried with

regards to graph based approaches for sequential tagging.

2.3.1 Graph-based Approach for Sequential Tagging

Early work on using GSSL for sequential tagging problems relied on word-based

graph representations. Talukdar and Pereira [41] had constructed a word graph

using WordNet to perform NER. In this approach, vertices are noted as surface-

level word forms and each relationship in WordNet is represented as an edge.

Literature Review 28

Although simple and straightforward, this approach fails to capture the syntactic

information essential for sequential classification tasks.

In contrast, Subramanya et al. [40] represented each vertex using a vector of point-

wise mutual information (PMI) values, computed using the n-gram and each of

the features that occur with tokens of that n-gram. The cosine distance between

these PMI vectors of a pair of vertices are used as edge weights between those

vertices. These PMI vectors are capable of capturing local context information.

However, they note that the vectors used in this approach are sparse and high

dimensional.

Extending on Subramanya et al. [40]’s work, Das and Petrov [75] designed un-

supervised POS taggers for languages that have no labeled training data. They

constructed a graph based on the same PMI features introduced by Subramanya

et al. [40], and used graph-based label propagation for cross-lingual knowledge

transfer. This solution was based on the observation that despite the language

differences, words in different languages share similar relationships in local con-

text.

In their research on graph-based posterior regularization for semi-supervised struc-

tured prediction, He et al. [76] claimed that using Subramanya et al. [40]’s features

to build graphs leads to the unrelated matching of trigrams to match. Instead,

they proposed a different set of features to build PMI-based graphs. However,

this also suffers from sparsity.

Recently, Demirel [77] had proposed an approach to solve POS tagging where

every word in a corpus is connected to a graph and each node is denoted by a word-

embedding vector. They capture the word ordering information by connecting

each word to the next and previous word in the corpus. This graph is then directly

fed into a neural network model called graph convolutional network (GCN) for

classification.

Literature Review 29

2.3.2 Summary

The literature of GSSL has revealed to us that though it has been successfully

used extensively in other natural language challenges, the approaches relative to

sequential tagging has been few and far. One of the key challenges with using

graphs for sequential tagging is to capture the local context of words. While

different researchers have tried with different approaches, we believe using distri-

butional semantic models will yield a better performance. The following section

discusses the possible semantic models that can be used.

2.4 Distributional Semantic Models - DSM

Due to its efficiency and simplicity, Distributional Semantic Models (DSM) have

become a fundamental part of natural language processing [12]. DSM are the

process of representing words as vectors.

One of the simplest models to represent a word as vector is one hot vector repre-

sentation. In this representation, if the size of vocabulary is denoted by |V | then

the word represented will have a dimension of |V | where only the index of the

word is active and the rest is set to zero.

For example:

Cat : [0000.........1....00]

Dog : [0000.......1......00]

Though simple and easy to implement, there is no correlation between two words

and a large vocabulary leading to high sparsity. Distributed semantic models help

solve the sparsity problem and captures the semantic and syntactic information

that is essential for language processing tasks.

DSM can be divided into two categories [78]:

Literature Review 30

1. Count Models - Traditional models like Positive Pointwise mutual informa-

tion and Local Mutual Information [79] that use co-occurrence counts to

create vector models

2. Predict Models - Neural language models like Word2Vec [80], FastText [57]

that predict the context based on the word

The following section describes some of the prominent distributional semantic

models.

2.4.1 Pointwise Mutual Information (PMI) Vector

The traditional way to represent words by vectors is to build a high dimensional

sparse matrix M , where each row is represented by a word w in the vocabulary,

and each column is a potential context c. Each matrix cell, Mij shows the asso-

ciation between word, wi and context, cj [81]. Introduced by Church and Hanks

[82], pointwise mutual information (PMI) is a way of measuring the association.

Equation 2.2 defines the association between w and c.

PMI(w, c) = log (w, c).|D|
(w).(c)

(2.2)

In this equation:

• D is the number of total word-context pairs

• (w, c) is the number of occurrences both the context and word has appeared

together

• (w) is the total number of times that word has occurred

• (c) is the total number of times the context has appeared

Literature Review 31

For word context pairs that will never co-occur, PMI value would be −∞. To

tackle this issue positive pointwise mutual information (PPMI) is used where 0

replaces all negative values. Equation 2.3 shows how PPMI is calculated.

PPMI(w, c) = max(PMI(w, c), 0) (2.3)

The main drawback of this approach is the sparsity of vectors. With increasing

corpus size, the vector size continues to increase.

2.4.2 Word2Vec

Introduced by Mikolov et al. [83], Word2Vec is one of the most popular choices for

pretraining projection matrix W ∈ Rd×|V | where d is the embedding dimension

with vocabulary, V [84]. As illustrated in Figure 2.1 [85], two models were defined

- Continuous Bag of Words (CBOW) and skip gram. The objective of the skip-

gram model is to maximize the likelihood of the prediction of contextual words

given for the center word. Meanwhile CBOW predicts the center word based on

the context words.

Out of the two models, research has revealed that skip-gram models are found to

capture semantic information effectively than CBOW [55].

2.4.3 FastText

Proposed by Bojanowski et al. [86], FastText is another version continuous word

representation trained on large unlabeled corpus. Similar to Word2Vec, this ap-

proach also proposed skip-gram and CBOW models. But in contrast to Word2Vec,

FastText relies on subword information where the vector representation is repre-

sented as the sum of character n-grams. The goal of this approach is not only to

Literature Review 32

Figure 2.1: CBOW Vs Skip-gram models
Source: https://raw.githubusercontent.com/rohan-varma/paper-

analysis/master/word2vec-papers/models.png

capture the word context but also the morphological information present in each

word.

2.4.4 Wang2Vec

Another simple modification of Word2Vec, Wang2Vec [84] generates models that

are more suited towards syntax related problems. While the original Word2Vec

model is insensitive to word order, Wang2Vec captures them to induce syntax-

sensitive word embedding. This has proven to show improvements in Part-Of-

Speech (POS) tagging and dependency parsing [84].

2.4.5 ELMo

Recently introduced by Peters et al. [59], the ELMo model is a very powerful

model that is capable of capturing the past and future contexts of words. Unlike

other models, this generates different vectors for the same word depending on the

Literature Review 33

context. Incorporating this for the sequential tagging problem has produced the

state-of-the-art results for NER and Chunking in English [59].

2.4.6 Summary

Baroni et al. [78]’s research has claimed that neural predict models better cap-

ture semantic information when compared to predict models. Levy et al. [81]

have claimed that with proper pre-processing and hyper parameters, there are

no discerning advantages between them. But recently Mikolov et al. [87] have

claimed that neural language based models such as FastText yields a higher gain

than statistical based model like GloVe.

Though there are contrasting claims with regards to count and predict models,

it is generally agreed that count models are high in sparsity. Thus, rendering it

hard to use with a high amount of data.

Continuous vector models capture syntactic and semantic information that can

be exploited with the deep learning and graph based approaches. For instance,

with these approaches, all the person names will be clustered in a separate space.

We can exploit this aspect in our research to build a better sequential tagging

model.

2.5 Machine Translation

The final phase of our research is to translate the identified words and increase the

performance of the existing translation system. This section briefly introduces two

main translation approaches: Statistical Machine Translation (SMT) and Neural

Machine Translation (NMT). It also details existing translation approaches with

regard to Sinhala-Tamil and named entities.

Literature Review 34

2.5.1 Statistical Machine Translation - SMT

The first task when building a machine translation system is to collect pairs of

source sentences and their corresponding translations. (Xn, Yn) will be used to

represent a pair of source and corresponding translation, respectively. D is the

data set with N pairs. With the training data, D, in hand, it is possible to score

a model by looking at how well the model works on the testing data. The score,

which is called the log-likelihood of the model, is the average of the log-likelihood

of the model on each pair of sentences. With the probabilistic interpretation of

the machine translation model, the log- likelihood of the model on each pair is

simply how high a log-probability the model assigns to the pair. θ is the set of

parameters that defines the model.

The overall score of the model on the training data is defined by Equation 2.4.

L(θ,D) =
∑

logp(
yn

(xn, θ)
) (2.4)

The aim is to ensure high score of log-likelihood, L, if the score is low it means

that the model is wasting its probability mass on wrong translations. Hence, it is

paramount to find a configuration of a model that maximizes the scoring. This

approach is called maximum likelihood estimator. The core of Statistical Machine

Translation (SMT) is a log-linear model, where the logarithm of the true p(y|x)

is approximated with a linear combination of many features. A large part of the

research comes down to finding a good set of feature functions.

SMT automatically maps sentences in one human language into another. The

translation model can be formulated as shown in Equation 2.5 [88] where the

goal is to find the most likely target sequence, t∗, for some source sequence, s.

Here, s stands for the source language and t stands for the target language.

Literature Review 35

t∗ = argmaxtP (s|t)P (t) (2.5)

This approach encompasses three main aspects:

• Translation Model (P (s|t)): Specifies the set of possible probabilities for

some target sequence

• Language Model (P (t)): Models the fluency of the proposed target se-

quence.

• Argmax operation: Searching through the word space for possible target

translations. This is called decoding.

The SMT system uses a log-linear model as shown in Equation 2.6 [89].

e∗ = argmaxe(
∑
i

fi(e, f)λi) (2.6)

Here feature functions, fi(e, f), captures the aspect of translation and each of

them has a weight of λi. The weights are scaling factors that are adjusted with

respect to loss functions, which evaluates the translation quality. Typically, this

function is calculated in terms of the BLEU score (refer Section 2.5.3.1) .

2.5.1.1 Moses

Moses is a statistical machine translation system that allows to automatically

train translation models for any language pair using a collection of translated

texts (parallel corpus) [25]. Once a model is trained, an efficient search algorithm

quickly finds the highest probability translation among the exponential number

of choices.

Literature Review 36

Features

1. Offers phrase-based and tree-based translations

2. Offers factored translation models, which enable the integration of linguistic

and other information at word level.

3. Moses allows the decoding of confusion networks and word lattices enabling

integration with ambiguous upstream tools like speech recognizers or mor-

phological analyzers

The translation model is trained with a parallel corpus and language model. The

language model in turn is typically trained on corpus akin to the domain of the

translation task.

2.5.2 Neural Machine Translation - NMT

Neural machine translation does not rely on pre-designed feature functions. The

goal of NMT is to design a fully trainable model of which every component is tuned

based on training corpora to maximize its translation performance. Figure 2.2

shows the high-level architecture diagram of NMT.

Given a source sequence X = {x1, x2, x3, x4...xT} of word indices, the NMT model

computes the conditional probability of Y = {y1, y2, y3...yT′}. While traditional

phrase based translation systems use a pipeline of sub components tuned sepa-

rately, NMT builds and trains a single, large neural network that reads a sentence

and outputs a correct translation [22]. Unlike SMT, NMT learns directly, in an

end-to-end fashion [90].

Literature Review 37

Figure 2.2: Neural Machine Translation
Source: http://opennmt.github.io/simple-attn.png

2.5.2.1 Encoder-Decoder Model

The source sentence is first encoded into a fixed-length vector by an encoder

neural network. Then the translation is derived from the encoded vector using a

decoder neural network. This is the encoder-decoder model, which encompasses

the decoder and encoder for a language pair jointly trained to maximize the

probability of a correct translation [22]. The key aspect is of this model is that

this can work with varying length of parallel text because of its ability to encode

the text into a fixed-length vector.

2.5.3 Evaluation

2.5.3.1 BLEU Score

BLEU (bilingual evaluation understudy) is an algorithm for evaluating the qual-

ity of text that has been machine-translated from one natural language to an-

other [91]. Quality is the correspondence between a machine’s output and that

of a human: “the closer a machine translation is to a professional human trans-

lation, the better it is”– this is the central idea behind BLEU. BLEU was one

Literature Review 38

of the first metrics to claim a high correlation with human judgments of quality,

and remains one of the most popular automated and inexpensive metrics.

Scores are calculated for individual translated segments—generally sentences—by

comparing them with a set of good quality reference translations. Those scores

are then averaged over the whole corpus to reach an estimate of the translation’s

overall quality. Intelligibility or grammatical correctness is not considered.

BLEU is designed to approximate human judgment at a corpus level, and per-

forms badly if used to evaluate the quality of individual sentences. BLEU’s output

is always a number between 0 and 100. This value indicates how similar the can-

didate text is to the reference text, with values closer to 100 representing more

similar texts. Few human translations will attain a score of 1, since this would

indicate that the candidate is identical to one of the reference translations. For

this reason, it is not necessary to attain a score of 1 as there are more oppor-

tunities to match and adding additional reference translations will increase the

BLEU score.

BLEU has frequently been reported as correlating well with human judgment,

and remains a benchmark for the assessment of any new evaluation metric [92].

There are however many criticisms that have been voiced. It has been noted

that although in principle it is capable of evaluating translations of any language,

BLEU cannot in its present form, deal with languages lacking word boundaries.

2.5.3.2 NIST Score

The NIST metric [93] is another method for evaluating the quality of the trans-

lated text. It is based on BLEU score with some alterations. Where BLEU

simply calculates n-gram precision adding equal weight to each one, NIST also

calculates how informative a n-gram is. When a correct n-gram is found, the

rarer that n-gram is, the more weight it will be given.

Literature Review 39

NIST also differs from BLEU in its calculation of the brevity penalty insofar as

small variations in translation length do not impact the overall score as much.

NIST metric uses a heavier weight for rare words thus leading to results that are

hard to interpret for low-resource languages.

2.5.4 Existing Machine Translation Systems for Tamil-to-Sinhala Trans-

lation

Similar to NER, the key challenge for MT in Sinhala and Tamil is the lack of re-

sources. Most of the approaches barring one exception by Tennage et al. [23] have

used Moses SMT system in combination with GIZA++ translation model [94].

Each research has been attempted with different language models and approaches.

Table 2.2 details these SMT approaches.

Implementation
Language

Model
Approach

BLEU Score

Tam-Sin Sin-Tam

Weerasinghe

[95]

CMU-

Cambridge

Toolkit [96]

4064 manually aligned sentences 0.0618 0.1362

Sripirakas

et al. [97]

SRILM [98] 5697 parallelly aligned sentences

constricted to Parliament order

papers obtained from

UCSC-LTRL [99]. Built the

Sinhala and Tamil language models

with 6566 and 75051 sentences

respectively

0.4277 0.5599

Literature Review 40

Pushpananda

et al. [100]

SRILM [98] 25500 sentences parallelly aligned

sentences. Built the Sinhala and

Tamil language models with

407,578 and 850,000 sentences

respectively

10 13

Rajpirathap

et al. [101]

IRLSTM [98] 5000 parallelly aligned phrases.

Built the Sinhala and Tamil

language models with 6550 and

6104 sentences

0.5957 0.6693

Pushpananda

et al. [102]

SRILM [98] Extended their own work [101] by

incorporating an unsupervised

morphological analyzer using the

Morfessor algorithm [103].

Morfessor algorithm was used to

find morpheme-like units of the

source and target languages in

order to build the translation and

language models. This algorithm

has better segmentation accuracy

and handles Out Of Vocabulary

(OOV) words

12 15

Table 2.2: SMT and GIZA++ based approaches for Sinhala-Tamil Transla-
tion

As is evident by the Table 2.2, Sinhala-Tamil translations consistently produce

better results when compared with Tamil-Sinhala. This is because of the phonet-

ics and morphological complexity of Sinhala over Tamil. It is also evident from

the table that with better data, the performance of the system has gone up.

Literature Review 41

As pointed out by Weerasinghe [95]’s research, the two main challenges with MT

in Sinhala-Tamil are:

• Limited size of corpora highlighted by the high perplexity of Sinhala and

Tamil language models

• Long-distance “movement” of mutually translated words and phrases cap-

tured in current translation models

2.5.4.1 SiTa SMT system

The SiTa system currently runs the model designed by Farhath et al. [24]. Similar

to previous approaches, this also uses Moses system with GIZA++ translation

model [94]. They have employed SRILM [98] to train the language model. It

uses in-domain and out-domain data to increase the translation efficiency. In-

domain contains official letters from government department and out domain data

collected from other government sources such as annual reports, parliament order

papers, circulars, and establishment codes. 22,073 parallely aligned sentences.

Their approach have yielded a BLEU score of 37.01 for Tamil→Sinhala and 46.14

for Sinhala→Tamil translation. We discuss it separately since we are using this

as our baseline approach.

While the above-mentioned centered on SMT, Tennage et al. [23] had designed a

NMT system for official language documents. They used the same dataset used by

Farhath et al. [24] and reported a BLEU score of 12.75 and 7.5 for Sinhala→Tamil

and Tamil→Sinhala translation, respectively.

2.5.5 Existing Approaches to Translate Named Entities

Named entity translation has so far been an amalgamation of MT and translit-

eration. One of the initial research conducted by Huang and Vogel [104]. They

Literature Review 42

had employed a NER in a bilingual parallel corpus independently to extract the

NE list, align the NEs using a statistical alignment model and build a statistical

translation model.

To alleviate the dependency of a parallel corpus, Rapp [105] proposed an ap-

proach to try and obtain NE’s from non-parallel text. They came up with an

approach comprised of co-occurence counting and vector similarity to identify

NE translations.

Since most named entities can be transliterated, many works build these models

based on the rule-based approach [106] or statistical approach [107, 108]. Rule-

based approaches use linguistic rules to generate translations. This will be harder

when transliterating from a less phonetically complex language towards a higher

complex one.

Statistical based transliterations on the other hand select the most proba-++ble

one based on the training data. Virga and Khudanpur [108] had proposed an

approach that deconstructed both English and Chinese NEs into phonemes and

trained the translation model on the aligned phonemes. While Virga and Khu-

danpur [108] had employed a Source-channel model for machine translation, Wei

[107] claimed that this fails to identify some important transcription probabilities.

They then introduced a Direct-Model translation approach that has an increased

performance of 4% over Virga and Khudanpur [108].

As identified in the previous section, machine translation systems require a large

amount of training data to perform optimally. Since web contains enormous

dataset of languages, Jiang et al. [109] had proposed an approach to improve the

transliteration model with web data. They employed a Maximum Entropy model

that ranks the translation candidates by combining pronunciation similarity and

bilingual contextual occurrence in data scrapped from the web.

It should be noted that the above-mentioned approaches are centered on English

to Chinese and other European languages. There has been no research conducted

Literature Review 43

so far with regards to Tamil-Sinhala NE translation. However, Ekbal et al. [110]

had proposed a pattern-based approach for named entity transliteration for Ben-

gali to English. They divided both the English and Bengali named entities into

transliteration units. Then the system learns the mapping automatically from

the bilingual training set to generate co-locational statistics. Their Bengali to

English transliterations exhibited a Word Agreement Ratio (WAR) for 81.4%.

While the above-mentioned approaches are based on SMT, Sennrich et al. [111]

proposed an approach based on NMT by encoding unknown words as sequences of

subword units. It is based on the intuition that various words including names are

translatable via smaller units. They had attempted word segmentation using n-

gram modes and byte pair encoding. They empirically proved that their approach

improves the BLEU score over a back-off dictionary-based line by 1.1 and 1.3 for

English-to-German and German-to-English respectively.

2.5.6 Summary

Though NMT has been state-of-the-art approach in current times, as shown by

Tennage et al. [23]’s research, they require large amounts of parallel data to per-

form optimally. For the same dataset, Farhath et al. [24]’s SMT approach yielded

20 BLEU score points over NMT. Hence, we can conclude that with current re-

source limitations surrounding Tamil and Sinhala, SMT is the ideal candidate to

perform MT. There has also been no research with regard to integrating NEs in

for Tamil-Sinhala MT.

Chapter 3

Methodology

As discussed in the previous chapter, related literature suggests that named entity

translation helps improve the overall quality of the translation [107, 108, 110].

But in order to achieve that, we first need to identify the NEs. While there have

been NER approaches targeting general domain [13, 14, 16], we are particularly

interested in official government documents.

Official government documents contain different types of entities that are usually

not present in the general domain. Designations and Government organizations

are some examples. The usual general domain tag set consists of Location, Person

and Organization. Since we were interested in extracting named entities native

to official government documents, which meant that we had to come up with our

own tag set.

Once the tag set was identified, the next step was to build an annotated corpus.

As illustrated in the literature review, only unsupervised approaches [46, 48] do

not require annotation. However, it is hard to define a custom tag set and the

performance also has been underwhelming.

Deep-learning based approaches [12, 52] are language and domain independent.

They have also shown great performance output making it an ideal candidate for

building the named entity recognizer. However, it comes with a caveat; it requires

a large corpus.

44

Methodology 45

Building a large corpus manually is an arduous task that consumes time and

requires a lot of human effort. On the other hand, if we could annotate a small

set, train a machine-learning model, annotate a large corpus using the model,

and then employ human annotators to clean the annotated data, it would be

relatively easy to achieve. We needed a machine learning approach that would

work well with a low amount of labeled data. As discussed in the literature, the

ideal candidate to achieve that would be Graph-based Semi Supervised Learning

(GSSL).

The challenge of GSSL was to build a graph that captured the local context of

words effectively. In order to achieve that initially we represented each occur-

rence of words with its distributional semantic vector. Though it gave promising

results, it fails to capture the context. For instance consider the example “Min-

istry of Education” and “Secretary of Education”. In the first case “of” is part

of an Organization entity while for the latter its part of a Designation Entity.

So, we used a novel approach of concatenating n-gram vectors and employed a

classification algorithm on the graph.

Once the corpus was large enough, we employed the deep learning approach to

finally build the NER model for Tamil and Sinhala. Figure 3.1 illustrates the

whole process in a flowchart.

In order to increase the translation performance, we devised an approach to ex-

tract the morphological rules in both the languages and identify the root words.

We built a translation module that encompassed the rules and the NER model

to increase the performance of the existing SMT system.

This chapter details each of the aforementioned steps in detail. Section 3.1 intro-

duces the tag set used. Section 3.2 details the process of building an annotated

corpus using the data. Section 3.3 shows how the GSSL approach was used to

create the dataset and eventually build a BiLSTM CRF model. Finally, Section

Methodology 46

Figure 3.1: Outline to build the NER

3.4 explains the steps taken towards integrating NER translation to the existing

SMT system.

3.1 Identifying the Tag Set

Major NER research has centered on using a limited number of named entity

types like Person, Organization and Location. As revealed in the literature, much

of the research for Sinhala and Tamil NER has centered on a general domain with

varying tag set. But with different domains, the tag sets also vary.

Methodology 47

Since our research centered on official government documents, our initial chal-

lenge was to identify a domain-specific tag set. Unlike general domain, in this

domain we encountered different types of repeating entities like Designations and

Government Organizations. Although a fine-grained approach would have yielded

a more detailed information, it would have required a lot of annotated data and

expert help.

Hence we decided to choose a coarse-grained approach that would align with the

resources at hand. Examining the existing SMT based system revealed that it

was struggling to translate names, designation and organization names. We also

had a bi-lingual list of government organization and designations names such as:

Ministry of Education, Pradhesiya Sabha and Secretary. Hence we devised the

tag set shown in Table 3.1.

Tag Examples

PERSON
´வா» - ʆවානි

´வேயாகநாய² இராமநாதé - ʆවෙයʤගනායʏ රාමනාදන්

DESIGNATION
º¹ உதÄயாளí - ɀɢය සහකාර

Äûāைற āகாைமçýவ உதÄயாளí - නිවාඩු කළමනාකරණ සහකාර

ORGANIZATION
¼ரேதசâ ெசயலகë - ȗරාෙද්ɴය ෙɢකȼ කාəයාලය

ùகாதார ேசைவகð ¹ைணàகளë - ෙසʥඛ්ය ෙසʢවා ෙදපාəතෙȼන්තුව

LOCATION
யாñêபாணë - යාපනය
ெகாćëĀ - ෙකʣළඹ

TEMPORAL
18/02/1991
ஜூைல - ජුɣ

OTHER ஐ.நா. - UN

Table 3.1: NER Tag set

3.2 Annotated Dataset

The Tamil and Sinhala NER corpus currently has over 290K and 210K tokens

respectively. We employed 3 human annotators each for Tamil and Sinhala for

corpus cleaning purpose. Table 3.2 shows the Kappa statistics for each language.

Methodology 48

Language Kappa Score
Tamil 91.28

Sinhala 89.76

Table 3.2: Corpus Kappa scores

The high Kappa scores indicate that there was significant agreement within tag-

gers. One disagreement that presented multiple times was when locations came in

combination with organizations. Consider the example, இலáைக பாராĆமéறë (Sri

Lanka Parliament), some taggers considered the whole thing as an Organization

while some broke it into Sri Lanka as Location and Parliament as Organization.

31.1% and 29.9% of total tokens were tagged as named entities for Sinhala and

Tamil respectively. Figures 3.2 and 3.3 illustrates the named entity tag distribu-

tion in each corpus. As evident from the charts, both corpus have a similar tag

distribution.

Designation

26.4%

Organization Special

6.1%
Location

8.5%

Organization Generic
12.7%

Temporal

19.6%

Person

18.3%
Other

8.4%

Figure 3.2: Named entity tag distribution for Sinhala

Methodology 49

Designation

30.3%

Organization Special

6.9% Location
7.2%

Organization Generic
14.1%

Temporal

21.0%

Person

14%
Other

6.5%

Figure 3.3: Named entity tag distribution for Tamil

3.3 Building the Named Entity Recognizer for Tamil and Sinhala

3.3.1 Graph Based Semi-Supervised Learning

3.3.1.1 Representing Nodes of Graph

In sequence tagging problems, the label of a word is predominantly determined

by its context. Thus, syntactic relationships between word tokens play a major

role. For example, the word present may appear as a noun or a verb, depending

on the context. Thus, without referring to the context, the exact POS tag of

the word cannot be determined. As an example, with respect to Named Entities

(NEs), consider the NEs “Central Bank spokesman” and “The Central African

Republic”. Here, the word ‘Central’ is used as part of both an Organization and

Location [12].

As opposed to using lexical units proposed by Mihalcea and Radev [70] or simple

word vector representations proposed by Subramanya et al. [40] to create nodes

which are incapable of capturing the local context information paramount for our

Methodology 50

sequential tagging. We experimented with different types of vector representa-

tions.

The related literature present contradicting arguments with respect to the per-

formance of count and predict models. Baroni et al. [78] and Mikolov et al. [112]

claim that predict models such as Word2Vec and FastText capture more syntac-

tic and semantic information compared to traditional count-based distributional

models such as PMI vectors. However, Levy et al. [81] have claimed that with

proper system choices and hyper parameters, traditional count models can yield

similar gains. Recently, Mikolov et al. [87] also claimed that FastText yields a

higher gain than GloVe. It should be noted that in count models, increasing the

unlabeled data produces extremely sparse vectors that lead to computationally

demanding graph building. Thus, we experimented with FastText, Wang2Vec

and ELMo. The latter two approaches claim to effectively capture context infor-

mation that is why we chose to use it with our experiments.

As mentioned earlier, we base our work on one assumption that words with the

same local sequence context will have the same sequence tags. In order to capture

the local context information in our graph, we experimented with one solution:

concatenation of vector n-grams.

3.3.1.2 Creating Edges of the Graph

Similar to the approach proposed by Subramanya et al. [40], once the nodes in the

graph are fixed, the edge weights wij between them between two vector n-grams

i and j are defined as shown in Equation 3.1.

wij =

sim(i, j), if i ∈ K(j) or j ∈ K(i).

0, otherwise.
(3.1)

Methodology 51

Here, K(i) in the set of k-nearest neighbors of vector n-gram i. The similarity

function was defined using the Gaussian kernel denoted in Equation 3.2 [113].

Here d(xi, xj) is the Euclidean distance between vectors i and j.

sim(i, j) = exp(
−d(xi, xj)

2σ2
) (3.2)

Theoretically, there can be an edge between each pair of nodes in the graph.

However, one can safely disregard edges that have very low weights, because the

relationship between such nodes is very weak. Such weak edges can add noise to

label propagation.

The identification of the set of vertices that should be connected to a given ver-

tex can be modelled in the form of the k-nearest neighbor problem, where the

objective is to determine the set of vertices that have the strongest relationship

with the given node (i.e., we determine the set of edges with the highest weight

for a given node). Determining the set of edges using k-nn is more effective if the

vertices belonging to different classes are well separated. Thus, we transform the

vector space to increase the separation of classes.

This dimensionality reduction serves another purpose. The performance of near-

est neighbor algorithms degrades when the size of the vector increases. Since we

used word-embedding models, it results in 300 dimensions. When concatenating

vector n-grams, this dimension reaches 900. Thus, the dimensionality reduction

makes graph construction extremely efficient.

Methodology 52

Algorithm 1 presents the graph construction procedure.

Algorithm 1: GSSL using word embedding
Data: Corpus with n number of words where nl are labeled (n >>> nl)

for each wi in corpus do

veci = ConvertWordToV ector(wi);

vi = Concatenate(veci−1, veci, veci+1);

end

Vr = BuildV ectorList(v);

Vs = SupervisedReduction(Vr);

for each vi in V do

ei = NearestKV ectors(vi, distance =
′ euclidean′);

wi = CalculateWeight(ei)

end

E = BuildEdgeMatrix(e);

W = BuildWeightMatrix(w);

Build graph G = (V,E,W);

Predict(G,n)

3.3.1.3 Label Propagation

Label propagation refers to the process of assigning labels to unlabeled nodes

using the labeled nodes. The prior assumption of semi-supervised learning is

that nearby points and points on the same structure are likely to have the same

labels [114]. This is a simple and straightforward approach that has been the

staple of semi-supervised learning and has yielded encouraging results.

3.3.2 Bi-directional LSTM CRF Sequential Tagging

Introduced by Huang et al. [52], Bi-directional LSTM CRF sequence tagging

approach is the baseline for the current state-of-the-art sequential classification.

Methodology 53

The current best approach proposed by Peters et al. [12] uses BiLSTM CRF in

tandem with their ELMo model to achieve the highest performance for NER and

Chunking in English.

However, as noted in the literature review, deep-learning approaches such as

this requires a high amount of labeled data. We did not have enough data at

the inception of our research. But now with GSSL, we were able to efficiently

generate new labeled data. Hence, we chose to implement this approach to build

our NER model.

In a sequence-tagging task, we need to access both the past and future inputs

at a given time. In order to achieve that, we can utilize a bidirectional LSTM

network illustrated in Figure 3.4 as proposed by Graves et al. [115]. Using this

approach, we can effectively capture the past and future features.

Figure 3.4: A bidirectional LSTM network

In order to make use of the neighbor tag information in predicting current tags, we

combine the LSTM network with a CRF network to form a LSTM-CRF model,

as shown in Figure 3.5. Here, the CRF layer is represented by lines connecting

to consecutive tags. This model can efficiently capture the past and future input

features using the LSTM layer and sentence level tag information using the CRF

layer.

Methodology 54

Figure 3.5: A BiLSTM-CRF model

Based on this model, we built our approach as illustrated in Figure 3.6. As shown

in the diagram, each word in a sentence is mapped to a Word Embedder (Word

Emb) and Character Embedder (Char Emb). The word embedder uses pretrained

word embedding models to convert word to vectors. Similar to GSSL, due its ef-

ficiency in capturing semantic and semantic information, we used Wang2Vec [84],

FastText [86] and ELMo [59] for its purpose.

On the other hand, the Character Embedder captures character information.

Each character in a word is mapped to a randomly initialized embedding. There

have been different approaches [53, 54] proposed to capture this information. The

following section details these approaches and how we overcame the challenges

while adapting it to Sinhala and Tamil.

3.3.2.1 Character Embedding

Convolutional Neural networks: Ma and Hovy [54] had proposed to use CNN

to capture the character information in words. They have claimed that CNNs

better capture the morphological information like prefixes or suffixes of a word.

For this approach, as shown in Figure 3.7 [55], a convolution with 30 filters and

filter length of 3 was used, which was then fed to a max-over-time pooling.

Methodology 55

Figure 3.6: Architecture of the BiLSTM network with a CRF Classifier

BiLSTM Networks: Lample et al. [53] had proposed a BiLSTM-based encoder

to create character embedding. For this approach, as shown in Figure 3.8 [55],

the character embedding is fed into a BiLSTM encoder and the last output of the

two LSTM networks are then combined to form a character-based representation.

Methodology 56

Figure 3.7: Character-based representation using convolutional neural net-
work

One of the key challenges with character-based representation with Tamil or Sin-

hala is the Unicode-processing problem. For example, consider the word ேமாகé,

when broken into individual characters it will result in ம, ே◌ா , க, ன, ◌.் This

will result in erroneous character based information extraction. Instead we need

to extract individual characters like ேமா ,க ,é . To achieve this, we used an

existing utility package for Tamil [116]. For Sinhala we created a utility function

that would break each word into its Sinhala character units. For example it would

break the අȽලට to අ ,Ƚ ,ල ,ට.

3.3.2.2 Predicting the Tags

Once the character-based representation is extracted, as shown in Figure 3.6 [55],

we concatenate the word embedding and the character vector to be used for the

BiLSTM encoder. One LSTM network runs from the beginning to the end of the

sentence and the other in reverse. The outputs of both forward and backward

LSTM networks are concatenated and used as input for the Softmax classifier.

This classifier gives the probability distribution of the tags. Then, the tag with

Methodology 57

Figure 3.8: Character-based representation using BiLSTM networks

the highest probability is selected where the linear-chain CRF maximizes the tag

probability of the sentence [55].

3.3.2.3 Tuning the Hyper-parameters

The BiLSTM CRF approach comprises of many hyper parameters including the

pre-trained vectors and character representation that yield different results. Fol-

lowing are some parameters:

Optimizer Optimizer is used for the minimization of the objective function [55].

A commonly used one is Stochastic Gradient Descent (SGD). Though SGD has

been used in a large number of machine learning systems, it has been sensitive

towards the selection of learning rate. Hence, as an alternative Adagrad [117],

Adadelta [118], Adam [119] and Nadam [120] were used.

Methodology 58

Gradient Clipping and Normalization Vanishing and exploding gradient

problems are two widely-known problem with RNN [121]. LSTM networks counter

the vanishing problem, while gradient clipping [122] and gradient normaliza-

tion [123] had been proposed to solve the exploding problem. We evaluated

both of them.

Number of Recurrent Units Number of recurrent units used within each

LSTM layer. Typical choices are 25, 50, 75 and 100 [55].

Number of LSTM-Layers Number of LSTM layers used within forward and

backward layers. Typically experimented up to 3 [55].

Batch Size Training batch size per iteration. Typical choices are 1, 8, 16, 32

and 64 sentences [55].

3.4 Translating Identified Named Entities

Once the named entities have been identified, the next task was to translate them

and improve the flow of the text for a better translation. Both Tamil and Sinhala

are highly inflectional languages. For example a name අȽල / அ½ல can occur

as අȽලට /அ½லÄடë or අȽලෙගන්/அ½லவாï depending on the context. The first

challenge was to identify the morphological transformations and extract the root

word. Section 3.4.1 details a method that identifies morphological transformations

in an unsupervised manner. This approach extracts the morphological rules for

named entities.

Section 3.4.2 details how we integrated named entity recognizer and extracted

morphological rules to the the Moses system to increase the translation perfor-

mance.

Methodology 59

3.4.1 Unsupervised Morphology Induction

Since both Tamil and Sinhala are morphologically rich, one of the key challenges

with translation was to identify the inflection of a word and extract the root form.

Soricut and Och [124] had proposed an unsupervised morphological induction ap-

proach that extracts morphological candidates from a big corpus and generates

lexicalized morphological information. They analyzed every word from a corpus

to identify all possible morphological transformations. Their approach did not ac-

count for root names. Unlike them, we already had a list of root names extracted

from the government of Sri Lanka’s database. While Soricut and Och [124] iden-

tified the morphological transformations by building a graph, we implemented a

simple threshold approach.

Lets say the list of names is N and the list of vocabulary from extracted Wikipedia

and official government documents being is V . We followed the following steps.

1. Extract candidate-specific morphological suffix transformations from N to

V

2. Identify common rules from the candidate set

3. Extract all possible translation mappings for the morphological transfor-

mations between Sinhala and Tamil

Starting from w1 in N and w2 in V , we used the algorithm proposed by Soricut

and Och [124] in combination with the Sinhala and Tamil utility function to

extract all possible suffix substitutions from w1 to w2. We decided to only extract

suffix substitutions and not focus on prefix because there were very rare cases of

prefix substitutions for Tamil and Sinhala.

We denoted those substitutions as from:to. For instance ϵ:இடë / ϵ:ට the addition

of இடë/ ට ; this can been seen in examples like ேமாக»டë / අȽලට, ெசயலாள¿டë /

නිලධාɜයාට. Here the ϵ denotes no alterations from root word.

Methodology 60

We then used the frequency score of every rule and clustered them into two sets.

The rationale behind this approach is that high frequency ones are inducted as

the rules. Finally, we extracted all possible name translations along with their

rule translations which will be incorporated to the SMT system.

3.4.2 Integrating to Moses

Once we extracted the named entities and identified the morphological transfor-

mations, the next step was to integrate them to the existing Moses system. Moses

provides an option to use external data for translation. For example, with num-

ber and named entities, we can plug translations to the decoder without changing

the model.

We based our approach on the hypothesis that replacing the words that do not

exist in the parallel corpus, i.e: Unknown words, with similar meaning words will

increase the accuracy. Koehn et al. [25] had shown that replacing unknown words

help increase the flow of translation.

We already had a list of translated named entities obtained. First we identified

named entities that does not exist in the parallel corpus and extract the root

words. If the root word exists in parallel corpus we replace the original word. If

the root word does not exist in parallel corpus but is in the list of translated named

entities, we will externally specify the translation. Otherwise, we will replace the

original word with the nearest word vector and specify the transliteration as its

translation. The flowchart in Figure 3.9 details our preprocessing steps.

Methodology 61

Figure 3.9: Preprocessing the input data

Chapter 4

Implementation

This chapter briefly explains the key implementation details. Section 4.1 details

the corpus building process carried out and the tool that was used. Section 4.2

details the process carried out with regarding to build the GSSL and BiLSTM

CRF approach for NER. And finally 4.3 briefly details the integrationto Moses and

introduces the Si-Ta translation system designed by the University of Moratuwa.

One of the key goals of our research is to increase the performance of the existing

system.

4.1 Building the Corpus

One of the initial challenges of our research was to build a named entity corpus.

We used the Tagtog [125] annotation tool for this purpose. Figure 4.1 illustrates

a typical annotation window.

4.2 Building the Named Entity Recognizer

4.2.1 AllenNLP Research Library

AllenNLP [126] is a powerful open-source research library built on top of PyTorch.

It makes it easy to design and evaluate deep learning models for any NLP problem.

62

Implementation 63

Figure 4.1: The Tagtog annotation tool

Its pre built support for CUDA GPU systems makes it effective and faster to build

models. For our purpose of building Named Entity and deep contextual vectors,

we modified the code and added new models. The code is currently being housed

in the UOM-Allen [127] repository.

Implementation 64

4.2.2 Building the Word embedding Models

ELMo As powerful as it is, the ELMo model requires a lot of time and processing

power to train. The code [128] was already available. We created a Google cloud

instance with 4 Tesla V80 GPUs, 16 CPUs and 40GB memory to train the model.

We ran the training fro 3 Epochs. It took over 4 days to train 27M tokens and over

8 days to train 60M tokens for Tamil and Sinhala respectively. The dimension of

vector produced was 1024.

In order to compare our GSSL approach with the existing state-of-the-art ap-

proach for low-resource settings, we also obtained the English language model as

well. It should be noted that the English language model was a pre-trained model

obtained from the Github AllenNLP repository [126].

A good language model is one that best predicts an unseen test set. Perplexity

score is the inverse probability of the test set, normalized by the number of

words [129]. Thus, lower the score the better the model. Table 4.1 lists the

perplexity score obtained for each language. It is evident that Sinhala and Tamil

scores are higher than English. This is because of the smaller amount of training

data available than English and running the training model only for 3 epochs

opposed to 10. We were able to run only 3 epochs because of the lack of processing

power available.

Language Perplexity score

English 27.67

Sinhala 87.67

Tamil 112.27

Table 4.1: Perplexity scores for ELMo Model

Implementation 65

FastText We used pretrained models [130] provided by facebookresearch for

our training purpose. These vectors of 300 dimensions were trained using the

Wikipedia data dump.

Wang2Vec The code [131] to create vector modes was freely available. We

experimented with the CWindow and Structured Prediction approaches provided.

Though there are no discerning advantages over each other, structured prediction

was giving a very slight performance benefit. Unlike ELMo, there weren’t any

particular processing equipment required to create this model.

4.2.3 Modifying the metric-learn library

metric-learn[132] is an open-source library that provided the dimensionality re-

duction approaches used for our research. Our research was concerned with dis-

tance measurement for large amounts of data. The existing code was not op-

timized to handle such cases. This was due to the use of euclidean_distances

function from sklearn in the original code.

As shown in the following code snippet, it is the slowest one with 6.78s. Though

scipy and numpy libraries are faster, the fastest one is using the native math

library provided by Python. It runs in 0.42s compared to 0.65s of numpy and

1.53s of scipy. We modified the original code of metric-learn to reflect this finding

and optimized the code.

1 import numpy as np

2 from sc ipy . s p a t i a l import d i s t ance

3 from sk l e a rn . met r i c s . pa i rw i s e import euc l idean_d i s tance s

4 import math

5

6 np . l i n a l g . norm(v1−v2) #0.654838958307 s

7 d i s t ance . euc l i d ean (v1 , v2)#1.53977598714 s

8 euc l idean_d i s tance s (v1 , v2)#6.7898791732 s

9

Implementation 66

10 d i s t = [(a − b) ∗∗2 f o r a , b in z ip (v1 , v2)]

11 d i s t = math . s q r t (sum(d i s t))

12 re turn d i s t #0.422228400305 s

Listing 4.1: Distance measurement efficiency

4.2.4 Implementing Graph Based Semi-supervised Sequential Tagging

Algorithm

One of the key challenges with implementing graph based semi-supervised ap-

proach was the high dimensionality and large number of vectors. High dimen-

sionality of the vectors and the large size of the sample space severely affected

the performance of the k-nn algorithm. Thus, we resorted to approximate near-

est neighbor algorithms (ANN) which performs faster than traditional nearest

neighbor algorithms for large data set size. We use Annoy [133], which has been

empirically shown to work better with large data sets [134]. k was set to an arbi-

trary value of 20. It should be noted this ANN’s accuracy drops when dimensions

of the vector are greater than 100. This attribute played an important role in

choosing to reduce dimensions.

To achieve a discriminant feature set in a lower dimension, two dimensionality re-

duction techniques were experimented with: Linear Discriminant Analysis (LDA)

and Local Fisher Discriminant Analysis (LFDA). Both LDA and LFDA are su-

pervised methods that are useful in finding dimensions that aim at separating the

clusters [135].

For label propagation, Harmonic Function (HMN) [114] and Local and Global

Consistency (LGC) [136] were experimented with. These are two well-established

label propagation algorithms that have proven their effectiveness in different con-

texts [71]

Implementation 67

4.2.5 Implementing BiLSTM CRF Tagging

We ran the CRF Tagger provided in the AllenNLP inside a Docker to build the

tagger. To run the model, we created a Google cloud instance with 2 Tesla V80

GPUs, 8 CPUs and 20 GB of memory. Appendix B lists the configuration file

used.

4.3 Integrating to Moses

The decoder has an XML markup scheme as shown in the following listing allows

to specify translations for parts of a sentence. In its simplest form, we can tell the

decoder what to use to translate certain words or phrases in the sentence [137].

Here we tell the module not to translate the phrase ein kleines haus or haus and

instead use the one specified externally as a cute place and dwelling respectively.

1 echo ’ das i s t <np t r a n s l a t i o n=”a cute p lace”>e in k l e i n e s haus</np>’

\

2 | moses −xml−input e x c l u s i v e −f moses . i n i

3 t h i s i s a cute p lace

4 echo ’ das i s t e in k l e i n e s <n t r a n s l a t i o n=”dwe l l i ng”>haus</n>’ \

5 | moses −xml−input e x c l u s i v e −f moses . i n i

6 t h i s i s a l i t t l e dwe l l i ng

Listing 4.2: Defining external translation for Moses

4.3.1 SiTa System

The translation system we are planning to integrate our work is the Si-Ta system.

Si-Ta is a machine translation system developed by the University of Moratuwa.

The goal of the system is to aid translators with translating official government

documents associated with government entities. Funded by the Department of

the Official Language System, the project has been ongoing since January 2015.

Implementation 68

The system is built using the Moses translation system and human translators

have reported a score of 3.32 on a scale of 1-5.

Chapter 5

Experiments and Results

This chapter details the experiments, results and analysis with regards to the

research carried out. This section has been divided into 3 main sections.

Section 5.1 details the experiments carried out with the proposed GSSL approach.

The section reports on the effectiveness of local context captured by vector n-gram

concatenation.

Section 5.2 reports on the BiLSTM CRF approach. Since this approach is lan-

guage independent, we implemented our approach for not only for NER but also

for POS tagging as well.

Finally, section 5.3 details the experiments carried out on integrating the NER to

the Moses system. It details how each of our hypotheses affect the performance

of the existing system.

69

Experiments And Results 70

5.1 Graph Based Semi Supervised Learning

Dataset

English. We evaluated our approach on CoNLL2003 NER task [1] for POS, NER

and Chunking task. We emulated a low-resource setting for English by using only

20K, 40K, 60K and 100K data as our training setting as opposed to using the

full training data. We carried out testing for English to benchmark our results

against the state-of-the-art approach for English.

Tamil. For Tamil POS tagging we used the dataset from the Forum for Informa-

tion Retrieval (FIRE) [29] and for NER we used the official government corpus

we had built. The POS dataset has nearly 80K labeled data with 32 POS classes.

Sinhala. For our experiments, we used the University of Moratuwa (UOM)

Sinhala POS corpus [138], which currently has 260K tagged tokens labeled using

32 tags. For NER we used the official government corpus we had built.

Experiment Setup

Experiments are designed to determine the impact of local context information in

graph construction for sequential tagging tasks, and the impact of dimensionality

reduction on the same. For English, we test the performance of our solution with

respect to POS tagging, NER, and Chunking tasks of the CoNLL 2003 dataset.

With respect to Tamil and Sinhala, we experiment with POS tagging and NER.

The current implementation employs the Continuous Bag of Words (skip-gram)

model of FastText [57] to generate word embedding for English, where the vector

dimension is 300. Wang2Vec models are generated using a part of the wiki dump

for all three languages. Dimension of these vectors is also set to 300. The ElMo

model [12] of 1024 dimensions was used.

We have experimented with n = 3, when generating vector n-grams. For exam-

ple, when n = 3, the word “Central” will be represented by concatenating the

Experiments And Results 71

word vectors of “The”, “Central”, “African”, thus adding the context informa-

tion. Thus, we end up with a feature vector of 900 dimensions for FastText and

Wang2Vec, and 3072 for ElMo.

For each language, the graph is constructed using 1 million tokens from an unla-

beled corpus, and the labeled text size is varied from 20k to 100k in a step-wise

manner.

To show that our GSSL solution works in low-resourced settings better than the

state-of-the-art reported in the context of high-resourced settings, we compare

our results with the work of Peters et al. [12]. We sampled the same amount of

training samples from the CoNLL corpus.

For this experiment, according to the discussion by Peters et al. [12], we used two

bidirectional GRUs with 80 hidden units and 25 dimensional character embedding

for the token character encoder. The sequence layer uses two bidirectional GRUs

with 300 hidden units each. For regularization, we add 25% dropout to the input

of each GRU, but not to the recurrent connections to setup the model. We also

embed the ElMo model to represent each word in this bidirectional model and

tested it.

Results

For POS, we report the accuracy, while for Chunking and NER, we report the

official evaluation metric (micro-averaged F1 score).

Experiments And Results 72

POS Chunking NER

20K 40K 60K 80K 100K 20K 40K 60K 80K 100K 20K 40K 60K 80K 100K

FastText

A 0.75 0.79 0.83 0.839 0.81 0.66 0.70 0.73 0.73 0.71 0.35 0.30 0.46 0.46 0.34

B 0.69 0.72 0.74 0.77 0.74 0.66 0.69 0.67 0.72 0.74 0.31 0.25 0.44 0.43 0.35

C 0.60 0.64 0.68 0.70 0.66 0.53 0.57 0.57 0.69 0.60 0.38 0.30 0.44 0.46 0.39

D 0.85 0.88 0.87 0.88 0.86 0.79 0.83 0.85 0.83 0.83 0.61 0.53 0.69 0.66 0.50

ElMo

A 0.84 0.84 0.88 0.88 0.86 0.82 0.85 0.85 0.82 0.84 0.70 0.67 0.84 0.81 0.65

B 0.90 0.91 0.92 0.92 0.91 0.82 0.83 0.84 0.83 0.84 0.69 0.65 0.76 0.79 0.70

C 0.74 0.76 0.83 0.81 0.77 0.76 0.80 0.79 0.78 0.78 0.62 0.56 0.81 0.77 0.57

D 0.928 0.934 0.941 0.942 0.93 0.90 0.91 0.92 0.88 0.90 0.79 0.76 0.86 0.89 0.70

Table 5.1: Comparison of different methods to represent nodes and their re-
spective accuracy for different tasks in English. A - Single Vector, B - Dimen-
sion reduced Single Vector, C - Concatenated n-gram vectors, D - Dimension

reduced concatenated n-gram vectors.

Both LDA and LFDA showed near-equal performance, and so did HMN and LGC.

Thus, the results only showcase the experiment setups that used LDA and HMN.

Table 5.1 shows the impact of different word embedding models in vertex represen-

tation, with and without dimensionality reduction on POS, NER, and Chunking

tasks in the CoNLL 2003 dataset. It also shows the impact of n-gram concate-

nation, and dimensionality reduction. Results are reported for different labeled

data set sizes, which demonstrate a low-resourced setting.

Since there were no pre-trained embedding available for Wang2Vec, we trained

from the first billion characters from Wikipedia for English. This lead to an

sub-optimal results across all tasks, hence we have omitted from reporting it.

As indicated by the results in Table 5.1, it is evident that ElMo performs much

better than FastText for all the tasks and all the dataset sizes. While n-gram

concatenation or dimensionality reduction did not show compelling results when

used in isolation, when combined they contributed to a significant performance

gain for both FastText and ElMo.

Experiments And Results 73

In this experiment, we used Annoy approximate nearest neighbor algorithm to

quickly calculate the nearest neighbors. Benchmarks done on ANN [134] have

shown accuracy drops when the dimension increases above 100. This can be seen

in our results - with concatenated vectors or high-dimension vectors like ElMo

the accuracy is considerably lower. Since our approach was transductive, we were

wary of the efficiency and timing. Traditional k-NN algorithms may give high

scores but will require high memory consumption and days to complete.

Tables 5.2 and 5.3 show the results of similar experiments carried out for Sinhala-

Tamil POS and NER tagging tasks.

Tamil POS Sinhala POS
20K 40K 60K 20K 40K 60K 80K 100K

ELMo
A 0.76 0.77 0.79 0.85 0.80 0.84 0.85 0.80
B 0.84 0.87 0.87 0.90 0.86 0.89 0.88 0.84
C 0.59 0.62 0.62 0.73 0.65 0.73 0.73 0.74
D 0.86 0.88 0.90 0.91 0.89 0.90 0.89 0.84

FastText
A 0.73 0.74 0.75 0.80 0.76 0.83 0.82 0.77
B 0.62 0.79 0.77 0.80 0.77 0.83 0.82 0.79
C 0.54 0.58 0.58 0.66 0.60 0.67 0.66 0.59
D 0.80 0.81 0.83 0.901 0.88 0.88 0.85 0.84

Wang2Vec
A 0.72 0.74 0.70 0.81 0.77 0.84 0.81 0.77
B 0.59 0.60 0.54 0.78 0.76 0.81 0.79 0.77
C 0.58 0.58 0.57 0.71 0.66 0.70 0.70 0.63
D 0.70 0.71 0.72 0.80 0.76 0.84 0.85 0.81

Table 5.2: Comparison of different methods to represent nodes and their
respective accuracy for Tamil and Sinhala POS tagging. A - Single Vector,
B - Dimension reduced Single Vector, C - Concatenated n-gram vectors, D -

Dimension reduced concatenated n-gram vectors.

We then compared the performance of our GSSL approach against Peters et al.

[12] using the best result reported in Table 5.3. As shown in Figures 5.1, 5.2

and 5.3, when the ELMo model with n-gram concatenation and dimensionality

Experiments And Results 74

Tamil NER Sinhala NER
20K 40K 60K 80K 20K 40K 60K 80K

ELMo
A 0.54 0.58 0.61 0.64 0.42 0.54 0.60 0.66
B 0.56 0.61 0.62 0.66 0.46 0.56 0.61 0.67
C 0.37 0.46 0.47 0.58 0.36 0.43 0.45 0.51
D 0.62 0.67 0.71 0.72 0.61 0.65 0.68 0.69

Wang2Vec
A 0.26 0.27 0.29 0.31 0.26 0.29 0.29 0.32
B 0.29 0.31 0.32 0.37 0.28 0.30 0.30 0.36
C 0.21 0.23 0.26 0.31 0.20 0.22 0.24 0.30
D 0.39 0.42 0.43 0.45 0.37 0.40 0.43 0.44

FastText
A 0.30 0.30 0.31 0.34 0.30 0.31 0.31 0.33
B 0.37 0.38 0.40 0.40 0.38 0.37 0.38 0.41
C 0.25 0.25 0.31 0.34 0.22 0.24 0.31 0.31
D 0.44 0.48 0.54 0.54 0.42 0.47 0.53 0.54

Table 5.3: Comparison of different methods to represent nodes and their
respective F1-scores for Tamil and Sinhala NER tagging. A - Single Vector,
B - Dimension reduced Single Vector, C - Concatenated n-gram vectors, D -

Dimension reduced concatenated n-gram vectors.

reduction is used, our GSSL approach outperforms Peters et al. [12]’s bidirectional

LSTM CRF.

20 40 60 80 100

80

85

90

95

100

Training data (×103 tokens)

A
cc

ur
ac

y

LSTM-CRF
GSSL

Figure 5.1: English POS accuracy for GSSL Vs LSTM-CRF

Experiments And Results 75

20 40 60 80 100

80

85

90

95

100

Training data (×103 tokens)

F1
-S

co
re

LSTM-CRF
GSSL

Figure 5.2: English chunking F1-Score for GSSL Vs LSTM-CRF

20 40 60 80 100
70

75

80

85

90

95

100

Training data (×103 tokens)

F1
-S

co
re

LSTM-CRF
GSSL

Figure 5.3: English NER F1-Score for GSSL Vs LSTM-CRF

Analysis

According to the Figures 5.1 5.2 5.3, when increasing training data, as opposed

to our expectations there are some drops in the scores. A glaring one was with

NER. For dimension-reduced concatenated ELMo vector with 80K training data

resulted an 89.0 F1 score, and it drops to 71.0 for 100K training data. Further

Experiments And Results 76

analysis revealed that when the training dataset was increased, it had lead to

misclassification due to the nearness of vectors. For example, our training data

had Germany as LOC and the test data had German, which was supposed to be

classified as MISC but was classified as LOC due to the close proximity of the

vectors.

5.2 Bi-directional LSTM CRF Tagging

5.2.1 NER

The Tamil, Sinhala NER corpus has 290K and 210K tokens respectively. We

broke the corpus into 4:1 as training and testing sets. Table 5.4 shows the F1-

Score of the NER tagger with different word-embedding models.

Our experiments showed that tuning the hyper parameters such as batch size,

dropout value, number of recurrent units and number of LSTM-layers didn’t

have any discernible advantage. But using Nadam for optimizer with gradient

clipping and CNN for character encoding resulted in the optimal output. The

data we have report uses these features with 2 LSTM-layers, 100 recurrent units,

64 batch size and 0.25 dropout value.

F1 Score

A B C D E

Tamil 82.3 85.1 85.2 85.4 85.1

Sinhala 79.8 82.8 83.0 83.1 83.0

Table 5.4: Comparison of different vectors and their respective accuracy
for Tamil and Sinhala NER tagging with BiLSTM CRF. A - FastText, B -

Wang2Vec, C - ELMo, D - ELMo + Wang2Vec, E - ELMo + FastText

Experiments And Results 77

5.2.2 POS

Since the bi-directional LSTM CRF tagger is task and language independent, we

also built a POS tagger for Sinhala and Tamil.

Sinhala

The University of Moratuwa already had a POS corpus [138] and tagger. We

used the same corpus to build our models and compared against the pre-existing

methods proposed by Fernando et al. [138] as the baseline.

We sampled out a 20K dataset form this corpus as training data for both our

GSSL approach and Fernando et al. [138]’s approach. The SVM Tagger reported

an accuracy of 87.11% while we were able to achieve an accuracy of 91.4%.

For the deep-learning approach, we conducted five different experiments for two

different corpus: News and Official Documents (OD). The NEWS and OD corpus

consisted of 253,635 and 140,411 tokens respectively. We broke the corpus into

4:1 as training and testing sets. Table 5.5 shows the accuracy of the POS tagger

with different word-embedding models. We followed the same experimental setup

used in NER.

Training Corpus Testing Corpus
Accuracy

Baseline
A B C D E

OD OD 82.1 83.2 85.4 86.8 85.8 84.9 (CRF)

NEWS NEWS 85.2 86.4 88.3 88.7 88.4 85.71 (SVM)

OD+NEWS OD+NEWS 81.4 83.2 87.1 87.6 87.1 87.2 (CRF)

OD NEWS 79.3 79.1 81.0 82.1 81.3 75.26 (SVM)

NEWS OD 82.3 83.1 84.2 85.1 84.7 83.9 (CRF)

Table 5.5: Comparison of different vectors and their respective accuracy for
Sinhala POS tagging with BiLSTM CRF. A - FastText, B - Wang2Vec, C -

ELMo, D - ELMo + Wang2Vec, E - ELMo + FastText

Experiments And Results 78

Tamil

For Tamil POS tagging, we used the FIRE corpus. It had 80K tokens that were

split into 70k for training and 10K for testing. Table 5.6 shows the accuracy

of the POS tagger with different word-embedding models. We followed same

experimental setup used in NER.

Vector Accuracy

FastText 91.23

Wang2Vec 94.12

ELMo 94.17

ELMo + Wang2Vec 94.54

ELMo + FastText 94.2

Table 5.6: Comparison of different vectors and their respective accuracy for
Tamil POS tagging with BiLSTM CRF

Analysis

Though deep-learning with distributional semantic vectors yielded better results

when compared to other baseline approaches, much to our disappointment, the

ELMo vector did not yield the same spike as English. This was due to the lack

of monolingual data available for both the languages to train the ELMo models.

With limited resources at hand, we were only able to run the training model only

for 3 epochs. This was also evident from the high perplexity scores for Tamil and

Sinhala. Sinhala had a slightly lower score since it had more amount of data to

train from. On the other hand, Wang2Vec [84] produced high results staying true

to its claim of being able to capture syntactic information well.

Tamil NER corpus had 290K tokens whereas Sinhala only had 210K tokens.

Armed with a higher amount of data and a better Kappa score, Tamil NER

resulted in a better score than Sinhala NER.

Experiments And Results 79

5.3 Integrating to Moses

Experimental Setup

We used the official government SiTa Parallel Corpus [24] for our research pur-

poses. The corpus consisted of 25,476 sentences, which were divided into 24376 for

training, 1000 for tuning and 300 for testing. Giza++ [94] was used for the word

alignment with grow-diag-final-and as the summarization heuristics. Heafield

[139]’s KenLM was used to generate the language model. The tuning of feature

weights was done using Minimum Error Rate Training [140]. Finally the testing

was done using the Moses decoder and the BLEU score analysis generated using

the script provided by Moses.

Table 5.7 shows the different experiments designed as part of the experiment.

Here, E3 and E4 are mutually-exclusive experiments

Experiment Description

E1 Identify NEs that are not in the parallel corpus, if root words exists

in list then translate else transliterate

E2 Identify NEs that are not in the parallel corpus but root word exists,

replace the identified NEs with root word

E3 Identify NEs and its roots word does not exists in parallel corpus

and lookup list, replace the word with nearest word vector

E4 Identify NEs that are not in the parallel corpus but root word does

not exists in lookup list, replace the identified NEs with nearest

vector word from parallel corpus and specify the original word as

translation

Table 5.7: SMT integration experiments

Experiments And Results 80

5.3.1 Sinhala → Tamil Translation

Baseline BLEU Score - 35.28

Experiment BLEU Score

E1 36.67

E2 35.78

E3 35.27

E4 36.11

E2 + E4 36.23

E2 + E3 36.60

E1+ E2 + E3 36.60

E1 + E2 + E4 35.67

Table 5.8: Sinhala→Tamil translation scores after named entity translation
integration

5.3.2 Tamil → Sinhala Translation

Baseline BLEU Score - 23.75

Experiment BLEU Score

E1 23.90

E2 24.01

E3 24.07

E4 23.80

E2 + E4 24.05

E2 + E3 24.08

E1+ E2 + E3 24.12

E1 + E2 + E4 24.24

Table 5.9: Tamil→Sinhala translation scores after named entity translation
integration

Experiments And Results 81

Analysis

Sinhala is phonetically more complex than Tamil and the transliteration module

we employed was only a 1-to-1 mapping. Using this approach is reflected with

the dipping of the BLEU score while employing the transliteration module for

Tamil→Sinhala but increasing for Sinhala→Tamil. Though replacing with root

words will not produce semantically ideal translation, it brings more flow to the

text and thus increases the score by a relatively large margin. Usage of word

embedding and replacing the words with the nearest NE entity from the paral-

lel corpus will yield an incorrect output. Hence, with E3, we replaced the word

altogether and specified it as the translation and with E4, we only replaced it

to generate a smooth flow while still preserving the original word. As expected,

E4 produced a higher score than E3. Though the nearest word vector produced

syntactically correct sentences, they were semantically wrong. For example, in

Tamil, பç¹ரáகĆà÷ was replaced with பாç¹ரáகĆà÷ . This is because both the

words have mostly similar sub-word structure. Here the first word means doc-

ument while the latter means container thus resulting in semantically wrong

translations.

Chapter 6

Conclusion

The aim of this research was to improve the existing machine translation system

for Sinhala-Tamil official government documents by incorporating named entity

translation. Our initial analysis had revealed the short comings of the machine

translation system to translate named entities in Sinhala-Tamil official govern-

ment documents.

We had proposed a novel tag set specific to the official government documents that

captured varying types of recurring named entities. Identifying named entities

was challenging given the limited amount of annotated data. In order to tackle it,

we proposed a novel graph-based sequential tagging approach that outperformed

the existing state-of-the art for low-resource settings. Our solution is based on

identifying neural word embedding models that better capture local context infor-

mation in graph vertices, and producing a graph in a low-dimensional space that

has vertices belonging to different classes well separated. While some of the word

embedding models employed did not generate the expected result, in general,

our hypothesis of capturing context information by concatenating vectors is vali-

dated. In particular, n-gram concatenation and dimensionality reduction resulted

in significant performance gains. Our novel GSSL solution can be presented as a

promising alternative for sequential tagging in low-resource languages.

82

Conclusion 83

We were able to effectively build a large corpus using the graph-based approach

and manual cleaning. With larger annotated data, we employed Bi-directional

LSTM CRF to build the final NER model. This was the first deep-learning ap-

proach carried out with regards to Tamil and Sinhala. As part of this approach,

we also empirically experimented with different word-embedding models and iden-

tified the ELMo approach as the best. Employing the same model, we were also

able to build a better POS tagger for Sinhala.

As part of the named entity translation, we were able to build a module that

extracted morphological rules in an unsupervised manner. Finally we used our

named entity recognizer and the extracted rules to build a translation model that

encompassed word-embedding models. Though our transliteration module did

not yield a result we anticipated for Tamil→Sinhala translation due to its phono-

logical complexity, other parts contributed towards an increase in performance.

Overall, our hypothesis of increasing the performance of the existing translation

system by incorporating named entity translation can use to improve parallel

glossaries.

Chapter 7

Future Works

In general, the tag set we had proposed in general covers most of the named

entities in official government documents. However, further analysis of the corpus

revealed us that our approach would have benefited by introducing new tags to

cover events, buildings and location. Using the knowledge we have gained from

this research, as a future addition we can look into using a more fine-grained

approach.

The current implementation of our GSSL approach uses Linear Discriminant

Analysis (LDA). LDA calculations are done mostly in memory. Thus, when we

attempt to use larger annotated training sets with each vector having over 900 di-

mensions, it leads to memory overflows. Since our target was towards addressing

low-resource settings, we did not attempt to address this issue. As a part of future

research, we can attempt different approaches like kNN-CUDA that uses GPUs

to identify nearest neighbors. For the classification also we only experimented

with a trivial label propagation algorithm. As part of future research, new clas-

sification algorithms akin to that done by Yang et al. [141] can be employed to

see if they produce better results.

One of the key takeaways with regards to the deep-learning approach is that

it works optimally well with large amounts of data. So, the next step towards

increasing the existing performance is to increase the amount of annotated data

84

Future Works 85

As far as translation is concerned, we only introduced named entities as an input

pre-processing step. Since it resulted in a better performance, we stopped inves-

tigating further. As part of future research, we can look into incorporating it at

a training level and see how it affects the final performance.

Appendix A: Graph Based Semi-Supervised Learning for Tamil POS Tagging

Mokanarangan Thayaparan, Surangika Ranathunga, Uthayasanker Thayasivam
Dept. of Computer Science and Engineering

University of Moratuwa, Katubedda 10400, Sri Lanka
{mokanarangan.11, surangika, rtuthaya }@cse.mrt.ac.lk

Abstract
Parts of Speech (POS) tagging is an important pre-requisite for various Natural Language Processing tasks. POS tagging is rather
challenging for morphologically rich languages such as Tamil. Being low-resourced, Tamil does not have a large POS annotated corpus
to build good quality POS taggers using supervised machine learning techniques. In order to gain the maximum out of the existing Tamil
POS tagged corpora, we have developed a graph-based semi-supervised learning approach to classify unlabelled data by exploiting a
small sized POS labelled data set. In this approach, both labelled and unlabelled data are converted to vectors using word embeddings
and a weighted graph is constructed using Mahalanobis distance. Then semi-supervised learning (SSL) algorithms are used to classify
the unlabelled data. We were able to gain an accuracy of 0.8743 over an accuracy of 0.7333 produced by a CRF tagger for the same
limited size corpus.

Keywords: Semi-Supervised Learning, Low-resourced languages, Graph-based SSL, Word Embedding, POS tagging

1. Introduction
In the recent past, supervised learning methods have pro-
duced high accuracies for Parts-of-Speech (POS) tag-
ging (Gimenez and Marquez, 2004). In particular, sequence
models such as hidden Markov models (HMM) and condi-
tional random fields (CRF) have given good results (Huang
et al., 2015). However, these techniques rely on the avail-
ability of relatively large amounts of annotated data. Hence,
building an accurate domain insensitive POS tagger is chal-
lenging for low resourced languages.
Tamil is one such low resourced language, which is widely
used in South India and Sri Lanka. There have been sev-
eral POS taggers developed for Tamil language using super-
vised learning techniques (Dhanalakshmi et al., 2009)(Pan-
dian and Geetha, 2009). Since the annotated corpora used
in this research have been of small size and from a single
domain, these supervised techniques greatly suffer from ac-
curacy and domain adaptability (Rani et al., 2016). For ex-
ample, FIRE corpus (Forum for Information Retrieval Eval-
uation, 2014), a widely used freely available Tamil POS
annotated corpus contains only 80k words. In contrast, the
Wall Street corpus, which is an English POS-annotated cor-
pus has a word count of 1,173K words (Gimenez and Mar-
quez, 2004), meaning that the size of the FIRE corpus is
approximately 15 times smaller than the Wall Street cor-
pus. Thus, when using a small corpus such as FIRE, we
cannot expect similar accuracy to that of English when su-
pervised techniques are used. Moreover, these approaches
depend on language dependent features such as morpho-
logical tags (Dhanalakshmi et al., 2009) thus limiting the
scalability for adapting to other low resourced languages.
In contrast to supervised approaches, semi-supervised ap-
proaches such as graph based semi-supervised learning and
manifold regularization (Niyogi, 2013) use both labeled
and unlabelled data for their classification, and have proven
to work with a small data sets (Zhu et al., 2003). De-
spite having smaller sized POS-tagged data for Tamil, there
has been only two research leveraging the opportunity pre-
sented by semi-supervised learning. Ganesh et al. (2014)

have used segmentation patterns to implement a bootstrap-
ping approach for POS tagging. This approach relies on
language dependent data such as suffix context patterns.
Rani et al. (2016) use small annotated training data to build
a classifier model using context-based association rule min-
ing. This approach neither includes any language-specific
linguistic information nor requires a large corpus. How-
ever, they collect all possible words occurring in the same
context from the untagged data into a list called context-
based list, thus limiting it from scaling to large monolingual
corpus.
Graph based semi-supervised learning (SSL) has gained
traction in Natural Language Processing tasks such as ques-
tion answering (Celikyilmaz et al., 2009), structural tagging
(Subramanya et al., 2010), and speech language recogni-
tion (Liu et al., 2016). Graph based SSL builds a meaning-
ful graph using labelled and unlabelled instances. It then
employs an SSL algorithm such as harmonic functions (Zhu
et al., 2005) or label propagation (Zhu et al., 2003) to label
the unlabelled instances. Graph based SSL is easily paral-
lelizable and scalable to large data (Zhu et al., 2005).
In this paper, we present a novel graph-based semi-
supervised approach to produce an accurate POS tagger for
Tamil using a limited size corpus. Our idea is inspired by
Talukdar and Pereira (2010)’s case study on modified ab-
sorption, which is a label propagation algorithm. They have
implemented a Named Entity recognizer by building a con-
nected word graph. Similarity between words is measured
using WordNet. Then they employ label propagation to as-
sign labels to all the unlabelled nodes.
Since Tamil is a low resourced language with no proper
WordNet, we built a connected word graph using word
vectors and employed label propagation. Our method is
based on the clustering hypothesis that relative distance of
word vectors of similar categories is lower than those be-
tween different categories. We use neural word embed-
ding (Word2Vec (Mikolov et al., 2013), FastText (Joulin
et al., 2016)) to create word vectors. Mahalanobis dis-
tance is used for measuring the distance (metric learning)

between these vectors in order to construct the graph. Ma-
halanobis distance generalizes the standard Euclidean dis-
tance, and has proven to be more effective (Davis et al.,
2007). We empirically tested with four different metric
learning algorithms (Information Theoretic Metric Learn-
ing (ITML) (Davis et al., 2007), Sparse Determinant Met-
ric Learning (SDML) (Qi et al., 2009), Least Squares
Metric Learning (LSML) (Liu et al., 2012), and Local
Fisher Discriminant Analysis (LFDA) (Sugiyama, 2006))
to calculate Mahalanobis distance. Once the graph is con-
structed with labeled and unlabeled nodes, to assign la-
bels to unlabeled nodes, we experimented with three dif-
ferent SSL algorithms (LP-ZGL) (Zhu et al., 2003), Ab-
sorption (Talukdar et al., 2008) and Modified Absorption
(MAD) (Talukdar and Pereira, 2010)). Local Fisher Dis-
criminant Analysis (LFDA) metric learning coupled with
Label Propagation(LP-ZGL) yielded a maximum accuracy
of 0.8743 for the FIRE corpus against a baseline accuracy
of 0.7338 achieved by using a traditional CRF model. Un-
like supervised learning approaches, our approach does not
require a large high quality annotated data set, or language
dependent features.
Thus the contributions of this paper are: (1) converting
words to vectors using neural word embedding and build-
ing meaningful word graphs, (2) using Mahalanobis dis-
tance to measure relationships between word vectors, hence
measuring the correlation between variables, and (3) using
a language independent graph based semi-supervised ap-
proach for POS tagging in Tamil.
The rest of the paper is organized as follows. Section 2
discusses graph based semi supervised learning techniques
and previous attempts on Tamil POS tagging. Section 3
details the data set used in our experiment. Section 4 dis-
cusses the methodology and how we implemented the sys-
tem. Section 5 details the experiments carried out and the
relevant results. Section 6 and Section 7 document the con-
clusion and future work, respectively.

2. Related Work
2.1. Graph based Semi-supervised Learning
Graph theory and Natural Language Processing are well
studied disciplines, but are commonly perceived as dis-
tinct with different algorithms and with different applica-
tions. But recent research has shown that these disciplines
are connected and graph-theoretical approaches can be em-
ployed to find efficient solutions for NLP problems. En-
tities are connected by a range of relations in many NLP
problems and graph is a natural way to capture the re-
lationship between the entities. Graph based approaches
have been used in word sense disambiguation, entity dis-
ambiguation, thesaurus construction, textual entailment and
semantic classification (Mihalcea and Radev, 2011).
Graph based semi-supervised learning builds graphs con-
necting labeled and unlabeled data points, and perform
classification by propagating the labels. The graph is con-
structed to reflect our prior knowledge about the domain.
The intuition is that similar data points have similar labels.
We let the hidden/observed labels be random variables on
the nodes of this graph. Labels are injected to unlabeled

nodes from labeled nodes. Graphs provide a uniform rep-
resentation for heterogeneous data and are easily paralleliz-
able (Zhu et al., 2005).
One of the challenges of graph based approach is building
the graph that reflects the relationship between entities. De-
pending on the task, the nodes and edges may represent a
variety of language related units and links. Different NLP
tasks have approached this challenge in different ways. For
the task of opinion summarization, Zhu et al. (2013) con-
structed a graph of sentences linked by edges whose weight
combines the term similarity and objective orientation sim-
ilarity. And to perform discourse analysis in chat, Elsner
and Charniak (2010) predicted the probabilities for pair of
utterance as belonging the same conversation thread or not
based on lexical, timing and discourse-based features. Then
constructed a graph with each nodes representing the utter-
ances and the edges representing the probability score be-
tween the nodes. Although these approaches are evidences
for the versatility of graph based approaches, these cannot
be adopted to a word level problem like sequential tagging.
Using graph methods for sequential tagging relies on the
belief that similar words will have the same tag. Unlike the
aforementioned approaches, here the nodes in these graph
represents words or phrases and the the edges will indicate
the similarity between nodes. Talukdar and Pereira (2010)
tag words with NER information through a label propaga-
tion algorithm on a word similarity graph built using Word-
Net information. Words are represented are the graph ver-
tices and the edge denotes the WordNet relationship. This
approach cannot be adopted for a low resource language
which doesn’t have a proper WordNet. Subramanya et al.
(2010) POS tags on a similarity graph where local sequence
contexts (n-grams) are vertices. The similarity function be-
tween graphs is the cosine distance between the point-wise
mutual information vectors (PMI) representing each node.
The point-wise mutual information is calculated between
n-gram and set of context features. These context features
includes suffixes, left word and right word contexts. The
challenge of this approach is the scalability for a morpho-
logically complex language like Tamil.

2.2. Tamil POS tagging
Tamil is a low resourced, morphologically rich language
with many inflections and a complex grammatical struc-
ture. Thus, automatic POS tagging for Tamil is a challeng-
ing task. Supervised learning approaches have been heav-
ily undertaken in Tamil for POS tagging. These include
CRF models using morphological information (Pandian
and Geetha, 2009) and Support Vector Machines (SVM)
using semantic information (Dhanalakshmi et al., 2009).
These models had been trained using different corpora con-
taining approximately 200k annotated words. These anno-
tated corpora or taggers are not publicly available.
There have been very few attempts in using semi-
supervised approaches for Tamil language to develop POS
taggers. Ganesh et al. (2014) have used language fea-
tures with a bootstrapping approach to obtain a precision of
86.74%. They have presented a pattern based bootstrapping
approach using only a small set of POS labelled suffix con-
text patterns. The patterns consist of a stem and a sequence

of suffixes, obtained by segmentation using a manually cre-
ated suffix list. This bootstrapping technique generates new
patterns by iteratively masking suffixes with low probabil-
ity of occurrences in the suffix context, and replacing them
with other co-occurring suffixes. This approach relies on
language specific information.
Rani et al. (2016) have employed a semi-supervised rule
mining approach using morphological features for Hindi,
Tamil, and Telugu languages. They have used a combi-
nation of a small annotated and untagged training data to
build a classifier model using a concept of context-based
association rule mining. These association rules work as
context-based tagging rules.

3. Data set
For our experiment, we used the FIRE Tamil Corpus. The
FIRE Tamil corpus contains 80k POS tagged words with 21
different tags as shown in Table 1.

NN Noun
NNC Compound Noun
RB Adverb
VM Verb Main
SYM Symbol
PRP Personal Pronoun
JJ Adjective
NNP Pronoun
PSP Prepositions
QC Quantity Count
VAUX Verb Auxiliary
DEM Determiners
QF Quantifiers
NEG Negatives
QO Quantity Order
WQ Word Question
INTF Intensifier
NNPC Compound Pro Noun
CC Coordinating Conjunction
RBP Adverb Phrase

Table 1: POS tagsets for FIRE Tamil Corpus

4. Methodology
Our work is inspired by Talukdar and Pereira (2010)’s case
study on the performance of different algorithms for clas-
sification in graphs. In this work, words are represented
as nodes and the similarity between nodes are measured
using WordNet distance. Since Tamil is a low resourced
language, this approach was not viable for us. Another ap-
proach was to represent words by converting them to vec-
tors and computing the similarity. Subramanya et al. (2010)
had employed a point wise mutual information (PMI) based
approach to convert the word to vectors and compute the
similarity by measuring the cosine distance. His approach
used hand-crafted features that will not work with same ef-
ficiency across different languages.
Hence, an efficient way of representing a word in the vec-
tor space has to be determined. In addition, it is required

to identify mechanisms for (1) constructing a meaningful
graph based on the word vector, and (2) classifying unla-
belled words based on the constructed graph by measuring
the similarity.

4.1. Representing a word in the vector space
We adopted the Word2Vec model proposed by Mikolov et
al. (2013) and convert the word into the vector space to con-
struct the graph. To the best of our knowledge, Word2Vec
has never been used to construct weighted word graphs to
be used in SSL. Similarly we also experimented with Fast
Text skipgram (Bojanowski et al., 2016) and bag of words
models (Joulin et al., 2016). The key difference between
Word2Vec and FastText is that Word2Vec treats each word
in corpus as an atomic entity and generates a vector for each
word. In contrast, FastText treats each word as composed
of ngrams and the vector word is made of the sum of these
vectors.

4.2. Constructing a meaningful graph based on
the word vector

Each word is converted to a d dimensional vector space.
Out of the n words in the list, nl are labelled(n >>>
nl). We employ 32 different tags to denote each POS en-
tity (Dhanalakshmi et al., 2009). G = (V,E,W) is the
graph we are interested in constructing; where V is the set
of vertices with |V | = n, E is the set of edges. W is the
symmetric n× n matrix of edge weights we want to learn.
Usually we could choose a standard distance metric (Eu-
clidean, City-Block, Cosine, etc.). Instead, Mahalanobis
distance has proven to be effective with clustering problems
over the standard metrics (De Maesschalck et al., 2000).
We use a supervised method for learning the Mahalanobis
distance. For this purpose, we need to calculate the positive
definite matrix A of size d × n that parametrizes the Ma-
halanobis distance, dA(xi, xj) (Dhillon et al., 2010; Davis
et al., 2007; Sugiyama, 2006) between words xi and xj as
shown in Equation (1).

dA(xi, xj) = (xi − xj)TA(xi − xj) (1)

Since A is positive definite, it can be decomposed into
PTP , where P is another matrix of size d× d

dA(xi, xj) = (xi − xj)TPTP (xi − xj)
= (Pxi − Pxj)T (Pxi − Pxj)
= dI(Pxi, Pxj)

(2)

There are many proposed methods for calculating the
transformation matrix P . We empirically experimented
with different metric learning algorithms, including Infor-
mation Theoretic Metric Learning (ITML) (Davis et al.,
2007), Sparse Determinant Metric Learning (SDML) (Qi
et al., 2009), Least Squares Metric Learning (LSML) (Liu
et al., 2012), and Local Fisher Discriminant Analysis
(LFDA) (Sugiyama, 2006).Researches in link prediction
in networks (Shaw et al., 2011), music recommenda-
tion (McFee et al., 2011) and bio metrics verification (Ben
et al., 2012) has shown that metric learning plays a vital
role increasing accuracy of the system.

ITML minimizes the differential entropy between multi-
variate Gaussian under constraints on the distance function.
Davis et al. (2007) have expressed the problem as that of
minimizing the LogDet divergence subject to linear con-
straints. SDML uses l1-penalized log-determinant regular-
ization to calculate the metric. This algorithm exploits the
sparsity nature underlying the intrinsic high dimensional
feature space. LSML uses an algorithm that minimizes
a convex objective function corresponding to the sum of
squared residuals of constraints. Finally LFDA, is a linear
supervised dimensionality reduction method which is par-
ticularly useful when dealing with cases where one or more
core classes consist of separate clusters in input space.
We calculate P using each of these metric learning algo-
rithms and project the words into a new space to calculate
Pxi. Based on Equation 2, we compute the Euclidean dis-
tance in the linearly transformed matrix. Gaussian kernel
[2, 16] was used to compute the similarity between words
as shown in Equation 3 (Dhillon et al., 2010). We then
sparsify the graph by selecting k neighbors for each node
and set the weights to zero for all others (Zhu et al., 2003).

Wij = exp(
−dA(xi, xj)

2σ2
) (3)

The culmination of all these steps results in a meaningful
graph where relative distances of word vectors of similar
categories will be lower than those between different cate-
gories.

4.3. Classifying Unlabelled Nodes based on the
Constructed Graph

Once the graph is constructed, unlabelled words in the
graph should be classified. For this, we experimented with
Label Propagation(LP-ZGL), and Absorption and Modi-
fied Absorption (MAD) techniques. LP-ZGL (Zhu et
al., 2003) was one of the first graph based SSL methods.
LP-ZGL propagates the labels over the graph by penaliz-
ing any label assignment where two nodes connected by
a highly weighted edge are assigned different labels. LP-
ZGL prefers smooth labeling over the graph. This prop-
erty is also shared by the other two algorithms. Absorp-
tion (Talukdar et al., 2008) has been used for open domain
class-instance acquisition. Absorption is an iterative algo-
rithm where label estimates depend on the previous itera-
tion. Modified Absorption (MAD) (Talukdar and Pereira,
2010) shares the same properties of the Absorption algo-
rithm but can be expressed as an unconstrained optimiza-
tion problem. We experimented with all these algorithms
to estimate the labels of the untagged words.

5. Experiments and Results
5.1. Experiments
We split the data into 60k words for training and 20k words
for testing. To the best of our knowledge, there has been
only Named Entity Recognition research (Abinaya et al.,
2014) done in Tamil using FIRE corpus and no POS tagging
research done.
We trained both Word2Vec and FastText models with a
word window of three (the commonly used window size)
using the Tamil Wikipedia corpus (Wikipedia, 2016) (about

1M words) after removing only the punctuation marks. We
used these models to convert word to vector form. Each
vector is of 300 dimensions. For graph construction, a sub-
set of 3000 sentences with approximately 50k unlabelled
words from the Tamil Wikipedia corpus were added to the
set. We constructed the word graphs using the aforemen-
tioned four metric learning approaches and employed three
labeled propagation approaches to identify the best combi-
nation.
Since most of the successful approaches related to Tamil
POS tagging have been carried out using Conditional Ran-
dom Fields (CRF) (Pandian and Geetha, 2009), we used
the same approach with word trigram feature as our base-
line method. Here, trigrams were selected because for
Word2Vec and FastText models also, a word window of
three was used.

5.2. Results
The following Tables 2-5 document the results obtained for
each graph construction algorithm in combination with the
classification methods.

Word To Vector Algorithm MAD Abs LP-
ZGL

Word2Vec (SkipGram) 0.7534 0.7531 0.7201
Word2Vec (Bag of words) 0.6945 0.6967 0.6754
Fasttext (SkipGram) 0.8146 0.814 0.822
Fasttext (Bag of Words) 0.795 0.7952 0.801

Table 2: Accuracy of Information Theoretic Metric Learn-
ing

Word To Vector Algorithm MAD Abs LP-
ZGL

Word2Vec (SkipGram) 0.7012 0.701 0.721
Word2Vec (Bag of words) 0.6641 0.6542 0.665
Fasttext (SkipGram) 0.7886 0.7935 0.7988
Fasttext (Bag of Words) 0.7712 0.775 0.7767

Table 3: Accuracy of Sparse Determinant Metric Learning

Word To Vector Algorithm MAD Abs LP-
ZGL

Word2Vec (SkipGram) 0.734 0.733 0.732
Word2Vec (Bag of words) 0.701 0.71 0.711
Fasttext (SkipGram) 0.8547 0.861 0.8634
Fasttext (Bag of Words) 0.823 0.834 0.845

Table 4: Accuracy of Least Squares Metric Learning

Word To Vector Algorithm MAD Abs LP-
ZGL

Word2Vec (SkipGram) 0.7678 0.7775 0.7757
Word2Vec (Bag of words) 0.7664 0.7567 0.7456
Fasttext (SkipGram) 0.8673 0.8573 0.8743
Fasttext (Bag of Words) 0.85 0.853 0.86

Table 5: Accuracy of Local Fisher Discriminant Analysis

As illustrated above, Local Fisher Discriminant Analy-
sis(LFDA) combined with Label propagation yields the
best accuracy of 0.8743. LFDA is a linear supervised di-
mensionality reduction method. It proved effective in our
case since each of our words had a size of 300 dimensions.
FastText(skipgram) in combination with label propagation
consistently performed better than other algorithms in all
graph construction methodologies.
To test the robustness of the approach, we trained the best
performing combination (LFDA and LP-ZGL) with 20k
words and tested with 60k words. It yielded an accuracy
of 0.753. Meanwhile, the baseline CRF model only gave
an accuracy score of 0.633. This proves that our approach
is more robust even when the labelled data set is compara-
tively small.

6. Conclusion
Our research establishes the fact that graph based semi-
supervised approaches are more robust than supervised
classification algorithms for POS tagging when the data set
is relatively small. Thus graph based semi supervised data
can be employed in the early stages of creating POS tagged
data sets. Human annotators can correct the automatically
annotated corpus with less effort, and the corrected anno-
tated data set can be used in an iterative manner to re-train
the tagger. Thus, graph based semi-supervised approaches
are particularly useful for POS tagging of low-resourced
languages such as Tamil. We used neural word embedding
to create a vector representation of words, and Mahanalo-
bis distance to measure distance between word vectors in
order to build the graph. This shows that word embedding
provides an excellent alternative for WordNet in measuring
similarity between words, especially for languages that do
not have a WordNet. This is useful not only for graph build-
ing, but for any task that requires measuring the similarity
of words.

7. Future work
Our language independent work has shown promise with
low resources. We have only done the research for one lan-
guage, and this research should be extended to other lan-
guages to verify the general applicability of the presented
methodology. We hope to extend this idea for other low re-
sourced sequential tagging problems such as Named Entity
Recognition. This research can also be extended to improve
and incorporate other word embedding techniques such as
VarEmbed that uses morphological priors for probabilistic
neural word embedding (Bhatia et al., 2016). We can also
experiment with other graph construction algorithms such

as b-matching (Jebara et al., 2009). The main limitation
of this technique is the amount of time taken to build the
graph. Thus we intend to look into different code optimiza-
tion methods. While we have compared our approach with
the pure CRF implementation, Lample et al. (2016) has
shown that CRF in combination with LSTM can provide a
higher accuracy for Named entity recognition but that ap-
proach has not been tried for POS tagging in morphologi-
cally complex languages such as Tamil. We are eager to see
how our approach stacks up with them.

8. Acknowledgement
This research is partially funded by the National Languages
Processing Centre of University of Moratuwa, Sri Lanka.
The authors would also like to thank the LKDomain reg-
istry for partially funding this publication.

9. Bibliographical References
Abinaya, N., John, N., Ganesh, B. H., Kumar, A. M., and

Soman, K. (2014). Amrita cen@ fire-2014: Named en-
tity recognition for indian languages using rich features.
In Proceedings of the Forum for Information Retrieval
Evaluation, pages 103–111. ACM.

Ben, X., Meng, W., Yan, R., and Wang, K. (2012). An
improved biometrics technique based on metric learning
approach. Neurocomputing, 97:44 – 51.

Bhatia, P., Guthrie, R., and Eisenstein, J. (2016). Morpho-
logical priors for probabilistic neural word embeddings.
3 August.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2016). Enriching word vectors with subword informa-
tion. arXiv preprint arXiv:1607.04606.

Celikyilmaz, A., Thint, M., and Huang, Z. (2009).
A graph-based semi-supervised learning for question-
answering. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Process-
ing of the AFNLP: Volume 2 - Volume 2, ACL ’09, pages
719–727, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Davis, J. V., Kulis, B., Jain, P., Sra, S., and Dhillon, I. S.
(2007). Information-theoretic metric learning. In Pro-
ceedings of the 24th International Conference on Ma-
chine Learning, ICML ’07, pages 209–216, New York,
NY, USA. ACM.

De Maesschalck, R., Jouan-Rimbaud, D., and Massart,
D. L. (2000). The mahalanobis distance. Chemometrics
and intelligent laboratory systems, 50(1):1–18.

Dhanalakshmi, V., Rajendran, S., Soman, K. P., and Edu,
K. (2009). POS tagger and chunker for tamil language.

Dhillon, P. S., Talukdar, P. P., and Crammer, K. (2010). In-
ference driven metric learning (idml) for graph construc-
tion.

Elsner, M. and Charniak, E. (2010). Disentangling chat.
Comput. Linguist., 36(3):389–409, September.

Ganesh, J., Parthasarathi, R., Geetha, T. V., and Balaji, J.
(2014). Pattern based bootstrapping technique for tamil
POS tagging. In Mining Intelligence and Knowledge Ex-
ploration, Lecture Notes in Computer Science, pages
256–267. Springer, Cham.

Gimenez, J. and Marquez, L. (2004). Svmtool: A general
pos tagger generator based on support vector machines.
In In Proceedings of the 4th International Conference on
Language Resources and Evaluation.

Huang, Z., Xu, W., and Yu, K. (2015). Bidirec-
tional LSTM-CRF models for sequence tagging. CoRR,
abs/1508.01991.

Jebara, T., Wang, J., and Chang, S.-F. (2009). Graph con-
struction and b-matching for semi-supervised learning.
In Proceedings of the 26th Annual International Confer-
ence on Machine Learning, ICML ’09, pages 441–448,
New York, NY, USA. ACM.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T.
(2016). Bag of tricks for efficient text classification.
arXiv preprint arXiv:1607.01759.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami,
K., and Dyer, C. (2016). Neural architectures for named
entity recognition. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, pages 260–270, San Diego, California, June.
Association for Computational Linguistics.

Liu, E. Y., Guo, Z., Zhang, X., Jojic, V., and Wang,
W. (2012). Metric learning from relative comparisons
by minimizing squared residual. In Proceedings of the
2012 IEEE 12th International Conference on Data Min-
ing, ICDM ’12, pages 978–983, Washington, DC, USA.
IEEE Computer Society.

Liu, Y., Kirchhoff, K., Liu, Y., and Kirchhoff, K. (2016).
Graph-based semisupervised learning for acoustic mod-
eling in automatic speech recognition. IEEE/ACM
Trans. Audio, Speech and Lang. Proc., 24(11):1946–
1956, November.

McFee, B., Barrington, L., and Lanckriet, G. R. G. (2011).
Learning content similarity for music recommendation.
CoRR, abs/1105.2344.

Mihalcea, R. F. and Radev, D. R. (2011). Graph-
based Natural Language Processing and Information
Retrieval. Cambridge University Press, New York, NY,
USA, 1st edition.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. 16 January.

Niyogi, P. (2013). Manifold regularization and semi-
supervised learning: Some theoretical analyses. Journal
of Machine Learning Research, 14:1229–1250.

Pandian, S. L. and Geetha, T. V. (2009). Crf models for
tamil part of speech tagging and chunking. In Proceed-
inghs of the 22Nd International Conference on Computer
Processing of Oriental Languages. Language Technol-
ogy for the Knowledge-based Economy, ICCPOL ’09,
pages 11–22, Berlin, Heidelberg. Springer-Verlag.

Qi, G.-J., Tang, J., Zha, Z.-J., Chua, T.-S., and Zhang, H.-
J. (2009). An efficient sparse metric learning in high-
dimensional space via l1-penalized log-determinant reg-
ularization. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, ICML ’09,
pages 841–848, New York, NY, USA. ACM.

Rani, P., Pudi, V., and Sharma, D. M. (2016). A semi-

supervised associative classification method for POS tag-
ging. Int J Data Sci Anal, 1(2):123–136, 1 July.

Shaw, B., Huang, B., and Jebara, T. (2011). Learning a dis-
tance metric from a network. In J. Shawe-Taylor, et al.,
editors, Advances in Neural Information Processing Sys-
tems 24, pages 1899–1907. Curran Associates, Inc.

Subramanya, A., Petrov, S., and Pereira, F. (2010). Effi-
cient graph-based semi-supervised learning of structured
tagging models. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Processing,
EMNLP ’10, pages 167–176, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Sugiyama, M. (2006). Local fisher discriminant analysis
for supervised dimensionality reduction. In Proceedings
of the 23rd International Conference on Machine Learn-
ing, ICML ’06, pages 905–912, New York, NY, USA.
ACM.

Talukdar, P. P. and Pereira, F. (2010). Experiments in
graph-based semi-supervised learning methods for class-
instance acquisition. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguis-
tics, ACL ’10, pages 1473–1481, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Talukdar, P. P., Reisinger, J., Paşca, M., Ravichandran, D.,
Bhagat, R., and Pereira, F. (2008). Weakly-supervised
acquisition of labeled class instances using graph random
walks. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP ’08,
pages 582–590, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Zhu, X., Ghahramani, Z., and Lafferty, J. (2003). Semi-
supervised learning using gaussian fields and harmonic
functions. In Proceedings of the Twentieth International
Conference on International Conference on Machine
Learning, ICML’03, pages 912–919. AAAI Press.

Zhu, X., Lafferty, J., and Rosenfeld, R. (2005). Semi-
supervised learning with graphs. Ph.D. thesis, Carnegie
Mellon University, language technologies institute,
school of computer science.

Zhu, L., Gao, S., Pan, S. J., Li, H., Deng, D., and Sha-
habi, C. (2013). Graph-based informative-sentence se-
lection for opinion summarization. In Proceedings of the
2013 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, ASONAM ’13,
pages 408–412, New York, NY, USA. ACM.

10. Language Resource References
Forum for Information Retrieval Evaluation. (2014). FIRE

Corpus. Indian Institute of Science, Bangalore.
Wikipedia. (2016). Tamil Wikipedia Corpus. Wikipedia.

Appendix 92

Appendix B: Configuration File Used to Build CRF Tagger with Al-

lenNLP

1 {

2 "dataset_reader":{

3 "type":"sequence_tagging",

4 "word_tag_delimiter":"\t",

5 "token_delimiter":"\n",

6 "token_indexers":{

7 "tokens":{

8 "type":"single_id"

9 },

10 "elmo":{

11 "type":"elmo_characters"

12 },

13 "token_characters":{

14 "type":"characters"

15 }

16 }

17 },

18 "train_data_path":"/src/data/Tamil_NER_Clean/train.txt

",

19 "validation_data_path":"/src/data/Tamil_NER_Clean/dev.

txt",

20 "test_data_path":"/src/data/Tamil_NER_Clean/test.txt",

21 "evaluate_on_test":true,

22 "model":{

23 "type":"crf_tagger",

24 "text_field_embedder":{

Appendix 93

25 "tokens":{

26 "type":"embedding",

27 "embedding_dim":300,

28 "pretrained_file":"/src/vectors/Wang_Tamil.

txt.gz"

29 },

30 "elmo":{

31 "type":"elmo_token_embedder",

32 "options_file":"/src/options.json",

33 "weight_file":"/src/vectors/tamil_elmo.hdf5",

34 "do_layer_norm":false,

35 "dropout":0.5

36 },

37 "token_characters":{

38 "type":"character_encoding",

39 "embedding":{

40 "embedding_dim":25

41 },

42 "encoder":{

43 "type":"gru",

44 "input_size":25,

45 "hidden_size":80,

46 "num_layers":2,

47 "dropout":0.25,

48 "bidirectional":true

49 }

50 }

51 },

52 "encoder":{

53 "type":"gru",

Appendix 94

54 "input_size":1484,

55 "hidden_size":300,

56 "num_layers":2,

57 "dropout":0.25,

58 "bidirectional":true

59 },

60 "regularizer":[

61 [

62 "transitions",

63 {

64 "type":"l2",

65 "alpha":0.01

66 }

67]

68]

69 },

70 "iterator":{

71 "type":"basic",

72 "batch_size":32

73 },

74 "trainer":{

75 "optimizer":"adam",

76 "num_epochs":20,

77 "patience":10,

78 "cuda_device":-1

79 }

80 }

Listing 1: CRF tagger configuration

1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

Confidential Review Copy. DO NOT DISTRIBUTE.

Appendix C: Graph based semi-supervised sequence tagging for low
resourced languages

Anonymous EMNLP submission

Abstract
We present a novel Graph-based Semi-
Supervised Learning (GSSL) approach for se-
quence tagging tasks. Performance gains over
traditional GSSL techniques are achieved by
capturing local context information in graph
representation, as well as by producing a low-
dimensional graph representation that sepa-
rates nodes belonging to distinct categories.
This GSSL approach far outperforms the other
state-of-the-art techniques in low-resourced
settings, thus proving to a viable solution
for sequence tagging for low-resourced lan-
guages.

1 Introduction

When supervised data is scarce, it has been
common to employ semi-supervised learning
(SSL) techniques for many different Natural Lan-
guage Processing (NLP) tasks (Garrette et al.,
2013; Cheng et al., 2016). In general, graph-
based semi-supervised learning (GSSL) tech-
niques have shown even better performance than
other SSL techniques (Subramanya and Bilmes,
2008). Graphs of words capture term depen-
dence, encode the strength of the dependence as
edge weights, and capture term order (via directed
edges) (Rousseau and Vazirgiannis, 2013; Skia-
nis et al., 2016; Rousseau et al., 2015). Hence,
GSSL shows greater potential for NLP tasks. They
have been used in word sense disambiguation, en-
tity disambiguation, thesaurus construction, tex-
tual entailment, and semantic classification (Mi-
halcea and Radev, 2011), which suggests that se-
mantic relationships between words have been ex-
ploited in graph construction.

As for sequence tagging, there are two key fac-
tors in constructing a meaningful graph. First, it
is important to be able to represent each word oc-
currence (token) as a vertex because the label as-
signment for the same word type may differ based

on the context it is used. Second it is important to
link vertices that are likely to have the same label,
where edge weights govern how strongly the la-
bels of the nodes linked by the edge should agree.
Given such a graph, a label propagation algorithm
could label the unlabeled vertices based on the in-
formation of their nearest neighbours.

Related literature suggests that types have been
the common choice for representing vertices in the
graph (Mihalcea and Tarau, 2004). Early work on
using GSSL for sequence tagging problems also
relied on this word-based representation (Taluk-
dar and Pereira, 2010), thus missing out context
information in their vertex representation. These
approaches mostly rely on word based similarity
measures to determine edge weights.

The alternative way to represent vertices is us-
ing local sequence contexts (n-gram). A notable
work along this line was reported by Subramanya
et al. (2010), which exploited the empirical obser-
vation that the Parts of Speech (POS) of a word
occurrence is mostly determined by its local con-
text. They represent each vertex using a vector of
pointwise mutual information (PMI) values, com-
puted using the n-gram and each of the features
that occur with tokens of that n-gram. The co-
sine distance between these PMI vectors of a pair
of vertices is used as edge weights between those
vertices.

Instead of these PMI-based count models, much
recent GSSL work for sequence tagging reported
the use of traditional neural word embeddings
such as WORD2VEC (predict models) for repre-
senting vertices of the graph (Mokanarangan et al.,
2018; Demirel, 2017). These predict models are
much more concise than PMI vectors. However,
these traditional WORD2VEC approaches are less
sensitive to word order (the local context of a word
occurrence), which makes them sub-optimal for
sequential learning problems (Ling et al., 2015).

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

Confidential Review Copy. DO NOT DISTRIBUTE.

There is another limitation of these approaches,
which is not necessarily limited to GSSL meth-
ods that use predict models, but applicable for
any GSSL method. The foundation assumption in
GSSL is that the similar nodes will carry same la-
bels. Even though this assumption is effective in
many cases, this is not completely true for many
sequence labeling problem instances. For exam-
ple, the word ‘amazed’ and the word ‘fantastic’
are semantically very similar but they should be
labeled with different POS tags.

We present a novel graph building approach to
tackle the above limitation of count models used
in GSSL techniques for sequential tagging. We
adopt the graph building methodology mentioned
in Mokanarangan et al. (2018), but leverage the
structured embedding models presented by Ling
et al. (2015) and Peters et al. (2017), which are
more sensitive to word order. We empirically
evaluate some compelling choices for aggregating
these n-gram token vectors to represent n-grams
effectively.

In order to tackle the second limitation, a graph
constructed using this n-gram representation is
transformed into a lower dimensional vector space
in such a way that vertices belonging to different
classes are well-separated. This helps to reduce
overall computational complexity as well.

We evaluate our approach for three different
sequence tasks (POS, Named Entity Recogni-
tion (NER), and Chunking) for English using the
CoNLL 2003 data set (Tjong Kim Sang and Buch-
holz, 2000), and for POS for Sinhala and Tamil.
For each experiment, we use 1 million unlabeled
tokens. We vary the amount of labelled tokens in a
step-wise manner until up to 100,000 tokens, to re-
semble a low-resourced setting. Results show that
our solution outperforms the state-of-the-art tech-
niques for sequence tagging when the amount of
training data is less than 80,000 tokens.

2 Related Work

Early work on using GSSL for sequence tagging
problems relied on word-based graph representa-
tions. Talukdar and Pereira (2010) had constructed
a word graph using WordNet to perform NER. In
this approach, vertices are noted as surface level
word forms and each relationship in WordNet is
represented as an edge. Although simple and
straightforward, this approach fails to capture the
syntactic information essential for sequence clas-

sification tasks.

In contrast, Subramanya et al. (2010) represent
each vertex using a vector of point-wise mutual
information (PMI) values, computed using the n-
gram and each of the features that occur with to-
kens of that n-gram. The cosine distance between
these PMI vectors of a pair of vertices are used as
edge weights between those vertices. These PMI
vectors are capable of capturing local context in-
formation. However, they note that the vectors
used in this approach are sparse and high dimen-
sional.

Extending on Subramanya et al. (2010)’s
work, Das and Petrov (2011) designed unsuper-
vised POS taggers for languages that have no la-
beled training data. They constructed a graph
based on the same PMI features introduced by
Subramanya et al. (2010), and used graph-based
label propagation for cross-lingual knowledge
transfer. This solution was based on the observa-
tion that despite the language differences, words
in different languages share similar relationships
in local context.

In their research on graph-based posterior reg-
ularization for semi-supervised structured predic-
tion, He et al. (2013) claimed that using Subra-
manya et al. (2010)’s features to build graphs leads
to unrelated trigrams to match. Instead they pro-
posed a different set of features to build PMI based
graphs which also suffers from sparsity.

Recently, Demirel (2017) had proposed an ap-
proach to solve POS tagging where every word
in a corpus is connected into a graph where each
node is denoted by a word embedding vector.
They capture the word ordering information by
connecting each word to next and previous word
in the corpus. This graph is then directly fed into a
neural network model called graph convolutional
network (GCN) for classification.

Exploiting the cluster assumption of word em-
bedding, Mokanarangan et al. (2018) had pro-
posed an approach where each node is repre-
sented by a word embedding vector, and edges be-
tween nodes are calculated using supervised met-
ric learning. Though this approach has shown
promise in low resourced settings, it fails to cap-
ture different context information for the same
word.

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

Confidential Review Copy. DO NOT DISTRIBUTE.

3 Graph Construction and Label
Propagation

3.1 Representing Nodes of the Graph
In sequence tagging problems, label of a word is
predominantly determined by its context. Thus,
syntactic relationships between word tokens play
a major role. For example, the word present may
appear as a noun or a verb, depending on the con-
text. Thus, without referring to the context, the ex-
act POS tag of the word cannot be determined. As
an example with respect to Named Entities (NEs),
consider the NEs “Central Bank spokesman” and
“The Central African Republic”. Here, the word
‘Central’ is used as part of both an Organization
and Location (Peters et al., 2017).

As opposed to using lexical units or simple
word vector representations to create nodes, we
experiment with different types of vector represen-
tations.

Related literature presents contradicting argu-
ments with respect to the performance of count
models and predict models. Baroni et al. (2014)
and Mikolov et al. (2013) claim that predict mod-
els such as WORD2VEC and FASTTEXT capture
more syntactic and semantic information com-
pared to traditional count based distributional
models such as PMI vectors. However, much re-
cently Levy et al. (2015) have claimed that with
proper system choices and hyper parameters, tra-
ditional count models can yield similar gains.
However, in count models, increasing the unla-
beled data produces extremely spares vectors that
leads to computationally demanding graph build-
ing. Thus we experimented with the following
predict models that have claimed to capture syn-
tactic information.

WANG2VEC (Ling et al., 2015): WANG2VEC

is presented as a model that captures more
syntactic-oriented embedding than WORD2VEC.
Though this still produces same vector representa-
tions for words in different contexts, experiments
have shown that vectors produced are syntactically
close.

FASTTEXT (Bojanowski et al., 2016): While
WORD2VEC treats each word in corpus as an
atomic entity and generates a vector for each word,
FASTTEXT treats each word as comprised of n-
grams and the vector is made of sum of these
vectors. Previous research (Mokanarangan et al.,
2018) has shown that FASTTEXT performs well
when compared with WORD2VEC in GSSL set-

tings.
ELMO (Peters et al., 2017): This semi-

supervised bidirectional language model com-
putes an encoding of the context at each position
in the sequence. It has been proved that ELMO

surpasses the state of the art approaches in captur-
ing semantic and syntactic models. Although rich
with information, it is computationally exhaustive
to create these vectors. Unlike other word embed-
ding models used, this model produces vectors for
a word based on the contextual information of the
word.

As mentioned earlier, we base our work on one
assumption that words with same local sequence
context will have the same sequence tags. In or-
der to capture the local context information in our
graph, we experimented with one solution: con-
catenation of vector n-grams.

3.2 Creating Edges of the Graph
Similar to the approach proposed by Subramanya
et al. (2010), once the nodes in the graph are fixed,
the edge weights wij between them between two
vector n-grams i and j are defined as shown in
Equation 1.

wij =

{
sim(i, j), if i ∈ K(j) or j ∈ K(i).

0, otherwise.
(1)

Here K(i) in the set of k-nearest neighbors of
vector n-gram i. The similarity function was de-
fined using the Gaussian kernel denoted in Equa-
tion 2 (Dhillon et al., 2010). Here d(xi, xj) is the
euclidean distance between vectors i and j.

sim(i, j) = exp(
−d(xi, xj)

2σ2
) (2)

Theoretically, there can be an edge between
each pair of nodes in the graph. However, one can
safely disregard edges that have very low weights,
because the relationship between such nodes is
very weak. Such weak edges can add noise to la-
bel propagation.

The identification of the set of vertices that
should be connected to a given vertex can be mod-
elled in the form of k-nearest neighbour problem,
where the objective is to determine the set of ver-
tices that have the strongest relationship with the
given node (i.e., we determine the set of edges
with the highest weight for a given node). Deter-
mining the set of edges using k-nn is more effec-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

tive if the vertices belonging to different classes
are well-separated. Thus we transform the vector
space into a lower dimension while preserving the
separation of classes.

This dimensionality reduction serves another
purpose. The performance of nearest neighbor
algorithms degrades when the size of the vector
increases. Since we used word embedding mod-
els result in 300 dimensions. When concatenat-
ing vector n-grams, this dimension reaches 900.
Thus the dimensionality reduction makes graph
construction extremely efficient.

Algorithm 1 presents the graph construction
procedure.

Algorithm 1: GSSL using word embedding
Data: Corpus with n number of words where

nl are labeled (n >>> nl)
for each wi in corpus do

veci = ConvertWordToV ector(wi);
vi = Concatenate(veci−1, veci, veci+1);

end
Vr = BuildV ectorList(v);
Vs = SupervisedReduction(Vr);
for each vi in V do

ei = NearestKV ectors(vi,
distance =′ euclidean′);
wi = CalculateWeight(ei)

end
E = BuildEdgeMatrix(e);
W = BuildWeightMatrix(w);
Build graph G = (V,E,W);
Predict(G,n)

3.3 Label Propagation

Label propagation refers to the process of assign-
ing labels to unlabeled nodes using the labelled
nodes. The prior assumption of semi-supervised
learning is that nearby points and points on the
same structure are likely to have the same la-
bels (Zhu et al., 2003). This is a simple and
straightforward approach that have been the sta-
ple of semi-supervised learning and have yielded
encouraging results.

4 Implementation

As mentioned above, high dimensionality of the
vectors and the large size of the sample space
severely affect the performance of k-nn algorithm.
Thus we resorted to approximate nearest neighbor

algorithms(ANN). We use Annoy (Bernhardsson,
2018), which has been empirically shown to work
better with large data-sets (Aumüller et al., 2017).
k was set to an arbitrary value of 20. It should
be noted this ANN’s accuracy drops when dimen-
sions of the vector is greater than 100. This at-
tribute played an important role in choosing to re-
duce dimensions.

To achieve a discriminant feature set in a lower
dimension, two dimensionality reduction tech-
niques were experimented with Linear discrim-
inant analysis (LDA) and Fisher linear discrim-
inant analysis (LFDA). Both LDA and LFDA
are supervised methods that are useful in find-
ing dimensions which aim at separating the clus-
ters (Sugiyama, 2006).

For label propagation, Harmonic Function
(HMN) (Zhu et al., 2003) and Local and Global
Consistency (LGC) (Zhou et al., 2003) were
experimented with. These are two of the
well-established label propagation algorithms that
have proven their effectiveness in different con-
texts (Zhu, 2005).

5 Experiments and Results

5.1 Data set

English. We evaluated our approach on
CoNLL2003 NER task (Sang and Meulder, 2003)
for POS, NER and Chunking task. We emulated
a low resource setting for English by using only
20K, 40K, 60K and 100K data as our training set-
ting as opposed to using the full training data.

Tamil. Tamil belongs to the Dravidian language
family, which is used in some parts of South Asia.
For Tamil we used the dataset from the Forum
for Information Retrieval (FIRE) (Majumder et al.,
2008). The dataset has nearly 80K labeled data
with 32 POS classes.

Sinhala. Sinhala is an Indo Aryan language pre-
dominantly used in Sri Lanka. It has evolved
from the same language family as Hindi, but be-
ing a language limited to an island nation, it has
evolved to have its own characteristics. Sinhala
is an ideal example of a low-resourced language.
For our experiments, we used the University of
Moratuwa (UOM) Sinhala POS corpus (Fernando
et al., 2016), which currently has 260K tagged to-
kens labeled using 32 tags.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

Confidential Review Copy. DO NOT DISTRIBUTE.

5.2 Experiment Setup

Experiments are designed to determine the impact
of local context information in graph construction
for sequence tagging tasks, and the impact of di-
mensionality reduction on the same. For English,
we test the performance of our solution with re-
spect to POS tagging, NER, and Chunking tasks
of the CoNLL 2003 dataset. With respect to Tamil
and Sinhala, we experiment only with POS tag-
ging, due to the unavailability of data for other
tasks.

The current implementation employs the Con-
tinuous Bag of Words (skip-gram) model of FAST-
TEXT (Bojanowski et al., 2016) to generate word
embeddings for English, where the vector dimen-
sion is 300.

WANG2VEC models are generated using a part
of the wiki dump for all the three languages. Di-
mension of these vectors is also set to 300.

ELMO model (Peters et al., 2017) of 1024 di-
mensions was reused. ELMO model was not
used for Sinhala and Tamil, since we do not have
enough computer capacity required to generate the
model.

We have experimented with n = 3, when gener-
ating vector n-grams. For example when n = 3, in
the example given in Section 3, the word “Central”
will be represented by concatenating the word vec-
tors of “The”, “Central”, “African”, thus adding
the context information. Thus we end up with a
feature vector of 900 dimensions for FASTTEXT

and WANG2VEC, and 3072 for ELMO.
For each language, the graph is constructed us-

ing 1 million tokens from an unlabeled corpus, and
the labeled text size is varied from 20k to 100k in
a step-wise manner.

To show that our GSSL solution works in low-
resourced settings better than the state-of-the-art
reported in the context of high-resourced settings,
we compare our results with the work of Peters
et al. (2017). We sampled the same amount of
training samples from the CoNLL 2003 Shared
Task (Sang and Meulder, 2003). For this experi-
ment, according to the discussion by Peters et al.
(2017), we used two bidirectional GRUs with 80
hidden units and 25 dimensional character embed-
dings for the token character encoder. The se-
quence layer uses two bidirectional GRUs with
300 hidden units each. For regularization, we add
25% dropout to the input of each GRU, but not to
the recurrent connections to setup the model. We

also embed the ELMO model to represent each
word in this bidirectional model and tested it.

5.3 Results

For POS we report the accuracy, while for Chunk-
ing and NER we report the official evaluation met-
ric (micro-averaged F1 score).

Both LDA and LFDA showed near equal perfor-
mance, and so did HMN and LGC. Thus the fol-
lowing results only showcase the experiment se-
tups that used LDA and HMN.

Table 1 shows the impact of different word em-
bedding models in vertex representation, with and
without dimensionality reduction on POS, NER,
and Chunking tasks in the CoNLL 2003 data set.
It also shows the impact of n-gram concatena-
tion, and dimensionality reduction . Results are
reported for different labeled data set sizes, which
demonstrate a low-resourced setting.

Since there were no pre-trained embeddings
available for WANG2VEC, we trained from the
first billion characters from Wikipedia for English.
This lead to an sub optimal results across all tasks,
hence we have omitted from reporting it.

As indicated by the results in Table 1, it is evi-
dent that ELMO performs much better than FAST-
TEXT for all the tasks and all the data set sizes.
While n-gram concatenation or dimensionality re-
duction did not show compelling results when
used in isolation, when combined they contributed
to a significant performance gain for both FAST-
TEXT and ELMO.

In this experiment, we used Annoy approxi-
mate nearest neighbor algorithm to quickly cal-
culate the nearest neighbors. Benchmarks done
on ANN (Aumüller et al., 2017) have shown ac-
curacy drops when the dimension increases above
100. This can be seen in our results - with con-
catenated vectors or high dimension vectors like
ELMO the accuracy is considerably lower. Since
our approach was transductive, we were wary of
the efficiency and timing. Traditional k-NN algo-
rithms gave better scores but lead to high time and
memory consumption.

Tables 2 and 3 show the results of similar ex-
periments carried out for Sinhala and Tamil POS
tagging tasks, respectively. While FASTTEXT per-
forms better than WANG2VEC for Tamil, the op-
posite was noted for Sinhala. We attribute this dif-
ference to the differences in the models created
for the two languages - WANG2VEC and FAST-

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

Confidential Review Copy. DO NOT DISTRIBUTE.

POS Chunking NER
20K 40K 60K 80K 100K 20K 40K 60K 80K 100K 20K 40K 60K 80K 100K

FASTTEXT

A 0.75 0.79 0.83 0.839 0.81 0.66 0.70 0.73 0.73 0.71 0.35 0.30 0.46 0.46 0.34
B 0.69 0.72 0.74 0.77 0.74 0.66 0.69 0.67 0.72 0.74 0.31 0.25 0.44 0.43 0.35
C 0.60 0.64 0.68 0.70 0.66 0.53 0.57 0.57 0.69 0.60 0.38 0.30 0.44 0.46 0.39
D 0.85 0.88 0.87 0.88 0.86 0.79 0.83 0.85 0.83 0.83 0.61 0.53 0.69 0.66 0.50

ELMO

A 0.84 0.84 0.88 0.88 0.86 0.82 0.85 0.85 0.82 0.84 0.70 0.67 0.84 0.81 0.65
B 0.90 0.91 0.92 0.92 0.91 0.82 0.83 0.84 0.83 0.84 0.69 0.65 0.76 0.79 0.70
C 0.74 0.76 0.83 0.81 0.77 0.76 0.80 0.79 0.78 0.78 0.62 0.56 0.81 0.77 0.57
D 0.928 0.934 0.941 0.942 0.93 0.90 0.91 0.92 0.88 0.90 0.79 0.76 0.86 0.89 0.70

Table 1: Comparison of different methods to represent nodes and their respective accuracy for different tasks in
English. A - Single Vector, B - Dimension reduced Single Vector, C - Concatenated n-gram vectors, D - Dimension
reduced concatenated n-gram vectors.

Tamil POS Sinhala POS
20K 40K 60K 20K 40K 60K 80K 100K

FASTTEXT

A 0.77 0.81 0.73 0.80 0.76 0.83 0.82 0.77
B 0.62 0.79 0.77 0.80 0.77 0.83 0.82 0.79
C 0.54 0.58 0.58 0.66 0.60 0.67 0.66 0.59
D 0.87 0.88 0.89 0.901 0.88 0.88 0.85 0.84

WANG2VEC

A 0.72 0.74 0.70 0.815 0.775 0.84 0.81 0.77
B 0.59 0.71 0.54 0.78 0.76 0.81 0.79 0.77
C 0.58 0.82 0.57 0.714 0.66 0.70 0.70 0.63
D 0.70 0.71 0.72 0.801 0.76 0.84 0.85 0.81

Table 2: Comparison of different methods to represent
nodes and their respective accuracy for Tamil and Sin-
hala POS tagging. A - Single Vector, B - Dimension re-
duced Single Vector, C - Concatenated n-gram vectors,
D - Dimension reduced concatenated n-gram vectors.

TEXT models for Sinhala were created using a
much larger corpus than that for Tamil. More-
over, domain-similarity was much higher between
the Sinhala test data and the data used to build the
models. In line with the observation for English,
for both the languages, FastText performs better
when concatenated and dimensionality is reduced.
However, contrary to our expectations, the same is
not clearly observed with respect to WANG2VEC.

We then compared the performance of our
GSSL approach against Peters et al. (2017) us-
ing the best result reported in Table 1. As shown
in Figures 1, 2 and 3, when the ELMo model with
n-gram concatenation and dimensionality reduc-
tion is used, our GSSL approach outperforms Pe-
ters et al. (2017)’s bidirectional LSTM CRF.

According to these Figures, when increasing
training data, opposed to our expectations there
are some drops in scores. One of the glaring one
was with NER. For dimension reduced concate-

Figure 1: POS accuracy for GSSL Vs LSTM-CRF

Figure 2: Chunking F1-Score for GSSL Vs LSTM-
CRF

Figure 3: NER F1-Score for GSSL Vs LSTM-CRF

nated ELMO vector with 80K training data re-

7

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

Confidential Review Copy. DO NOT DISTRIBUTE.

sulted an 0.89 F1 score, and it drops to 0.7 for
100K training data. Further analysis revealed that
when training data set was increased, it had lead
to over-fitting. For example our training data had
Germany as LOC and the test data had German
which was supposed to be classified as MISC was
classified as LOC due to the close proximity of
vectors.

Fernando et al. (2016) had presented POS tag-
ger for Sinhala using hand crafted language de-
pendent features. This research reported the best
accuracy for the University of Moratuw corpus.
We sampled out a 20K dataset form this corpus
as training data for both ours and Fernando et al.
(2016)’s approach. The SVM Tagger reported an
accuray of 87.11% while we were able to achieve
an accuracy of 90.1%. Mokanarangan et al. (2018)
had reported for GSSL based approach for FIRE
POS tagging with an accuracy of 87.43% for 60K
data. For the same training data we were able to
achieve an accuracy of 89%.

6 Conclusion

The aim of this research was to develop an effi-
cient GSSL solution for sequence tagging. Our so-
lution is based on identifying neural word embed-
ding models that better capture local context infor-
mation in graph vertices, and producing a graph
in a low-dimensional space that has vertices be-
longing to different classes well-separated. While
some of the word embedding models employed
did not generate the expected result, in general,
our hypothesis of capturing context information
by concatenating vectors is validated. In partic-
ular, n-gram concatenation and dimensionality re-
duction resulted in significant performance gains.
Given the fact that our best result outperforms
the existing state-of-the-art (for high resource set-
tings), when the labeled data set size is small, our
GSSL solution can be presented as a promising
alternative for sequence tagging in low-resourced
languages.

In the current implementation, LDA calcula-
tions are done mostly in memory. Thus when we
attempt to use larger annotated training sets with
each vector having over 900 dimensions leads to
memory overflows. Since our target was towards
addressing low resource settings, we did not at-
tempt to address this issue. Thus scalability of
our approach for high resource settings should be
explored with more optimal dimensionality reduc-

tion approaches.

References
Martin Aumüller, Erik Bernhardsson, and Alexander

Faithfull. 2017. Ann-benchmarks: A benchmarking
tool for approximate nearest neighbor algorithms. In
International Conference on Similarity Search and
Applications, pages 34–49. Springer.

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 238–247.

E.: Annoy Bernhardsson. 2018. Annoy - Approx-
imate Nearest Neighbor. https://github.
com/spotify/annoy. [Online; accessed 21-
Feb-2018].

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Semi-
supervised learning for neural machine translation.
CoRR, abs/1606.04596.

Dipanjan Das and Slav Petrov. 2011. Unsupervised
part-of-speech tagging with bilingual graph-based
projections. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies-Volume 1,
pages 600–609. Association for Computational Lin-
guistics.

Saner Demirel. 2017. Spectral Graph Convolutional
Networks for Part-of-Speech Tagging. Ph.D. thesis,
Universität Koblenz-Landau.

Paramveer S Dhillon, Partha Pratim Talukdar, and
Koby Crammer. 2010. Inference driven metric
learning (idml) for graph construction.

Sandareka Fernando, Surangika Ranathunga, Sanath
Jayasena, and Gihan Dias. 2016. Comprehensive
part-of-speech tag set and svm based pos tagger for
sinhala. In Proceedings of the 6th Workshop on
South and Southeast Asian Natural Language Pro-
cessing (WSSANLP2016), pages 173–182.

Dan Garrette, Jason Mielens, and Jason Baldridge.
2013. Real-world semi-supervised learning of pos-
taggers for low-resource languages. In Proceed-
ings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 583–592. Association for Computa-
tional Linguistics.

8

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

Confidential Review Copy. DO NOT DISTRIBUTE.

Luheng He, Jennifer Gillenwater, and Ben Taskar.
2013. Graph-based posterior regularization for
semi-supervised structured prediction. In Proceed-
ings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 38–46.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1299–1304.

Prasenjit Majumder, Mandar Mitra, Dipasree Pal, Ayan
Bandyopadhyay, Samaresh Maiti, Sukanya Mitra,
Aparajita Sen, and Sukomal Pal. 2008. Text collec-
tions for fire. In Proceedings of the 31st annual in-
ternational ACM SIGIR conference on Research and
development in information retrieval, pages 699–
700. ACM.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing.

Rada F. Mihalcea and Dragomir R. Radev. 2011.
Graph-based Natural Language Processing and In-
formation Retrieval, 1st edition. Cambridge Univer-
sity Press, New York, NY, USA.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751.

Thayaparan Mokanarangan, Ranathunga Surangika,
and Thayasivam Uthayasanker. 2018. Graph based
semi-supervised learning approach for tamil pos tag-
ging. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Paris, France. European Language
Resources Association (ELRA).

Matthew E. Peters, Waleed Ammar, Chandra Bhaga-
vatula, and Russell Power. 2017. Semi-supervised
sequence tagging with bidirectional language mod-
els. CoRR, abs/1705.00108.

François Rousseau and Michalis Vazirgiannis. 2013.
Graph-of-word and tw-idf: New approach to ad hoc
ir. In Proceedings of the 22Nd ACM International
Conference on Information & Knowledge Manage-
ment, CIKM ’13, pages 59–68, New York, NY,
USA. ACM.

François Rousseau, Emmanouil Kiagias, and Michalis
Vazirgiannis. 2015. Text categorization as a graph
classification problem. In Proceedings of the 53rd

Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), volume 1, pages 1702–1712.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition.
CoRR, cs.CL/0306050.

Konstantinos Skianis, François Rousseau, and Michalis
Vazirgiannis. 2016. Regularizing text categorization
with clusters of words. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1827–1837.

Amarnag Subramanya and Jeff Bilmes. 2008. Soft-
supervised learning for text classification. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP ’08, pages
1090–1099, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Amarnag Subramanya, Slav Petrov, and Fernando
Pereira. 2010. Efficient graph-based semi-
supervised learning of structured tagging models. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, EMNLP
’10, pages 167–176, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Masashi Sugiyama. 2006. Local fisher discriminant
analysis for supervised dimensionality reduction. In
Proceedings of the 23rd International Conference on
Machine Learning, ICML ’06, pages 905–912, New
York, NY, USA. ACM.

Partha Pratim Talukdar and Fernando Pereira. 2010.
Experiments in graph-based semi-supervised learn-
ing methods for class-instance acquisition. In Pro-
ceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL ’10, pages
1473–1481, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000.
Introduction to the conll-2000 shared task: Chunk-
ing. In Proceedings of the 2Nd Workshop on Learn-
ing Language in Logic and the 4th Conference on
Computational Natural Language Learning - Vol-
ume 7, ConLL ’00, pages 127–132, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Dengyong Zhou, Olivier Bousquet, Thomas Navin
Lal, Jason Weston, and Bernhard Schölkopf. 2003.
Learning with local and global consistency. In Pro-
ceedings of the 16th International Conference on
Neural Information Processing Systems, NIPS’03,
pages 321–328, Cambridge, MA, USA. MIT Press.

Xiaojin Zhu. 2005. Semi-supervised learning literature
survey.

9

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

Confidential Review Copy. DO NOT DISTRIBUTE.

Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty.
2003. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the
Twentieth International Conference on International
Conference on Machine Learning, ICML’03, pages
912–919. AAAI Press.

Bibliography

[1] Erik F Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003
shared task: Language-independent named entity recognition. In Proceed-
ings of the seventh conference on Natural language learning at HLT-NAACL
2003-Volume 4, pages 142–147. Association for Computational Linguistics,
2003.

[2] Beth M Sundheim. Overview of results of the muc-6 evaluation. In Pro-
ceedings of the 6th conference on Message understanding, pages 13–31. As-
sociation for Computational Linguistics, 1995.

[3] Diego Mollá, Menno Van Zaanen, Steve Cassidy, et al. Named entity recog-
nition in question answering of speech data. 2007.

[4] Changki Lee, Yi-Gyu Hwang, Hyo-Jung Oh, Soojong Lim, Jeong Heo,
Chung-Hee Lee, Hyeon-Jin Kim, Ji-Hyun Wang, and Myung-Gil Jang. Fine-
grained named entity recognition using conditional random fields for ques-
tion answering. In Asia Information Retrieval Symposium, pages 581–587.
Springer, 2006.

[5] Einat Minkov, Richard C Wang, and William W Cohen. Extracting per-
sonal names from email: Applying named entity recognition to informal
text. In Proceedings of the conference on Human Language Technology and
Empirical Methods in Natural Language Processing, pages 443–450. Associ-
ation for Computational Linguistics, 2005.

[6] Chenliang Li, Jianshu Weng, Qi He, Yuxia Yao, Anwitaman Datta, Aixin
Sun, and Bu-Sung Lee. Twiner: named entity recognition in targeted twitter
stream. In Proceedings of the 35th international ACM SIGIR conference on

104

Bibliography 105

Research and development in information retrieval, pages 721–730. ACM,
2012.

[7] Giridhar Kumaran and James Allan. Text classification and named entities
for new event detection. In Proceedings of the 27th annual international
ACM SIGIR conference on Research and development in information re-
trieval, pages 297–304. ACM, 2004.

[8] Alireza Mansouri, Lilly Suriani Affendey, and Ali Mamat. Named entity
recognition approaches. International Journal of Computer Science and
Network Security, 8(2):339–344, 2008.

[9] James R Curran and Stephen Clark. Language independent ner using a
maximum entropy tagger. In Proceedings of the seventh conference on
Natural language learning at HLT-NAACL 2003-Volume 4, pages 164–167.
Association for Computational Linguistics, 2003.

[10] Rahul Sharnagat. Named entity recognition: A literature survey. Center
For Indian Language Technology, 2014.

[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[12] Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, and Russell
Power. Semi-supervised sequence tagging with bidirectional language mod-
els. CoRR, abs/1705.00108, 2017. URL http://arxiv.org/abs/1705.
00108.

[13] Pranavan Theivendiram, Megala Uthayakumar, Nilusija Nadarasamoorthy,
Mokanarangan Thayaparan, Sanath Jayasena, Gihan Dias, and Surangika
Ranathunga. Named-entity-recognition (ner) for tamil language using
margin-infused relaxed algorithm (mira). In International Conference on
Intelligent Text Processing and Computational Linguistics, pages 465–476.
Springer, 2016.

[14] SAPM Manamini, AF Ahamed, RAEC Rajapakshe, GHA Reemal,
S Jayasena, GV Dias, and S Ranathunga. Ananya-a named-entity-
recognition (ner) system for sinhala language. In Moratuwa Engineering
Research Conference (MERCon), 2016, pages 30–35. IEEE, 2016.

http://arxiv.org/abs/1705.00108
http://arxiv.org/abs/1705.00108

Bibliography 106

[15] JK Dahanayaka and AR Weerasinghe. Named entity recognition for sin-
hala language. In Advances in ICT for Emerging Regions (ICTer), 2014
International Conference on, pages 215–220. IEEE, 2014.

[16] R Vijayakrishna and L Sobha. Domain focused named entity recognizer
for tamil using conditional random fields. In Proceedings of the IJCNLP-08
Workshop on Named Entity Recognition for South and South East Asian
Languages, 2008.

[17] Dan Garrette, Jason Mielens, and Jason Baldridge. Real-world semi-
supervised learning of pos-taggers for low-resource languages. In Proceed-
ings of the 51st Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 583–592. Association for Com-
putational Linguistics, 2013. URL http://www.aclweb.org/anthology/
P13-1057.

[18] Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and
Yang Liu. Semi-supervised learning for neural machine translation. CoRR,
abs/1606.04596, 2016. URL http://arxiv.org/abs/1606.04596.

[19] Amarnag Subramanya and Jeff Bilmes. Soft-supervised learning for text
classification. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP ’08, pages 1090–1099, Stroudsburg,
PA, USA, 2008. Association for Computational Linguistics. URL http:
//dl.acm.org/citation.cfm?id=1613715.1613857.

[20] Mouiad Fadiel Alawneh and Tengku Mohd Sembok. Rule-based and
example-based machine translation from english to arabic. In Bio-Inspired
Computing: Theories and Applications (BIC-TA), 2011 Sixth International
Conference on, pages 343–347. IEEE, 2011.

[21] Peter F Brown, John Cocke, Stephen A Della Pietra, Vincent J Della Pietra,
Fredrick Jelinek, John D Lafferty, Robert L Mercer, and Paul S Roossin. A
statistical approach to machine translation. Computational linguistics, 16
(2):79–85, 1990.

http://www.aclweb.org/anthology/P13-1057
http://www.aclweb.org/anthology/P13-1057
http://arxiv.org/abs/1606.04596
http://dl.acm.org/citation.cfm?id=1613715.1613857
http://dl.acm.org/citation.cfm?id=1613715.1613857

Bibliography 107

[22] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. CoRR, abs/1409.0473,
2014. URL http://arxiv.org/abs/1409.0473.

[23] Pasindu Tennage, Prabath Sandaruwan, Malith Thilakarathne, Achini
Herath, and Surangika Ranathunga. Handling Rare Word Problem using
Synthetic Training Data for Sinhala and Tamil Neural Machine Transla-
tion. In Nicoletta Calzolari (Conference chair), Khalid Choukri, Christo-
pher Cieri, Thierry Declerck, Sara Goggi, Koiti Hasida, Hitoshi Isahara,
Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan
Odijk, Stelios Piperidis, and Takenobu Tokunaga, editors, Proceedings of
the Eleventh International Conference on Language Resources and Eval-
uation (LREC 2018), Miyazaki, Japan, May 7-12, 2018 2018. European
Language Resources Association (ELRA). ISBN 979-10-95546-00-9.

[24] Fathima Farhath, Pranavan Theivendiram, Surangika Ranathunga, Sanath
Jayasena, and Gihan Dias. Improving domain-specific SMT for low-
resourced languages using data from different domains. In Nicoletta Cal-
zolari (Conference chair), Khalid Choukri, Christopher Cieri, Thierry De-
clerck, Sara Goggi, Koiti Hasida, Hitoshi Isahara, Bente Maegaard, Joseph
Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis,
and Takenobu Tokunaga, editors, Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018), Miyazaki,
Japan, May 7-12, 2018 2018. European Language Resources Association
(ELRA). ISBN 979-10-95546-00-9.

[25] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Mar-
cello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, et al. Moses: Open source toolkit for statistical ma-
chine translation. In Proceedings of the 45th annual meeting of the ACL on
interactive poster and demonstration sessions, pages 177–180. Association
for Computational Linguistics, 2007.

[26] Behrang Mohit. Named entity recognition. In Natural language processing
of semitic languages, pages 221–245. Springer, 2014.

http://arxiv.org/abs/1409.0473

Bibliography 108

[27] Hristo Tanev, Jakub Piskorski, and Martin Atkinson. Real-time news event
extraction for global crisis monitoring. In International Conference on
Application of Natural Language to Information Systems, pages 207–218.
Springer, 2008.

[28] Sriparna Saha, Asif Ekbal, and Utpal Kumar Sikdar. Named entity recog-
nition and classification in biomedical text using classifier ensemble. Inter-
national journal of data mining and bioinformatics, 11(4):365–391, 2015.

[29] Prasenjit Majumder, Mandar Mitra, Dipasree Pal, Ayan Bandyopadhyay,
Samaresh Maiti, Sukanya Mitra, Aparajita Sen, and Sukomal Pal. Text
collections for fire. In Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in information retrieval,
pages 699–700. ACM, 2008.

[30] Douglas E Appelt, Jerry R Hobbs, John Bear, David Israel, Megumi
Kameyama, David Martin, Karen Myers, and Mabry Tyson. Sri inter-
national fastus system: Muc-6 test results and analysis. In Proceedings of
the 6th conference on Message understanding, pages 237–248. Association
for Computational Linguistics, 1995.

[31] Ralph Grishman. Information extraction: Techniques and challenges. In
International Summer School on Information Extraction, pages 10–27.
Springer, 1997.

[32] Michal Konkol and Miloslav Konopík. Named entity recognition for highly
inflectional languages: effects of various lemmatization and stemming ap-
proaches. In International Conference on Text, Speech, and Dialogue, pages
267–274. Springer, 2014.

[33] Daniel M Bikel, Richard Schwartz, and Ralph M Weischedel. An algorithm
that learns what’s in a name. Machine learning, 34(1-3):211–231, 1999.

[34] G David Forney. The viterbi algorithm. Proceedings of the IEEE, 61(3):
268–278, 1973.

[35] GuoDong Zhou and Jian Su. Named entity recognition using an hmm-based
chunk tagger. In proceedings of the 40th Annual Meeting on Association for

Bibliography 109

Computational Linguistics, pages 473–480. Association for Computational
Linguistics, 2002.

[36] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling sequence
data. 2001.

[37] Label bias problem. https://cs.nyu.edu/courses/spring13/CSCI-GA.
2590-001/LabelBias.pptx. Accessed: 2018-06-17.

[38] Paul McNamee and James Mayfield. Entity extraction without language-
specific resources. In proceedings of the 6th conference on Natural language
learning-Volume 20, pages 1–4. Association for Computational Linguistics,
2002.

[39] Sriparna Saha and Asif Ekbal. Combining multiple classifiers using vote
based classifier ensemble technique for named entity recognition. Data &
Knowledge Engineering, 85:15–39, 2013.

[40] Amarnag Subramanya, Slav Petrov, and Fernando Pereira. Efficient graph-
based semi-supervised learning of structured tagging models. In Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Process-
ing, EMNLP ’10, pages 167–176, Stroudsburg, PA, USA, 2010. Association
for Computational Linguistics. URL http://dl.acm.org/citation.cfm?
id=1870658.1870675.

[41] Partha Pratim Talukdar and Fernando Pereira. Experiments in graph-
based semi-supervised learning methods for class-instance acquisition. In
Proceedings of the 48th Annual Meeting of the Association for Compu-
tational Linguistics, ACL ’10, pages 1473–1481, Stroudsburg, PA, USA,
2010. Association for Computational Linguistics. URL http://dl.acm.
org/citation.cfm?id=1858681.1858830.

[42] Xavier Carreras, Lluís Màrquez, and Lluís Padró. A simple named en-
tity extractor using adaboost. In Proceedings of the seventh conference on
Natural language learning at HLT-NAACL 2003-Volume 4, pages 152–155.
Association for Computational Linguistics, 2003.

https://cs.nyu.edu/courses/spring13/CSCI-GA.2590-001/LabelBias.pptx
https://cs.nyu.edu/courses/spring13/CSCI-GA.2590-001/LabelBias.pptx
http://dl.acm.org/citation.cfm?id=1870658.1870675
http://dl.acm.org/citation.cfm?id=1870658.1870675
http://dl.acm.org/citation.cfm?id=1858681.1858830
http://dl.acm.org/citation.cfm?id=1858681.1858830

Bibliography 110

[43] Gunnar Rätsch, Takashi Onoda, and K-R Müller. Soft margins for ad-
aboost. Machine learning, 42(3):287–320, 2001.

[44] Amarnag Subramanya and Partha Pratim Talukdar. Graph-based semi-
supervised learning. Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning, 8(4):1–125, 2014.

[45] David Nadeau and Satoshi Sekine. A survey of named entity recognition
and classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[46] Enrique Alfonseca and Suresh Manandhar. An unsupervised method for
general named entity recognition and automated concept discovery. In Pro-
ceedings of the 1st international conference on general WordNet, Mysore,
India, pages 34–43, 2002.

[47] Yusuke Shinyama and Satoshi Sekine. Named entity discovery using com-
parable news articles. In Proceedings of the 20th international conference on
Computational Linguistics, page 848. Association for Computational Lin-
guistics, 2004.

[48] Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal
Shaked, Stephen Soderland, Daniel S Weld, and Alexander Yates. Unsu-
pervised named-entity extraction from the web: An experimental study.
Artificial intelligence, 165(1):91–134, 2005.

[49] Ryan Cotterell and Kevin Duh. Low-resource named entity recognition
with cross-lingual, character-level neural conditional random fields. In Pro-
ceedings of the Eighth International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), volume 2, pages 91–96, 2017.

[50] Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight,
and Heng Ji. Cross-lingual name tagging and linking for 282 languages. In
Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), volume 1, pages 1946–1958,
2017.

[51] Zhilin Yang, Ruslan Salakhutdinov, and William Cohen. Multi-task cross-
lingual sequence tagging from scratch. arXiv preprint arXiv:1603.06270,
2016.

Bibliography 111

[52] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for
sequence tagging. arXiv preprint arXiv:1508.01991, 2015.

[53] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya
Kawakami, and Chris Dyer. Neural architectures for named entity recogni-
tion. arXiv preprint arXiv:1603.01360, 2016.

[54] Xuezhe Ma and Eduard Hovy. End-to-end sequence labeling via bi-
directional lstm-cnns-crf. arXiv preprint arXiv:1603.01354, 2016.

[55] Nils Reimers and Iryna Gurevych. Optimal hyperparameters for deep lstm-
networks for sequence labeling tasks. arXiv preprint arXiv:1707.06799,
2017.

[56] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014 con-
ference on empirical methods in natural language processing (EMNLP),
pages 1532–1543, 2014.

[57] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information. arXiv preprint
arXiv:1607.04606, 2016.

[58] Tomáš Mikolov, Anoop Deoras, Daniel Povey, Lukáš Burget, and Jan Čer-
nockỳ. Strategies for training large scale neural network language models.
In Automatic Speech Recognition and Understanding (ASRU), 2011 IEEE
Workshop on, pages 196–201. IEEE, 2011.

[59] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word
representations. In Proc. of NAACL, 2018.

[60] CS Malarkodi, RK Pattabhi, and Lalitha Devi Sobha. Tamil ner–coping
with real time challenges. In 24th International Conference on Computa-
tional Linguistics, page 23, 2012.

[61] Wei Li and Andrew McCallum. Rapid development of hindi named entity
recognition using conditional random fields and feature induction. ACM

Bibliography 112

Transactions on Asian Language Information Processing (TALIP), 2(3):
290–294, 2003.

[62] Sujan Kumar Saha, Sudeshna Sarkar, and Pabitra Mitra. A hybrid feature
set based maximum entropy hindi named entity recognition. In Proceedings
of the Third International Joint Conference on Natural Language Process-
ing: Volume-I, 2008.

[63] Anup Patel, Ganesh Ramakrishnan, and Pushpak Bhattacharya. Relational
learning assisted construction of rule base for indian language ner. Proceed-
ings of ICON, 2009:7th, 2009.

[64] Karthik Gali, Harshit Surana, Ashwini Vaidya, Praneeth Shishtla, and
Dipti Misra Sharma. Aggregating machine learning and rule based heuris-
tics for named entity recognition. In Proceedings of the IJCNLP-08 Work-
shop on Named Entity Recognition for South and South East Asian Lan-
guages, 2008.

[65] Animesh Nayan, B Ravi Kiran Rao, Pawandeep Singh, Sudip Sanyal, and
Ratna Sanyal. Named entity recognition for indian languages. In Proceed-
ings of the IJCNLP-08 Workshop on Named Entity Recognition for South
and South East Asian Languages, 2008.

[66] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorpo-
rating non-local information into information extraction systems by gibbs
sampling. In Proceedings of the 43rd annual meeting on association for
computational linguistics, pages 363–370. Association for Computational
Linguistics, 2005.

[67] Hamish Cunningham, Valentin Tablan, Angus Roberts, and Kalina
Bontcheva. Getting more out of biomedical documents with gate’s full
lifecycle open source text analytics. PLoS computational biology, 9(2):
e1002854, 2013.

[68] Steven Bird and Edward Loper. Nltk: the natural language toolkit. In Pro-
ceedings of the ACL 2004 on Interactive poster and demonstration sessions,
page 31. Association for Computational Linguistics, 2004.

Bibliography 113

[69] Ralph Grishman and Beth Sundheim. Design of the muc-6 evaluation. In
Proceedings of the 6th conference on Message understanding, pages 1–11.
Association for Computational Linguistics, 1995.

[70] Rada F. Mihalcea and Dragomir R. Radev. Graph-based Natural Language
Processing and Information Retrieval. Cambridge University Press, New
York, NY, USA, 1st edition, 2011. ISBN 0521896134, 9780521896139.

[71] Xiaojin Zhu, John Lafferty, and Ronald Rosenfeld. Semi-supervised learning
with graphs. PhD thesis, Carnegie Mellon University, language technologies
institute, school of computer science, 2005.

[72] Hany Hassan and Arul Menezes. Social text normalization using contex-
tual graph random walks. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
volume 1, pages 1577–1586, 2013.

[73] Linhong Zhu, Sheng Gao, Sinno Jialin Pan, Haizhou Li, Dingxiong Deng,
and Cyrus Shahabi. Graph-based informative-sentence selection for opinion
summarization. In Proceedings of the 2013 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining, ASONAM
’13, pages 408–412, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
2240-9. doi: 10.1145/2492517.2492651. URL http://doi.acm.org/10.
1145/2492517.2492651.

[74] Micha Elsner and Eugene Charniak. Disentangling chat. Comput. Linguist.,
36(3):389–409, September 2010. ISSN 0891-2017. doi: 10.1162/coli_a_
00003. URL http://dx.doi.org/10.1162/coli_a_00003.

[75] Dipanjan Das and Slav Petrov. Unsupervised part-of-speech tagging with
bilingual graph-based projections. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language
Technologies-Volume 1, pages 600–609. Association for Computational Lin-
guistics, 2011.

[76] Luheng He, Jennifer Gillenwater, and Ben Taskar. Graph-based posterior
regularization for semi-supervised structured prediction. In Proceedings of

http://doi.acm.org/10.1145/2492517.2492651
http://doi.acm.org/10.1145/2492517.2492651
http://dx.doi.org/10.1162/coli_a_00003

Bibliography 114

the Seventeenth Conference on Computational Natural Language Learning,
pages 38–46, 2013.

[77] Saner Demirel. Spectral Graph Convolutional Networks for Part-of-Speech
Tagging. PhD thesis, Universität Koblenz-Landau, 2017.

[78] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, pre-
dict! a systematic comparison of context-counting vs. context-predicting
semantic vectors. In Proceedings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers), volume 1,
pages 238–247, 2014.

[79] Stefan Evert. The statistics of word cooccurrences: word pairs and collo-
cations. 2005.

[80] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient esti-
mation of word representations in vector space. 16 January 2013.

[81] Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional sim-
ilarity with lessons learned from word embeddings. Transactions of the
Association for Computational Linguistics, 3:211–225, 2015.

[82] Kenneth Ward Church and Patrick Hanks. Word association norms, mu-
tual information, and lexicography. Computational linguistics, 16(1):22–29,
1990.

[83] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[84] Wang Ling, Chris Dyer, Alan W Black, and Isabel Trancoso. Two/too
simple adaptations of word2vec for syntax problems. In Proceedings of the
2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 1299–
1304, 2015.

[85] Language models, word2vec, and efficient softmax approximations. http:
//rohanvarma.me/Word2Vec/. Accessed: 2018-06-17.

http://rohanvarma.me/Word2Vec/
http://rohanvarma.me/Word2Vec/

Bibliography 115

[86] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information. Transactions of the As-
sociation for Computational Linguistics, 5:135–146, 2017. ISSN 2307-387X.

[87] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and
Armand Joulin. Advances in pre-training distributed word representations.
arXiv preprint arXiv:1712.09405, 2017.

[88] Chris Callison-Burch, David Talbot, and Miles Osborne. Statistical machine
translation with word-and sentence-aligned parallel corpora. In Proceedings
of the 42nd Annual Meeting on Association for Computational Linguistics,
page 175. Association for Computational Linguistics, 2004.

[89] Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based
translation. In Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Lan-
guage Technology-Volume 1, pages 48–54. Association for Computational
Linguistics, 2003.

[90] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu,
Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Cor-
rado, Macduff Hughes, and Jeffrey Dean. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation.
CoRR, abs/1609.08144, 2016. URL http://arxiv.org/abs/1609.08144.

[91] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of
the 40th annual meeting on association for computational linguistics, pages
311–318. Association for Computational Linguistics, 2002.

[92] Krzysztof Wołk and Danijel Koržinek. Comparison and adaptation of au-
tomatic evaluation metrics for quality assessment of re-speaking. arXiv
preprint arXiv:1601.02789, 2016.

http://arxiv.org/abs/1609.08144

Bibliography 116

[93] George Doddington. Automatic evaluation of machine translation quality
using n-gram co-occurrence statistics. In Proceedings of the second interna-
tional conference on Human Language Technology Research, pages 138–145.
Morgan Kaufmann Publishers Inc., 2002.

[94] Franz Josef Och and Hermann Ney. A systematic comparison of various
statistical alignment models. Computational linguistics, 29(1):19–51, 2003.

[95] Ruvan Weerasinghe. A statistical machine translation approach to sinhala-
tamil language translation. Towards an ICT enabled Society, page 136,
2003.

[96] Roni Rosenfeld and Philip Clarkson. Statistical language modeling using
the cmu-cambridge toolkit. 1997.

[97] Sakthithasan Sripirakas, AR Weerasinghe, and Dulip L Herath. Statistical
machine translation of systems for sinhala-tamil. In Advances in ICT for
Emerging Regions (ICTer), 2010 International Conference on, pages 62–68.
IEEE, 2010.

[98] Andreas Stolcke. Srilm-an extensible language modeling toolkit. In Seventh
international conference on spoken language processing, 2002.

[99] Language technology research lab - university of colombo school of comput-
ing. http://ucsc.cmb.ac.lk/ltrl/projects/. Accessed: 2018-06-17.

[100] Randil Pushpananda, Ruvan Weerasinghe, and Mahesan Niranjan. Sinhala-
tamil machine translation: Towards better translation quality. In Proceed-
ings of the Australasian Language Technology Association Workshop 2014,
pages 129–133, 2014.

[101] S Rajpirathap, S Sheeyam, K Umasuthan, and Amalraj Chelvarajah. Real-
time direct translation system for sinhala and tamil languages. In Computer
Science and Information Systems (FedCSIS), 2015 Federated Conference on,
pages 1437–1443. IEEE, 2015.

[102] Randil Pushpananda, Ruvan Weerasinghe, and Mahesan Niranjan. Sta-
tistical machine translation from and into morphologically rich and low

http://ucsc.cmb.ac.lk/ltrl/projects/

Bibliography 117

resourced languages. In International Conference on Intelligent Text Pro-
cessing and Computational Linguistics, pages 545–556. Springer, 2015.

[103] Mathias Creutz and Krista Lagus. Unsupervised models for morpheme
segmentation and morphology learning. ACM Transactions on Speech and
Language Processing (TSLP), 4(1):3, 2007.

[104] Fei Huang and Stephan Vogel. Improved named entity translation and bilin-
gual named entity extraction. In Multimodal Interfaces, 2002. Proceedings.
Fourth IEEE International Conference on, pages 253–258. IEEE, 2002.

[105] Reinhard Rapp. Automatic identification of word translations from unre-
lated english and german corpora. In Proceedings of the 37th annual meeting
of the Association for Computational Linguistics on Computational Linguis-
tics, pages 519–526. Association for Computational Linguistics, 1999.

[106] Stephen Wan and Cornelia Maria Verspoor. Automatic english-chinese
name transliteration for development of multilingual resources. In Pro-
ceedings of the 17th international conference on Computational linguistics-
Volume 2, pages 1352–1356. Association for Computational Linguistics,
1998.

[107] GAO Wei. Phoneme based statistical transliteration of foreign names for
oov problem. Master’s Thesis, The Chinese University of Hong Kong, 2004.

[108] Paola Virga and Sanjeev Khudanpur. Transliteration of proper names in
cross-lingual information retrieval. In Proceedings of the ACL 2003 workshop
on Multilingual and mixed-language named entity recognition-Volume 15,
pages 57–64. Association for Computational Linguistics, 2003.

[109] Long Jiang, Ming Zhou, Lee-Feng Chien, and Cheng Niu. Named entity
translation with web mining and transliteration. In IJCAI, volume 7, pages
1629–1634, 2007.

[110] Asif Ekbal, Sudip Kumar Naskar, and Sivaji Bandyopadhyay. Named entity
transliteration. International Journal of Computer Processing of Oriental
Languages, 20(04):289–310, 2007.

Bibliography 118

[111] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine trans-
lation of rare words with subword units. arXiv preprint arXiv:1508.07909,
2015.

[112] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in
continuous space word representations. In Proceedings of the 2013 Confer-
ence of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 746–751, 2013.

[113] Paramveer S Dhillon, Partha Pratim Talukdar, and Koby Crammer. Infer-
ence driven metric learning (idml) for graph construction. 2010.

[114] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised
learning using gaussian fields and harmonic functions. In Proceedings of the
Twentieth International Conference on International Conference on Ma-
chine Learning, ICML’03, pages 912–919. AAAI Press, 2003. ISBN 1-57735-
189-4. URL http://dl.acm.org/citation.cfm?id=3041838.3041953.

[115] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recog-
nition with deep recurrent neural networks. In Acoustics, speech and signal
processing (icassp), 2013 ieee international conference on, pages 6645–6649.
IEEE, 2013.

[116] Open tamil. https://github.com/Ezhil-Language-Foundation/
open-tamil. Accessed: 2018-06-17.

[117] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. Journal of Machine
Learning Research, 12(Jul):2121–2159, 2011.

[118] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012.

[119] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[120] Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

http://dl.acm.org/citation.cfm?id=3041838.3041953
https://github.com/Ezhil-Language-Foundation/open-tamil
https://github.com/Ezhil-Language-Foundation/open-tamil

Bibliography 119

[121] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on neural
networks, 5(2):157–166, 1994.

[122] Tomáš Mikolov. Statistical language models based on neural networks.
Presentation at Google, Mountain View, 2nd April, 2012.

[123] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks. In International Conference on Machine
Learning, pages 1310–1318, 2013.

[124] Radu Soricut and Franz Och. Unsupervised morphology induction using
word embeddings. In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1627–1637, 2015.

[125] Juan Miguel Cejuela, Peter McQuilton, Laura Ponting, Steven J Mary-
gold, Raymund Stefancsik, Gillian H Millburn, and Burkhard Rost. tagtog:
interactive and text-mining-assisted annotation of gene mentions in plos
full-text articles. Database, 2014, 2014.

[126] Allennlp. https://github.com/allenai/allennlp. Accessed: 2018-06-
17.

[127] Uom allen nlp repo. https://github.com/Mokanarangan/UOM-Alle. Ac-
cessed: 2018-06-28.

[128] Tensorflow implementation of contextualized word representations from bi-
directional language models. https://github.com/allenai/bilm-tf. Ac-
cessed: 2018-06-17.

[129] Language models. https://web.stanford.edu/class/cs124/lec/
languagemodeling.pdf. Accessed: 2018-06-17.

[130] Pre-trained word vectors. https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.md. Accessed: 2018-06-17.

[131] Wang2vec. https://github.com/wlin12/wang2vec. Accessed: 2018-06-
17.

https://github.com/allenai/allennlp
https://github.com/Mokanarangan/UOM-Alle
https://github.com/allenai/bilm-tf
https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf
https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/wlin12/wang2vec

Bibliography 120

[132] metric-learn: Metric learning in python. http://metric-learn.github.
io/metric-learn/. Accessed: 2018-06-17.

[133] E.: Annoy Bernhardsson. Annoy - Approximate Nearest Neighbor. https:
//github.com/spotify/annoy, 2018. [Online; accessed 21-Feb-2018].

[134] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-
benchmarks: A benchmarking tool for approximate nearest neighbor algo-
rithms. In International Conference on Similarity Search and Applications,
pages 34–49. Springer, 2017.

[135] Masashi Sugiyama. Local fisher discriminant analysis for supervised dimen-
sionality reduction. In Proceedings of the 23rd International Conference
on Machine Learning, ICML ’06, pages 905–912, New York, NY, USA,
2006. ACM. ISBN 1-59593-383-2. doi: 10.1145/1143844.1143958. URL
http://doi.acm.org/10.1145/1143844.1143958.

[136] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and
Bernhard Schölkopf. Learning with local and global consistency. In Proceed-
ings of the 16th International Conference on Neural Information Processing
Systems, NIPS’03, pages 321–328, Cambridge, MA, USA, 2003. MIT Press.
URL http://dl.acm.org/citation.cfm?id=2981345.2981386.

[137] Moses. http://www.statmt.org/moses/?n=Advanced.Hybrid. Accessed:
2018-06-17.

[138] Sandareka Fernando, Surangika Ranathunga, Sanath Jayasena, and Gihan
Dias. Comprehensive part-of-speech tag set and svm based pos tagger for
sinhala. In Proceedings of the 6th Workshop on South and Southeast Asian
Natural Language Processing (WSSANLP2016), pages 173–182, 2016.

[139] Kenneth Heafield. Kenlm: Faster and smaller language model queries. In
Proceedings of the Sixth Workshop on Statistical Machine Translation, pages
187–197. Association for Computational Linguistics, 2011.

[140] Franz Josef Och. Minimum error rate training in statistical machine trans-
lation. In Proceedings of the 41st Annual Meeting on Association for Com-
putational Linguistics-Volume 1, pages 160–167. Association for Computa-
tional Linguistics, 2003.

http://metric-learn.github.io/metric-learn/
http://metric-learn.github.io/metric-learn/
https://github.com/spotify/annoy
https://github.com/spotify/annoy
http://doi.acm.org/10.1145/1143844.1143958
http://dl.acm.org/citation.cfm?id=2981345.2981386
http://www.statmt.org/moses/?n=Advanced.Hybrid

Bibliography 121

[141] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisit-
ing semi-supervised learning with graph embeddings. arXiv preprint
arXiv:1603.08861, 2016.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Overview of Named Entity Recognition
	1.2 Overview of Machine Translation
	1.3 Motivation
	1.4 Research Objectives
	1.5 Contributions
	1.6 Articles
	1.7 Organization of the Thesis

	2 Literature Review
	2.1 Named Entity Recognition
	2.1.1 Challenges in NER
	2.1.2 Datasets

	2.2 Existing Approaches for Named Entity Recognition
	2.2.1 Rule-based Approaches
	2.2.2 Machine Learning Approaches
	2.2.3 Semi-supervised Approaches
	2.2.4 Unsupervised Approaches
	2.2.5 Cross Lingual Approaches
	2.2.6 Deep-Learning Approaches
	2.2.7 Existing Approaches Used for Tamil and Sinhala NER
	2.2.7.1 Tamil
	2.2.7.2 Sinhala

	2.2.8 Existing Approaches Used in Different South Asian Languages
	2.2.9 Features in NER
	2.2.9.1 Local Features
	2.2.9.2 Global Features
	2.2.9.3 Resources

	2.2.10 Available Platforms and Toolkits
	2.2.10.1 Stanford NER
	2.2.10.2 GATE Named Entity Recognizer
	2.2.10.3 Natural language Toolkit (NLTK)

	2.2.11 Evaluation Measures
	2.2.12 Summary

	2.3 Graph Based Semi-Supervised Learning (GSSL)
	2.3.1 Graph-based Approach for Sequential Tagging
	2.3.2 Summary

	2.4 Distributional Semantic Models - DSM
	2.4.1 Pointwise Mutual Information (PMI) Vector
	2.4.2 Word2Vec
	2.4.3 FastText
	2.4.4 Wang2Vec
	2.4.5 ELMo
	2.4.6 Summary

	2.5 Machine Translation
	2.5.1 Statistical Machine Translation - SMT
	2.5.1.1 Moses

	2.5.2 Neural Machine Translation - NMT
	2.5.2.1 Encoder-Decoder Model

	2.5.3 Evaluation
	2.5.3.1 BLEU Score
	2.5.3.2 NIST Score

	2.5.4 Existing Machine Translation Systems for Tamil-to-Sinhala Translation
	2.5.4.1 SiTa SMT system

	2.5.5 Existing Approaches to Translate Named Entities
	2.5.6 Summary

	3 Methodology
	3.1 Identifying the Tag Set
	3.2 Annotated Dataset
	3.3 Building the Named Entity Recognizer for Tamil and Sinhala
	3.3.1 Graph Based Semi-Supervised Learning
	3.3.1.1 Representing Nodes of Graph
	3.3.1.2 Creating Edges of the Graph
	3.3.1.3 Label Propagation

	3.3.2 Bi-directional LSTM CRF Sequential Tagging
	3.3.2.1 Character Embedding
	3.3.2.2 Predicting the Tags
	3.3.2.3 Tuning the Hyper-parameters

	3.4 Translating Identified Named Entities
	3.4.1 Unsupervised Morphology Induction
	3.4.2 Integrating to Moses

	4 Implementation
	4.1 Building the Corpus
	4.2 Building the Named Entity Recognizer
	4.2.1 AllenNLP Research Library
	4.2.2 Building the Word embedding Models
	4.2.3 Modifying the metric-learn library
	4.2.4 Implementing Graph Based Semi-supervised Sequential Tagging Algorithm
	4.2.5 Implementing BiLSTM CRF Tagging

	4.3 Integrating to Moses
	4.3.1 SiTa System

	5 Experiments and Results
	5.1 Graph Based Semi Supervised Learning
	5.2 Bi-directional LSTM CRF Tagging
	5.2.1 NER
	5.2.2 POS

	5.3 Integrating to Moses
	5.3.1 Sinhala Tamil Translation
	5.3.2 Tamil Sinhala Translation

	6 Conclusion
	7 Future Works
	Bibliography

