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Abstract 

Construction of a concrete structure requires a large volume of concrete. Due to the 
small surface area-to-volume ratio, concrete structures are often subjected to high 
potential of thermal cracking, caused by the heat generation from cement hydration. 
To reduce the thermal cracking and ensure structural integrity, a good understanding 
about the crack patterns in concrete elements is required. These kinds of cracks mostly 
occur during the early age state of concrete. Since Sri Lanka is very near to the equator, 
the probability of early age crack occurring is even higher.  

The purpose of this research is to explore the potential early age crack patterns in 
vertical concrete walls. Main reason for the early age cracking in vertical walls are 
shrinkage and thermal contraction. This research focuses on the understanding of early 
age thermal cracking in concrete and developing a simple method to model this 
phenomenal computationally. Series of boundary conditions were modelled to obtain 
stress distributions using walls 3m high and 4m & 8m long. Boundary conditions were 
imposed according to guidelines in BS8007 and wall thickness maintained as 300mm 
during the analysis. All the analysis was carried out using FEM commercial software 
Sap 2000 (V19.1). Two approaches were followed initially to identify the best method 
to represent the restraint conditions as per BS8007. End restraints reduced by using 
roller supports up to a 2.4m distance from the free edge of the wall with gradually 
increasing applied horizontal forces proved to be the better technique than that of using 
reduced E-values.  

The case studies yielded the following general findings that agree with the literature 
and field observations; 

(i) 4m walls can have possible vertical and horizontal cracks. 
(ii) 8m walls can have possible cracks approximately 2.4m away from the free 

edges with an inclination of approximately 45º-60º. 
(iii) 8m walls get the highest stress close to 2.4m from the free edges whereas 

the 4m walls get the highest stress at the centre. 
(iv) In 8m walls higher stresses are distributed over a central length whereas in 

4m walls the higher stress is concentrated at the centre. 
(v) 4m wall with top movement can cause possible inclined cracks. 
(vi) 8m wall with top movement can lead to two possible dominant cracks and 

two minor cracks. 

This validation was done qualitatively using the literature and on-site observations. 
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