APPLICABILITY OF RATIONAL FORMULA IN HYDROLOGICAL ANALYSIS OF HIGHWAY CROSS DRAINAGE STRUCTURES

Gimhani Anuruddhika Dissanayake

(138306K)

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Engineering in Highway and Traffic Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

August 2017

DECLARATION

Declaration of the candidate

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text".

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

Declaration of the supervisor

The above candidate has carried out research for the Masters thesis under my supervision.

Signature of the supervisor: Date:

Applicability of Rational Formula in Hydrological Analysis of Highway Cross Drainage Structures Abstract

The peak flow estimation at Highway –Waterway intersects has substantial effects on Hydraulic design aspects of culverts and bridges. Fair and accurate estimation of peak flow would be the basis in deciding the size of cross drainage structures to ensure proper transfer of runoff collected at inlet towards the downstream.

The history of hydrology modelling varies from well-known Rational Formula to sophisticated computer aided models. Rational Formula has been used for over 150 years and still remains as the most widely used method due to its simplicity in approach. The present study considered five numbers of flood estimation techniques; Rational Formula, Fuller Formula, Snyder's Method, Flood transportation and HEC-HMS for catchments located in four road segments where area varies from 9 - 6663 hectares (ha). All catchments are ungauged and prediction of flood flows for ungauged basins is extensively discussed in past decades and still remains a question due to accuracy and validity of assumptions made in the analysis.

The study focused on different methods of time of concentration, runoff coefficient and design discharge estimations. Three empirical relationships along with Irrigation Department guideline (1984) were considered for the computation of Time of Concentration. Time of concentration results of Kirpich equation was substantially lower than other methods while UK Flood Studies Report equation was identified as the highest. Only the Bransby – William equation showed fair agreement with Irrigation Department Guideline.

Peak flow estimations of flood transportation technique is highly sensitive for the drainage area ratio and relatively low drainage area ratios correspond to culvert and bridge sites caused significant deviation from other methods. Fuller formula estimations were also considerably deviated from other methods.

The difference in peak flow estimation methods was not significant up to catchment area of 100 ha. Peak flow estimations of cross drainage structures in studied road segments revealed that Rational formula can be applied up to 770 ha. As a comparative assessment catchments larger than 770 ha to be modeled using Rational formula and alternative flood estimation methods.

Key Words: Time of Concentration, Rational Formula, HEC-HMS, Fuller Formula, Flood Transportation

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to the supervisor, Dr.H.R.Pasindu for giving earnest support, guidance and commitment extended throughout the study. I further express my appreciation for the Staff of Department of Civil Engineering, University of Moratuwa for their enormous guidance and support.

I am thankful to my employer Central Engineering Consultancy Bureau (CECB) for facilitating me to pursue studies leading to a Masters degree.

I take this opportunity to thank Eng. P.C.Jinasena (former Additional General Manager), Eng. W.A.D.D.Nandakumara (Additional General Manger - Northern Roads) and Senior Engineers of CECB for sharing their valuable expertise and experience in Hydrologic and Hydraulic design works and constant optimism throughout my carrier. The contribution of all CECB staff worked at North Road Rehabilitation Project and Local Bank Funded Road Project are gratefully acknowledged for their immense support in finding necessary information and data pertaining to the research area.

Finally my deep and sincere gratitude to my parents and my friends for their continuous support and encouragement throughout the process.

TABLE OF CONTENTS

Decl	aration o	of the Candidate and Supervisor	i
Abst	ract		ii
Ackr	nowledge	ement	iii
Tabl	e of Con	tents	iv
List	of Figur	es	vii
List	of Table	S	ix
List	of Abbre	eviations	xi
List of Appendices		xiii	
1. INTRODUCTION			1
	1.1	Background	1
	1.2	Objectives	3
	1.3	Scope and Limitations of the Study	3
	1.4	Outline of the Thesis	4
2.	LITER	ATURE REVIEW	5
	2.1	Time of Concentration (tc) Estimation Methods	5
	2.2	Runoff Coefficient (C)	7
	2.3	Rainfall Intensity Duration Frequency (IDF) Curves	7
	2.4	Peak Flow Estimation Methods	7
	2.5	Flood Frequency Estimates	11
	2.6	Applicability of Rational Formula	12
3.	METH	ODOLOGY	15
	3.1.	Study Area	15
	3.2.	Methodology and Approach	16
	3.3.	Data Assimilation	18
	3.3.1.	Field Data Collection	18
	3.3.2.	Topographic Maps and Satellite Images	19
	3.3.3.	Hydrological, Topographical and Soil data from Publications	19
	3.3.4.	Gap Filling of Collected Data	21
	3.4.	Design Inputs derived through Mapping Process	21
	3.5.	Quantify Catchment Characteristics	25

	3.5.1.	Stream Slope (S)	25
	3.5.2.	Longest Watercourse Length (L)	25
	3.5.3.	Center of Gravity of catchment Length (Lca)	26
	3.5.4.	Time of Concentration (tc)	26
	3.5.4.1.	Irrigation Department (ID) Method, Design of Irrigation Headworks for Small Catchments (Ponrajah A.J.P., 1984)	26
	3.5.4.2.	Kirpich Equation (KIR)	27
	3.5.4.3.	Bransby - Williams Equation (B-W)	27
	3.5.4.4.	UK Flood Studies Report (UK)	28
	3.5.5.	Runoff Coefficient (C)	28
	3.5.6.	Design Return Period	31
	3.5.7.	Rainfall Intensity	31
	3.5.8.	Rainfall Depth Duration Estimates	34
	3.5.9.	Land Use/Land Cover and Soil Profile	36
	3.6.	Hydrological Design	40
	3.6.1.	Rational Formula	40
	3.6.2.	Fuller Formula	41
	3.6.3.	Snyder's Unit Hydrograph	42
	3.6.3.1.	Effective Rainfall Depth	45
	3.6.4.	Flood Transportation	48
	3.6.5.	HEC-HMS (Hydrologic Engineering Center – Hydrologic Modeling System)	50
	3.6.5.1.	HEC-HMS Model Structure	51
	3.6.5.2.	Loss Model and Transform Model	52
	3.6.5.2.	1. Soil Properties	52
	3.6.5.2.	2. Runoff Curve Number	53
	3.6.5.2.	3. Initial Abstraction (Ia)	54
	3.6.5.2.	4. SCS Curve Number Loss Model	54
	3.6.5.2.	5. SCS Unit Hydrograph Method	55
	3.6.5.3.	Design Hyetographs	56
	3.6.5.4.	Model Verification	58
4.	RESUL	TS AND DISCUSSION	60
	4.1.	Catchment Physical Parameters	60

	4.2.	Time of Concentration	61
	4.3.	Runoff Coefficient	67
	4.4.	Design Rainfall Intensity	72
	4.5.	Statistical Analysis of Flood Peak Data	73
	4.6.	Hydrological Design	80
	4.6.1.	Peak Flow Estimation using Rational Formula	80
	4.6.2.	Peak Flow Estimation using Fuller Formula	80
	4.6.3.	Peak Flow Estimation using Snyder's Method	80
	4.6.4.	Peak Flow Estimation using Flood Transportation	80
	4.6.5.	Peak Flow Estimation using HEC-HMS	82
	4.7.	Comparison of Peak Flow Estimation Methods	84
5.	CONCLUSIONS AND RECOMMENDATIONS 10		100
	Refere	nce List	103
	Appen	dix A : Details of Existing Cross Drainage Structures	106
	Appendix B : Catchment Areas		
	Appen	dix C : Hydrologic Soil Cover Complexes	121
	Appendix D : Design Rainfall Intensity Calculations Appendix E : Peak Flow Estimation using Snyder's Method		132
			139
	Appen	dix F : Results of Peak Flow Estimations	184

LIST OF FIGURES

		Page
Figure 3-1	Location Map of A009 and A035 Roads	15
Figure 3-2	Location Map of A009 Road	15
Figure 3-3	Location Map of B312 Road	15
Figure 3-4	Location Map of B528 Road	16
Figure 3-5	Methodology and Approach	17
Figure 3-6	Catchment Area B312 Road [34/3 to 36/1]	23
Figure 3-7	Catchment Area B312 Road [36/2 to 39/2]	23
Figure 3-8	Catchment Area B312 Road [40/1 to 44/3]	24
Figure 3-9	Catchment Area B312 Road [58/1 to 59/1 & 59/3]	24
Figure 3-10	Catchment Area B312 Road [59/2]	25
Figure 3-11	IDF Curves for Station Polonnaruwa	32
Figure 3-12	IDF Curves for Station Hambantota	33
Figure 3-13	IDF Curves for Station Anuradhapura	33
Figure 3-14	IDF Curves for Station Vavniya	34
Figure 3-15	General locality of stations and Hydrological Zones	35
Figure 3-16	Soil Map of Sri Lanka	39
Figure 3-17	Hydrologic Cycle	40
Figure 3-18	Watershed Physical parameters used in Snyder's UH Method	44
Figure 3-19	Snyder's Unit Hydrograph	44
Figure 3-20	Watershed Runoff Process	51
Figure 3-21	Design Hyetograph for Catchments in B312 Road	57
Figure 3-22	Design Hyetograph for Catchments in B312 Road	57
Figure 3-23	Design Hyetograph for Catchments in B312 Road	58
Figure 4-1	Catchment Physical Parameters vs. Time of Concentration graph of B312 Road	63
Figure 4-2	Catchment Physical Parameters vs. Time of Concentration graph of A035 Road	63
Figure 4-3	Catchment Physical Parameters vs. Time of Concentration graph of A009 Road	64
Figure 4-4	Catchment Physical Parameters vs. Time of Concentration graph of B528 Road	64

Figure 4-5	Catchment Physical Parameters vs. Time of Concentration	65
Figure 4-6	Catchment Physical Parameters vs. % difference in Time of Concentration with ID guideline	65
Figure 4-7	Comparison of Runoff Coefficient of B 312 Road	70
Figure 4-8	Comparison of Runoff Coefficient A 035 Road	71
Figure 4-9	Comparison of Runoff Coefficient A 009 Road	71
Figure 4-10	Comparison of Runoff Coefficient B 528 Road	71
Figure 4-11	Rainfall Intensity for 25 Years Return Period for B 312 Road	72
Figure 4-12	Rainfall Intensity for 25 Years Return Period for A 035 Road	72
Figure 4-13	Rainfall Intensity for 25 Years Return Period for A 009 Road	73
Figure 4-14	Rainfall Intensity for 25 Years Return Period for B 528 Road	73
Figure 4-15	Reduced variate vs. Flood Peak for Station Embilipitiya	75
Figure 4-16	Reduced variate vs. Flood Peak for Station Elahera	77
Figure 4-17	Reduced variate vs. Flood Peak for Station Kapachchi	79
Figure 4-18	Summary of Peak Flow Estimation for Return Period 25 Years	82
Figure 4-19	Hydrograph and Hyetograph	82
Figure 4-20	Runoff Hydrograph of Catchment 58/1-58/2	82
Figure 4-21	Peak Flow Estimations for 100 Year Return Period (Area: 9-303 ha)	92
Figure 4-22	Peak Flow Estimations for 100 Year Return Period (Area: 384-6663 ha)	92
Figure 4-23	Area vs. Discharge Relationship 25 Year return period	95
Figure 4-24	Area vs. Discharge Relationship for 50 Year return period	96
Figure 4-25	Area vs. Discharge Relationship 100 Year return period	96
Figure 4-26	Rational and Snyder's Method peak flow comparison (100 years)	96
Figure 4-27	Rational Method and HEC-HMS peak flow comparison (100 years)	97
Figure 4-28	HEC-HMS and Snyder's Method peak flow comparison (100 years)	97
Figure 4-29	Comparison of Peak Flows for 100 Year Return Period	98

LIST OF TABLES

Page

Table 2 -1 Size of catchment where Rational Method is applied according to some countries	13
Table 2 -2 Size of Catchment where Rational Method is applied according to literatures	13
Table 3 -1 Input Parameters required in Different Flood Estimation Methods	17
Table 3 -2 Reports and Data Availability	20
Table 3- 3 Flow Velocity	27
Table 3- 4 Runoff Coefficient for Various Catchment Slopes	29
Table 3 -5 Runoff Coefficients for Rational Formula	29
Table 3- 6 Frequency Factor for Different Recurrence Intervals	30
Table 3 -7 IDF Curve Stations	32
Table 3- 8 Corresponding Hydrological Zones	35
Table 3 -9 Depth of Rainfall (inches)	36
Table 3 -10 Percentage of Land Coverage of Sub Catchments in B312 Road	37
Table 3 -11 Percentage of Land Coverage of Sub Catchments in A035 Road	37
Table 3- 12 Percentage of Land Coverage of Sub Catchments in A009 Road	38
Table 3 -13 Percentage of Land Coverage of Sub Catchments in B528 Road	38
Table 3- 14 Ct, Cp Values for Snyder's Methods	45
Table 3 -15 Published values for Initial Loss	47
Table 3 -16 Published values for Uniform Loss Rates	47
Table 3- 17 Corresponding River Gauge Stations	49
Table 3 -18 Values of yn and σ n in Gumbel Distribution	50
Table 3- 19 Classification Criteria for HSG	52
Table 3 -20 Classification for AMC Condition	53
Table 3- 21 Selected Storm Durations for Design Hyetographs	56
Table 4- 1 Catchment Physical Parameters	60
Table 4 -2 Time of Concentration	62

Table 4- 3 Variation in tc with respect to ID Guideline	66
Table 4 -4 Comparison of Runoff Coefficient as per Guideline 1 and 2	68
Table 4 -5 Statistical Analysis of Historical Flood Peak of Walawe Ganga	74
Table 4 -6 Expected Flood for different Return Periods at Walawe Ganga (Station-Embilipitiya)	75
Table 4 -7 Statistical Analysis of Historical Flood Peak of Amban Ganga	75
Table 4 -8 Expected Flood for different Return Periods at Amban Ganga (Station-Elahera)	77
Table 4 -9 Statistical Analysis of Historical Flood Peak of Malwathu Oya	77
Table 4 -10 Expected Flood for different Return Periods at Malwathu Oya (Station- Kapachchi)	79
Table 4 -11 Results of Flood Frequency Analysis	79
Table 4 -12 Peak Flow Estimation using Flood Transportation	81
Table 4 -13 Peak Flow Estimation using HEC-HMS	83
Table 4 -14 Summary of Peak Flow Estimation for 25 Year Return Period	85
Table 4 -15 Summary of Peak Flow Estimation for 50 Year Return Period	87
Table 4 -16 Summary of Peak Flow Estimation for 100 Year Return Period	89
Table 4 -17 Area vs. Discharge Relationship	93
Table 4 -18 Difference in Peak Flow of Snyder's Method and HEC-HMS with Rational Formula	94

LIST OF ABBREVIATIONS

A, FAreaAMCAntecedent Moisture ConditionASTERAdvanced Spaceborne Thermal Emission and ReflectionBPRBureau of Public RoadsCRunoff Coefficient
ASTERAdvanced Spaceborne Thermal Emission and ReflectionBPRBureau of Public Roads
BPRBureau of Public Roads
C Runoff Coefficient
CAg Catchment Area of gauged site
CAu Catchment Area of ungauged site
CN Curve Number
Cp Peak Parameter
Ct Time Parameter
d Depth of rainfall
D Duration of Unit Hydrograph
D' Storm Duration
DDF Rainfall Depth Duration Frequency
DEM Digital Elevation Model
DRH Direct Runoff Hydrograph
ESDAC European Soil Data Centre
FAO Food and Agriculture Organization of the United Nations
<i>f_c</i> Final/Equilibrium infiltration capacity
FR Ferralsols
GIS Geographic Information System
GPS Global Positioning System
GTOPO Global 30 arc-second Elevation
ha hectares
HEC-HMS Hydrologic Engineering Center – Hydrologic Modeling System
hr Hour
HSG Hydrologic Soil Group
HydroSHEDS Shuttle Elevation Derivatives at multiple Scales
I Rainfall Intensity
Ia Initial Abstraction
ID Irrigation Department ,Sri Lanka
IDF Rainfall Intensity Duration Frequency

IL+ULS	Initial loss plus Uniform loss rate
IWMI	International Water Management Institute
К	Frequency factor
km	kilometer
km ²	Square kilometer
L	Length
Lca	Center of Gravity of a Catchment Length
LV	Luvisols
mi	Mile
NRCS	U.S. National Resources Conservation Services
Р	Excess Rainfall
Q	Peak Flow
$q_{\rm pi}$	Peak runoff of unit hydrograph
Qpi	Flood hydrograph peak
RBE	Reddish Brown Earth
S	Slope
SCS	Soil Conservation Service
SRTM	Shuttle Radar Topography Mission
Т	Return Period
Tb	Time base
tc	Time of Concentration
tp	Time lag/Basin time lag
TR	Technical Release
UH	Unit Hydrograph
USGS	United States Geological Survey
V	Velocity
W ₅₀	Width in hrs of unit hydrograph for 50% of q_{pi}
W ₇₅	Width in hrs of unit hydrograph for 75% of q_{pi}
Х	Mean
Yr/YR	Year
Ут	Reduced variate
σ	Standard Deviation

LIST OF APPENDICES

Appendix	Description	Page
Appendix A	Details of Existing Cross Drainage Structures	106
Appendix B	Catchment Areas	114
Appendix C	Hydrologic Soil Cover Complexes	121
Appendix D	Design Rainfall Intensity Calculations	132
Appendix E	Peak Flow Estimation using Snyder's Method	139
Appendix F	Results of Peak Flow Estimations	184