LIST OF REFERENCES

- Abushandi, E., & Merkel, B. (2013). Modelling Rainfall Runoff Relations Using HEC-HMS and IHACRES for a Single Rain Event in an Arid Region of Jordan. *Water Resources Management*, 27(7), 2391–2409.
- Amorocho, J., Dougal, M. D., Mcfall, R. L., & Jones, B. A. (1962). Discussion of Predicting Storm Runoff on Small Experimental Watersheds by Neal E. Minshall. *Transactions of the American Society of Civil Engineers*, 127(1), 646– 656.
- Ao, T., Yoshitani, J., Takeuchi, K., Fukami, K., Mutsuura, T., & Ishidaira, H. (2003). Effects of sub-basin scale on runoff simulation in distributed hydrological model: BTOPMC. In Weather Radar Information and Distributed Hydrological Modelling (Proceedings of symposium HS03 held during IUGG2003 at Sapporo, July 2003) (Vol. 282, pp. 1–7). IAHS Publ.
- Beven, K. (2008). From: Rainfall-Runoff Modelling: The Primer.
- Beven, K. (2012). *Rainfall-Runoff Modelling: The Primer*. Chichester, UK: John Wiley & Sons, Ltd.
- Bhattacharjya, R. K. (2011). Rainfall-Runoff Modeling: Distributed Models. *Encyclopedia of Hydrological Sciences*, 270–275.
- Bingner, R. ., Arnold, J. ., & Srinivasan, R. (1997). Effect of watershed subdivision on simulation runoff and fine sediment yield - ScienceBase-Catalog, 40(5)(Transaction of the ASAE), 1329–1335.
- Bloschl, G., & Sivapalan, M. (1995). Scale issues in hydrological modelling: A review. *Hydrological Processes*, 9(3–4), 251–290.
- Boyle, D. P., Gupta, H. V, & Sorooshian, S. (2000). Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. *Water Resources Research*, 36(12), 3663–3674.
- Brocca, L., Melone, F., Moramarco, T., & Singh, V. P. (2009). Assimilation of Observed Soil Moisture Data in Storm Rainfall-Runoff Modeling. *Journal of Hydrologic Engineering*, 14(2), 153–165.
- Casey, M. J., Stagge, J. H., Moglen, G. E., & McCuen, R. H. (2015). Effects of Watershed Subdivision on Peak Discharge in Rainfall-Runoff Modeling in the WinTR-20 Model. *Journal of Hydrologic Engineering*, 20(10), 04015020–.
- Chow, V., Maidment, D., & Larry, M. (1988). Applied Hydrology.
- Cleveland, T., Luong, T., & Thompson, D. (2009a). Water Subdivision for Modeling. In World Environmental and Water Resources Congress 2009 (pp. 1–10). Reston, VA: American Society of Civil Engineers.
- Cleveland, T., Luong, T., & Thompson, D. (2009b). Water Subdivision for Modeling. In World Environmental and Water Resources Congress 2009 (pp. 1–10). Reston, VA: American Society of Civil Engineers.
- De Silva, M. G., de Aguiar Netto, A. de O., de Jesus Neves, R. J., do Vasco, A. N.,

Almeida, C., & Faccioli, G. G. (2015). Sensitivity Analysis and Calibration of Hydrological Modeling of the Watershed Northeast Brazil. *Journal of Environmental Protection*, 6(08), 837.

- De Silva, M. M. G. T., Weerakoon, S. B., & Herath, S. (2014). Modeling of Event and Continuous Flow Hydrographs with HEC–HMS: Case Study in the Kelani River Basin, Sri Lanka. *Journal of Hydrologic Engineering*, 19(4), 800–806.
- Dharmasena, G. T. (1997). Application of mathematical models for flood forecasting in Sri Lanka. *ResearchGate*, (239).
- Dong, Y., & Peng, C. Y. J. (2013, May). Principled missing data methods for researchers. *SpringerPlus*.
- Dooge, J. C. I. (1982). Parameterization of hydrologic processes. *Cambridge* University Press, New York, N.Y., pp : 243-288.
- Ghosh, I., & Hellweger, F. L. (2012). Effects of Spatial Resolution in Urban Hydrologic Simulations. *Journal of Hydrologic Engineering*, 17(January), 129– 137.
- Goodrich, D. C., Schmugge, T. J., Jackson, T. J., Unkrich, C. L., Keefer, T. O., Parry, R., Amer, S. A. (1994). Runoff simulation sensitivity to remotely sensed initial soil water content. *Water Resources Research*, 30(5), 1393–1405.
- Green, A., & Stephenson, D. (1986). Criteria for comparison of single event models. Hydrological Sciences -Journal -Des Sciences Hydrologiques, 313(9).
- Green, I. R. A., & Stephenson, D. (2009). Criteria for comparison of single event models. *Hydrological Sciences Journal*, 31(3), 395–411.
- Guinot, V., Cappelaere, B., Delenne, C., & Ruelland, D. (2011). Towards improved criteria for hydrological model calibration: theoretical analysis of distance- and weak form-based functions. *Journal of Hydrology*, 401(1–2), 1–13.
- Gunatilaka, A. (2008). Water security and related issues in Sri Lanka : The need for integrated water resource management (IWRM). *Journal of the National Science Foundation of Sri Lanka*, *36 Special*(3), 3–15.
- Gupta, H. V., Beven, K., & Wagener, T. (2005). Model Calibration and Uncertainty Estimation. *Encyclopedia of Hydrological Sciences*, *11*(131), 1–17.
- Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. *Journal of Hydrology*, 377(1–2), 80–91. 3
- Halwatura, D., & Najim, M. M. M. (2013). Application of the HEC-HMS model for runoff simulation in a tropical catchment. *Environmental Modelling and Software*, 46, 155–162.
- Hawkins, R. H. (1978). Runoff Curve Numbers With Varying Site Moisture. ASCE J Irrig Drain Div.
- Hawkins, R. H., Hjelmfelt, A. T., & Zevenbergen, A. W. (1985). Runoff Probability, Storm Depth, and Curve Numbers. *Journal of Irrigation and Drainage Engineering*, 111(4), 330–340.

- Jain, M. K., Mishra, S. K., & Singh, V. P. (2006). Evaluation of AMC-dependent SCS-CN-based models using watershed characteristics. *Water Resources Management*, 20(4), 531–552.
- Jha, M. K. (2002). Level of watershed subdivision for water quality modeling. *Master's Thesis, Iowa State University*.
- Kanchanamala, D. P. H. M., Herath, H. M. H. K., & Nandalal, K. D. W. (2016). Impact of Catchment Scale on Rainfall Runoff Modeling: Kalu Ganga River Catchment upto Ratnapura. *Engineer: Journal of the Institution of Engineers*, *Sri Lanka*, 49(2), 1.
- Klemes, V. (1983). Conceptualization and scale in hydrology. *Journal of Hydrology*, 65(1–3), 1–23.
- Krause, P., Boyle, D. P., & Base, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. *Advances in Geosciences*, 5, 89–97.
- Kumar, S., & Merwade, V. (2009a). Impact of watershed subdivision and soil data resolution on swat model calibration and parameter uncertainty. *Journal of the American Water Resources Association*, 45(5), 1179–1196.
- Kumar, S., & Merwade, V. (2009b). Impact of Watershed Subdivision and Soil Data Resolution on SWAT Model Calibration and Parameter Uncertainty. JAWRA Journal of the American Water Resources Association, 45(5), 1179–1196.
- Legates, D. R., & Mccabe, G. J. (1999). Evaluating the use of "goodness-of-fit" Measures in hydrologic and hydroclimatic model validation. *Water Resources Research*, 35(1), 233–241.
- Li, K. Y., Coe, M. T., Ramankutty, N., & deJong, R. (2007). Modeling the hydrological impact of land-use change in West Africa. *Journal of Hydrology*, 337(3–4), 258–268.
- Lim, K. J., Engel, B. A., Muthukrishnan, S., & Harbor, J. (2006). Effects of initial abstraction and urbanization on estimated runoff using CN technology. *Journal of the American Water Resources Association*, 42(3), 629–643.
- Lundin, L.-C., Linner, H., Hultman, B., Levlin, E., Eriksson, E., & Johansson, S. (2000). Sustainable Water Management in the Baltic Sea Basin - Water Use and Management (2nd ed.). Sweden: A Baltic University Programme Publication.
- Merriam, C. F. (1937). A comprehensive study of the rainfall on the Susquehanna Valley. *Eos, Transactions American Geophysical Union*, *18*(2), 471–476.
- Minshall, N. E. (1962). Predicting Storm Runoff on Small Experimental Watersheds. *Transactions of the American Society of Civil Engineers*, 127(1), 625–645.
- Moatamednia, M., Nohegar, A., Malekian, A., & Zarchi, K. K. (2015). Performance of Different Models for Curve Number Estimation (Case study: Bar Watershed in Khorasan Razavi Province, Iran). *Ecopersia*, *3*(3), 1031–1049.
- Moeletsi, M. E., Shabalala, Z. P., Nysschen, G. De, & Walker, S. (2016). Evaluation of an inverse distance weighting method for patching daily and dekadal rainfall

over the Free State Province, South Africa. Water SA, 42(3), 466-474.

- Moore, C., & Doherty, J. (2005). Role of the calibration process in reducing model predictive error. *Water Resources Research*, *41*(5), 1–14.
- Moradkhani, H. and Sorooshian, S. (2008). General Review of Rainfall-Runoff Modeling: Model Calibration, Data Assimilation, and Uncertainty Analysis, in Hydrological Modeling and Water Cycle, Coupling of the Atmospheric and Hydrological Models. Springer, Water Science and Technology Library, Volume 63, Part 1, 1-24, DOI: 10.1007/978-3-540-77843-1-1., 291p.
- Moriasi, D. N., Arnold, J. G., Liew, M. W. Van, Bingner, R. L., Harmel, R. D., Veith, T. L., ... Moriasi, D. N. (2007). Model Evaluation Guidelines For Systematic Quantification Of Accuracy In Watershed Simulations. *Transactions* of the ASABE, 50(3), 885–900.
- Mu, X. M., Zhang, X. Q., Gao, P., & Wang, F. (2010). Theory Of Double Mass Curves And Its Applications In Hydrology And Meteorology. *Journal China Hydrology*, 30(4), 47–51.
- Munz, E. D. (2017). Psychotherapie in der Psychiatrie. *Nervenheilkunde*, *36*(10), 800–805.
- National Climate Change Adaptation Strategy for Sri Lanka 2011 to 2016. (2016).
- Neitsch S.L., Arnold J.G., Kiniry J.R., Williams J.R., King K.W. (2002). Soil and water assessment tool (SWAT): theoretical documentation, version 2000. Texas Water Resources Institute, College Station, TX, TWRI Report TR-191.
- Orellana, B., Pechlivanidis, I. G., McIntyre, N., Wheater, H. S., & Wagener, T. (2008). A toolbox for the identification of parsimonious semi-distributed rainfall-runoff models: Application to the Upper Lee catchment. In *iEMSs 2008: Integrating Sciences and Information Technology for Environmental Assessment and Decision Making* (Vol. 1, pp. 670–677).
- Pathiraja, S., Westra, S., & Sharma, A. (2012). Why continuous simulation? the role of antecedent moisture in design flood estimation. *Water Resources Research*, 48(6), 1–15.
- Pechlivanidis, I. G., Jackson, B. M., Mcintyre, N. R., & Wheater, H. S. (2011). Catchment Scale Hydrological Modelling: A Review Of Model Types, Calibration Approaches And Uncertainty Analysis Methods In The Context Of Recent Developments In Technology And Applications. *Global NEST Journal*, *13*(3), 193–214.
- Perrin, C., Michel, C., & Andreassian, V. (2001). Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. *Journal of Hydrology*, 242(3–4), 275–301.
- Ponce, V. M., & Hawkins, R. H. (1996). Runoff Curve Number: Has It Reached Maturity? *Journal of Hydrologic Engineering*, *1*(1), 11–19.
- Ratnayake, U., Sachindra, D. A., & Nandalal, K. D. W. (2010). Rainfall Forecasting for Flood Prediction in the Nilwala Basin, (December), 13–14.

- Refsgaard, J. C. (1997). Parameterisation, calibration and validation of distributed hydrological models. *Journal of Hydrology*, *198*(1–4), 69–97.
- Ritter, A., & Muñoz-Carpena, R. (2013). Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. *Journal of Hydrology*, 480, 33–45.
- Sampath, D. S., Weerakoon, S. B., & Herath, S. (2014). Runoff Simulation in the Deduru Oya River Basin, Sri Lanka. In Conference on Sri Lanka–Japan Collaborative Research 2014 (SLJCR 2014), At University of Peradeniya, Peradeniya, Sri Lanka (p. 3).
- Scharffenberg, W. (2016). Hydrologic Modeling System HEC-HMS User's Manual CPD-74A.
- Searcy, J. ., & Hardison, C. . (1960). . Double Mass Curves. U.S. Geological Survey. *Water-Supply Paper*, *1541–B*., pp1541–B.
- Sobhani, G. (1975). A Review of Selected Small Watershed Design Methods for Possible Adoption to Iranian Conditions M.S. thesis. Utah State Univ., Logan, Utah.
- Soil Conservation Service. (2007a). *National engineering handbook. Supplement A,Section 4.* Soil Conservation Service, USDA, Washington, D.C.
- Soil Conservation Service. (2007b). National engineering handbook. (V. McKeever, W. Owen, & R. Rallison, Eds.).
- Sorooshian, S., & Gupta, V. (1995a). Model Calibration, Computer models of watershed hydrology. Water Resources Publications, USA.
- Sorooshian, S., & Gupta, V. K. (1995b). Model Calibration, Computer models of watershed hydrology. *Water Resources Publications, USA*.
- Tripathi, M. P., Raghuwanshi, N. S., & Rao, G. P. (2006). Effect of watershed subdivision on simulation of water balance components. *Hydrological Processes*, 20(5), 1137–1156.
- USDA, S. C. S. (1972). National Engineering Handbook. *Soil Conservation*, *Hydrology*, 10.1-10.24. Retrieved from
- Van Liew, M. W., & Veith, T. L. (2010). Guidelines for Using the Sensitivity Analysis and Auto-calibration Tools for Multi-gage or Multi-step Calibration in SWAT, 1–30.
- Viessman, W., Lewis, G. L., & Knapp, J. W. (2002). Introduction to hydrology. *Introduction to Hydrology*, 780.
- Vorosmarty, C. J., Moore III, B., Grace, A. L., Gildea, M. P., Melillo, J. M., Peterson, B. J., ... Steudler, P. A. (1989). Continental scale models of water balance and fluvial transport: An application to South America. *Global Biogeochem. Cycles*, 3(3), 241–265.
- Wagener, T., & Kollat, J. (2007). Numerical and visual evaluation of hydrological and environmental models using the Monte Carlo analysis toolbox. *Environmental Modelling and Software*, 22(7), 1021–1033.

- Wagener, T., Sivapalan, M., Troch, P., & Woods, R. (2007). Catchment Classification and Hydrologic Similarity. *Geography Compass*, 1(4), 901–931.
- Wei, H., & Zhang, Y. (2011). Effects of antecedent soil moisture on runoff modeling in small semiarid watersheds of southeastern Arizona. *Hydrol. Earth Syst. Sci.*, 15(10), 3171–3179.
- Wijesekera, N. T. S., Imbulana, K. A. U. & Neupane, B. (2005). Surface water resources, Proceedings Workshop on Sri Lanka National Water Development Report. World Water Assessment Programme. Paris, France.
- Wijesekera, N. T. S., & Abeynayake, J. (2003). Watershed similarity conditions for peak flow transition. A study of river basins in the wet zone of Sri Lanka,. *Engineer Journal of the Institution of Engineers, Sri Lank.*
- Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., ... Rowe, C. M. (1985). STATISTICS FOR THE EVALUATION AND COMPARISON OF MODELS. *Journal of Geophysical Research-Oceans*, 90(NC5), 8995–9005.
- Wooldridge, S. A., Kalma, J. D., & Walker, J. P. (2003). Importance of soil moisture measurements for inferring parameters in hydrologic models of low-yielding ephemeral catchments. *Environmental Modelling and Software*, 18(1), 35–48.
- World Meteorological Organization. (1975). Geneva; Switzerland. https://doi.org/(Operational hydrology report no.7/WMO-No 429).
- World Meteorological Organization. (1982). WMO project for the intercomparison of conceptual models of snowmelt runoff. In *Hydrological Aspects of Alpine and High-Mountain Areas* (pp. 193–202).
- Wu, Y., & Liu, S. (2014). A suggestion for computing objective function in model calibration. *Ecological Informatics*, 24, 107–111.
- Zhang, H. L., Wang, Y. J., Wang, Y. Q., Li, D. X., & Wang, X. K. (2013). The effect of watershed scale on HEC-HMS calibrated parameters: A case study in the Clear Creek watershed in Iowa, US. *Hydrology and Earth System Sciences*, 17(7), 2735–2745.
- Zhou, X., & Lin, H. (2017). Sensitivity Analysis. In *Encyclopedia of GIS* (1 edition, pp. 1884–1887). Chichester; New York: Wiley.

Appendix A: Visual checking of data without filling missing data in calibration and validation period

Visual checking without filling missing data in calibration period

Visual checking without filling missing data in validation period

Visual checking with filling missing data for calibration period

Visual checking with filling missing data in validation period

Appendix B: Single mass curve without filling missing data in calibration and validation period

Single mass curve without filling missing data in calibration period

Single mass curve without filling missing data in validation period

Single mass curve with filling missing data in calibration period

Single mass curve with filling missing data in validation period

Appendix C: Parameters of lumped and subdivision model and Thiessen weights

Subdivision	Area of sub division	Shape Area	Thiessen Area (km²)	Rainfall station	Weight
Subdivision 1	104.05	68.45	342.0	Ambepussa Govt. Farm	0.658
Subdivision 1	104.05	35.56	192.0	Andigama Farm	0.342
Subdivision 2	97.85	32.51	342.0	Ambepussa Govt. Farm	0.332
Subdivision 2	97.85	65.31	192.0	Andigama	0.667
Subdivision 3	142.55	142.55	342.0	Ambepussa Govt. Farm	1.000
Subdivision 4	153.93	40.78	342.0	Ambepussa Govt. Farm	0.265
Subdivision 4	153.93	24.22	474.0	Eraminigolla	0.157
Subdivision 4	153.93	91.12	192.0	Andigama	0.592
Subdivision 5	167.16	56.74	342.0	Ambepussa Govt. Farm	0.339
Subdivision 5	167.16	7.13	264.0	Aranayake (CEB)	0.043
Subdivision 5	167.16	103.29	474.0	Eraminigolla	0.618
Subdivision 6	149.97	0.53	342.0	Ambepussa Govt. Farm	0.004

Thiessen weights for Nine Sub division Model

Subdivision	Area of sub division	Shape Area	Thiessen Area (km²)	Rainfall station	Weight
Subdivision 6	149.97	1.48	264.0	Aranayake (CEB)	0.010
Subdivision 6	149.97	147.95	474.0	Eraminigolla	0.987
Subdivision 7	174.13	5.08	264.0	Aranayake (CEB)	0.029
Subdivision 7	174.13	168.98	474.0	Eraminigolla	0.970
Subdivision 8	127.98	98.59	264.0	Aranayake (CEB)	0.770
Subdivision 8	127.98	29.35	474.0	Eraminigolla	0.229
Subdivision 9	151.67	152.09	264.0	Aranayake (CEB)	1.003

Optimum Parameters of subdivisions:

Sub division 3								
Parameters	Initial Lumped Value	Optimized Parameter Value for sub division 1	Optimized Parameter Value for sub division 2	Optimized Parameter Value for sub division 3				
Initial Discharge	10	5	5	5				
Ratio to peak	0.164	0.164	0.164	0.164				
Recession-constant	0.923	0.923	0.923	0.923				
Time of concentration	79	61	67	77				
soil storage	445	310	310	310				
Max infiltration	4.5	4.51	4.51	4.51				
Storage Coefficient	59	49	50	58				
Soil Percolation (mm/Hr)	0.32	0.45	0.45	0.45				
Impervious	9.55	8	11	5				
Soil %	90	90	90	90				
Groundwater 1(%)	80	80	80	80				
Groundwater 2(%)	90	90	90	90				
Tension Storage (mm)	21	21	21	21				
Groundwater 1 storage	70	120	120	120				
GW1 Percolation (mm/HR)	0.3	0.3	0.3	0.3				
GW1 Coefficient (HR)	10	10	10	10				
GW2 Storage (mm)	10	10	10	10				
GW2 Percolation (mm/hr)	0.3	0.3	0.3	0.3				
GW2 Coefficient (Hr)	30	30	30	30				

		Sub	division	6			
Parameters	Initia l Lum ped Value	Optimize d Paramet er Value for sub division 1	Optim ized Para meter Value for sub divisio n 2	Optimi zed Parame ter Value for sub division 3	Optimi zed Parame ter Value for sub division 4	Optimi zed Parame ter Value for sub division 5	Optimi zed Parame ter Value for sub division 6
Initial Discharge	10	2	2	2	2	2	2
Ratio to peak	0.164	0.164	0.164	0.164	0.164	0.164	0.164
Recession-constant	0.923	0.923	0.923	0.923	0.923	0.923	0.923
Time of concentration	79	61	61	61	61	61	61
soil storage	445	250	250	320	300	150	300
Max infiltration	4.5	4.54	4.54	4.54	4.54	4.5	4.5
Storage Coefficient	59	49	49	49	49	49	49
Soil Percolation (mm/Hr)	0.32	0.56	0.56	0.56	0.56	0.56	0.56
Impervious	9.55	8	8	10	10	114	13
Soil %	90	90	90	90	90	90	90
Groundwater 1(%)	80	80	80	80	80	80	80
Groundwater 2(%)	90	90	90	90	90	90	90
Tension Storage (mm)	21	21	21	21	21	21	21
Groundwater 1 storage	70	70	70	70	70	70	70

Parameters	Initia l Lum ped Value	Optimize d Paramet er Value for sub division 1	Optim ized Para meter Value for sub divisio n 2	Optimi zed Parame ter Value for sub division 3	Optimi zed Parame ter Value for sub division 4	Optimi zed Parame ter Value for sub division 5	Optimi zed Parame ter Value for sub division 6
GW1 Percolation (mm/HR)	0.3	0.35	0.35	0.35	0.35	0.35	0.35
GW1 Coefficient (HR)	10	10	10	10	10	10	10
GW2 Storage (mm)	10	10	10	10	10	10	10
GW2 Percolation (mm/hr)	0.3	0.3	0.3	0.3	0.3	0.3	0.3
GW2 Coefficient (Hr)	30	30	30	30	30	30	30

				Sub divi	sion 9					
Parameters	Initial Lumped Value	Optimized Parameter Value for sub division 1	Optimized Parameter Value for sub division 2	Optimized Parameter Value for sub division 3	Optimized Parameter Value for sub division 4	Optimized Parameter Value for sub division 5	Optimized Parameter Value for sub division 6	Optimized Parameter Value for sub division 7	Optimized Parameter Value for sub division 8	Optimized Parameter Value for sub division 9
Initial Discharge	10	2	2	2	2	2	2	2	2	2
Ratio to peak	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164
Recession-constant	0.923	0.923	0.923	0.923	0.923	0.923	0.923	0.923	0.923	0.923
Time of concentration	79	65	68	70	69	72	68	68	70	66
soil storage	445	250	195	250	190	300	350	400	250	380
Max infiltration	4.5	4.54	4.54	4.54	4.54	4.54	4.54	5.1	4.54	4.54
Storage Coefficient	59	54	54	55	50	50	52	55	57	50
Soil Percolation (mm/Hr)	0.32	0.45	0.45	0.45	0.45	0.56	0.56	0.56	0.45	0.45
Impervious	9.55	9.5	6	10	10	5	9	8	13	11
Soil %	90	90	90	90	90	90	90	90	90	90

				Sub divi	sion 9					
Parameters	Initial Lumped Value	Optimized Parameter Value for sub division 1	Optimized Parameter Value for sub division 2	Optimized Parameter Value for sub division 3	Optimized Parameter Value for sub division 4	Optimized Parameter Value for sub division 5	Optimized Parameter Value for sub division 6	Optimized Parameter Value for sub division 7	Optimized Parameter Value for sub division 8	Optimized Parameter Value for sub division 9
Groundwater 1(%)	80	80	80	80	80	80	80	80	80	80
Groundwater 2(%)	90	90	90	90	90	90	90	90	90	90
Tension Storage (mm)	21	21	21	21	21	21	21	21	21	21
Groundwater 1 storage	70	70	70	70	70	70	70	70	70	70
GW1 Percolation (mm/HR)	0.3	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
GW1 Coefficient (HR)	10	10	10	10	10	10	10	10	10	10
GW2 Storage (mm)	10	10	10	10	10	10	10	10	10	10
GW2 Percolation (mm/hr)	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
GW2 Coefficient (Hr)	30	30	30	30	30	30	30	30	30	30

							Sub	division	16								
Parameters	Lumped model	sub division 1	sub division 2	sub divis ion 3	sub divis ion 4	sub divis ion 5	sub divis ion 6	sub divis ion 7	sub divis ion 8	sub divis ion 9	sub divis ion 10	sub divis ion 11	sub divisio n12	sub division 113	sub divisio n14	subdivisi on15	sub divis ion 16
Initial Discharge	10	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Ratio to peak	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164
Recession- constant	0.923	0.923	0.923	0.923	0.923	0.923	0.923	0.923	0.923	0.923	0.923	0.923	0.923	0.923	0.923	0.923	0.923
Time of concentration	79	67	68	68	71	71	70	72	69	70	70	70	62	65	69	65	60
soil storage	445	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300
Max infiltration	4.5	4.54	4.54	4.54	4.54	4.54	4.54	4.54	4.54	4.54	4.54	4.54	4.54	4.54	4.54	4.54	4.54
Storage Coefficient	59	50	51	50	51	51	51	55	50	51	52	52	55	55	49	52	51
Soil Percolation (mm/Hr)	0.32	0.5	0.5	0.5	0.45	0.5	0.5	0.5	0.5	0.5	0.5	0.45	0.5	0.5	0.5	0.5	0.5
Impervious	9.55	10	5	8	9	6	7	8	5	9	6	10	8	10	10	8	10
Soil %	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90

							Sub o	livision	16								
Parameters	Lumped model	sub division 1	sub division 2	sub divis ion 3	sub divis ion 4	sub divis ion 5	sub divis ion 6	sub divis ion 7	sub divis ion 8	sub divis ion 9	sub divis ion 10	sub divis ion 11	sub divisio n12	sub division 113	sub divisio n14	subdivisi on15	sub divis ion 16
Groundwater 1(%)	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
Groundwater 2(%)	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90
Tension Storage (mm)	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
Groundwater 1 storage	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
GW1 Percolation (mm/HR)	0.3	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
GW1 Coefficient (HR)	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
GW2 Storage (mm)	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
GW2 Percolation (mm/hr)	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
GW2 Coefficient (Hr)	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30

Appendix D: Statically T-test for lumped and six subdivisions

Lumped model with Sub division 1 model							
t-Test: Two-Sample Assuming Unequal Variances							
	366	376					
Mean	105	100					
Variance	3200	4418					
Observations	2	2					
Hypothesized Mean Difference	0						
df	2						
t Stat	0.081						
P(T<=t) one-tail	0.471						
t Critical one-tail	2.920						
P(T<=t) two-tail	0.943						
t Critical two-tail	4.303						

Lumped model with Sub division	2 model	
t-Test: Two-Sample Assuming Unequal Variances		
	366	376
Mean	105	100
Variance	3200	4418
Observations	2	2
Hypothesized Mean Difference	0	
df	2	
t Stat	0.081	
P(T<=t) one-tail	0.471	
t Critical one-tail	2.920	
P(T<=t) two-tail	0.943	
t Critical two-tail	4.303	

Lumped model with Sub div	vision 3 model	-
t-Test: Two-Sample Assuming Unequal		
	366	373
Mean	105	101.5
Variance	3200	2964.5
Observations	2	2
Hypothesized Mean Difference	0	
df	2	
t Stat	0.063	
P(T<=t) one-tail	0.477	
t Critical one-tail	2.920	
P(T<=t) two-tail	0.955	
t Critical two-tail	4.303	

Lumped model with Sub division 4 model			
t-Test: Two-Sample Assuming Unequal Variances			
	366	382	
Mean	105	97	
Variance	3200	1568	
Observations	2	2	
Hypothesized Mean Difference	0		
df	2		
t Stat	0.164		
P(T<=t) one-tail	0.442		
t Critical one-tail	2.920		
P(T<=t) two-tail	0.885		
t Critical two-tail	4.303		

Lumped model with Sub division 5 model			
t-Test: Two-Sample Assuming Unequal Variances			
	366	367	
Mean	105	104.5	
Variance	3200	1404.5	
Observations	2	2	
Hypothesized Mean Difference	0		
df	2		
t Stat	0.01		
P(T<=t) one-tail	0.496		
t Critical one-tail	2.91998558		
P(T<=t) two-tail	0.992631705		
t Critical two-tail	4.30265273		

Lumped model with Sub division 6 model			
t-Test: Two-Sample Assuming Unequal Variances			
	366	361	
Mean	105	107.5	
Variance	3200	1624.5	
Observations	2	2	
Hypothesized Mean Difference	0		
df	2		
t Stat	-0.051		
P(T<=t) one-tail	0.482		
t Critical one-tail	2.920		
P(T<=t) two-tail	0.964		
t Critical two-tail	4.302		

Appendix E: Watershed subdivisions approach

Authors	Authors Literature support	
Kanchanamala, D. P. H. M., Herath, H. M. H. K., & Nandalal, K. D. W	Kanchanamala, D. P. H. M., Herath, H. M. H. K., & Nandalal, K. D. W. (2016). Impact of Catchment Scale on Rainfall Runoff Modeling: Kalu Ganga River Catchment upto Ratnapura. <i>Engineer:</i> <i>Journal of the Institution of Engineers, Sri</i> <i>Lanka, 49</i> (2),	River network ,Landuse and Landuse
Kim, JG., Park, Y., Yoo, D., Kim, NW., Engel, B. A., Kim, S., Lim, K. J	 Kim, JG., Park, Y., Yoo, D., Kim, N W., Engel, B. A., Kim, S., Lim, K. J. (2009). Development of a SWAT Patch for Better Estimation of Sediment Yield in Steep Sloping Watersheds1. <i>JAWRA Journal of the American Water Resources Association</i>, 45(4), 963–9 	Threshold Area Using Stream Network
Zhang, H. L., Wang, Y. J., Wang, Y. Q., Li, D. X., & Wang, X. K.	Zhang, H. L., Wang, Y. J., Wang, Y. Q., Li, D. X., & Wang, X. K. (2013). The effect of watershed scale on HEC-HMS calibrated parameters: a case study in the Clear Creek watershed in Iowa, US. <i>Hydrol. Earth Syst. Sci.</i> , <i>17</i> (7), 2735–2745	Threshold Area Using Stream Network
Narayan Prasad Gautam	Narayan Prasad Gautam. (2015).Hydrological Modeling with HEC- HMS in Different Channel Sections in Case of Gandaki River ,Basin Global Journals Inc.,(USA) 2249-4596	Stream Network
Manoj Jha, Philip W. Gassman, Silvia Secchi, Roy Gu, and Jeff Arnold	Manoj Jha, Philip W. Gassman, Silvia Secchi, Roy Gu, and Jeff Arnold,(2004).EFFECT OF WATERSHED SUBDIVISION ON SWAT FLOW,SEDIMENT, AND NUTRIENT PREDICTIONS	Randomly using stream network
Tripathi, M. P., Raghuwanshi, N. S., & Rao, G. P	Tripathi, M. P., Raghuwanshi, N. S., & Rao, G. P. (2006). Effect of watershed subdivision on simulation of water balance components. <i>Hydrological</i> <i>Processes</i> , 20, 1137–1156.	Automatic Delineation

Authors	Authors Literature support	
(Luong, 2008)	(Luong, 2008).Cleveland Subdivision of Texas Watersheds for Hydrologic Modeling, Texas Tech University College of Engineering	Equal Area Method
Wingeld (2008)	David B. Thompson, Theodore G. (2009).Cleveland Subdivision of Texas Watersheds for Hydrologic Modeling, Texas Tech University College of Engineering	Heuristic Approach

Appendix F:Evaluation criteria for AMC calculations

Authors	Literature Supports	Verify in Literature	RMSE (mm)	Rank
Sobhani	Sobhani G (1975) A review of selected small watershed design methods for possible adoption to Iranian conditions. M.S. Thesis, Utah State University, Logan, UT	S. K. Mishra & M. K. Jain & P. Suresh Babu &K. Venugopal & S. Kaliappan(200).Comparison of AMC-dependent CN-conversion Formulae,Water Resour Manage (2008) 22:1409–1420	13.683	2
Hawkins et al.	Hawkins RH, Hjelmfelt AT Jr, Zevenbergen AW (1985) Runoff probability, storm depth and curve numbers.J Irrig Drain Eng ASCE 111(4):330–340	S. K. Mishra & M. K. Jain & P. Suresh Babu &K. Venugopal & S. Kaliappan(200).Comparison of AMC-dependent CN-conversion Formulae,Water Resour Manage (2008) 22:1409–1420	13.509	1
Chow et al.	Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill, New York	S. K. Mishra & M. K. Jain & P. Suresh Babu &K. Venugopal & S. Kaliappan(200).Comparison of AMC-dependent CN-conversion Formulae,Water Resour Manage (2008) 22:1409–1420	13.776	3

Authors	Literature Supports	Verify in Literature	RMSE (mm)	Rank
Neitsch et al.	Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW (2002) Soil and water assessment tool (SWAT):theoretical documentation, version 2000. Texas Water Resources Institute, College Station, TX, TWRI Report TR-191	S. K. Mishra & M. K. Jain & P. Suresh Babu &K. Venugopal & S. Kaliappan(200).Comparison of AMC-dependent CN-conversion Formulae,Water Resour Manage (2008) 22:1409–1420	13.865	4