
>ge> Ivors ho e Is c S
■ ©/ (j^

■'

o-

Speech Recognition Research for Recognize Digits in

Sinhala

U9RARY
MH1Ver§!tY op moratuwa, sri lanka

MORATUWA

R.M.D.T. Asiri

139154A

O 04- !v <3

00-4 C*M'3y

Dissertation submitted to the Faculty of Information Technology, University of

Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Master

Degree of Science in Information Technology.

April 2016University of Moratuwa

TH 316/
-f ! Ot' 0 <3 OA-J

■rM 3/,voj)
TH316

316 O -

i

T H 3161

Declaration
I declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any university or other institution of tertiary education.

Information derived from the published or unpublished work of others has been

acknowledged in the text and a list of references is given.

Name of the student: Asiri RMDT

Student Number: 139154A

Signature of the student: Date:

Supervised By

Name of the supervisor: Mrs. Indika Karunarathne

Signature of the supervisor: Date:' • • •••«

ii

Dedication
This Dissertation is dedicated to my loving Family for being part of me and

encouraging me always being by my side.

iii

Acknowledgement
First I express my heartfelt appreciation and gratitude to my supervisor Mrs. Indika

Karunaratne for his most valued guidance, commitment and kind support to make this

research success

Also I express my kind appreciation to our MSc Coordinator Mr. Saminda

Premarathne to for his guidance and support and given flexibility with some timelines

in order to complete the research activities

Also sincere appreciation is extended to Eng. Mr. Kanishka Jayasekara, Deputy

General Manager (Information Technology) for his valuable opinions and

encouragement given to me in this endeavor

It is my great pleasure to thank all the other Senior lecturers, Lecturers, Instructors,

and staff members who helped us in many ways to make this research. The guidance

and support received from all the members who contributed and who are contributing

to this project, was vital for the success of the Research.

I would also like to thank my all the batch mates of the MSc in Information

Technology batch 7 in faculty of Information Technology for their various help and

support. And also other friends of the faculty as well as friends for outside who gave

me support and encourage me with their best wishes.

iv

Abstract
There is growing tendency in the human computer interaction activities especially

within last decade with smart world. Day by day lot of smart options are coming to

the market which has more powerful human computer interactive options. With this

kind of an environment speech recognition is also became very vast and interested

research area among modem computer researches. When we considering speech

recognition there are lot of smart applications even in smart phones are available all
around the world right now, but major problem of those application are the accuracy

and the localization. Especially considering a language like Sinhala, current industry

doesn’t have much accurate of efficient recognition system to cater with. This

research is basically focuses on how to identify user audio signals in Sinhala language

and how to convert them in to text. Speech recognition becomes very popular research

topic with the highly incremental human computer interactions today. Most of the

popular or vastly using languages are already have well developed speech recognition

systems, but as mentioned earlier languages like Sinhala it is very rare, but for Sri
Lanka it is very useful to have a recognition system.

Ceylon Electricity Board (CEB) is the sole agent to generate and distribute

electricity power within the Sri Lanka. So it has several call centers running around

the country to get customer feedbacks especially regarding power failures. Recently

CEB management came with an idea to employ some disable (blind) people to those

call centers to collect customer complains thru telephone line and log them into a call

center web application and then that application will process those complains to

forward to correct maintenance party to attend to the problem quickly as possible. In

order to get the input first idea was to use a brail keyboard; same time management

has an idea to get the input thru a microphone. But that audio input needs to be in

Sinhala language. So now our problem is to develop good speech recognition for
Sinhala language to identify those vocal signals. As part of solution to the above

mention problem, this research is conducting to create well trained Sinhala

identification system. In this phase research is focus only to identify digit’s vocal

inputs created using Sinhala language. Than can be used to identify customer

according to his/her electricity account number. Once that is done call center
application can validate the customer using customer billing database.

Table of Contents
iiDeclaration...

Dedication...

Acknowledgement..

Abstract..

List of Figures...

List of Tables..

1. Introduction..

2. Review of others work - Literature Review...

2.1. Introduction...

2.2. Classification of Speech Recognition Systems...................................

2.3. Speech Recognition in MATLAB [1]...

2.4. Speech Detection Algorithm..

2.5. Acoustic Model Development...

2.6. Google Speech Recognition Researches [2].......................................

2.7. Automatic Pronunciation Verification for Speech Recognition [3]...

2.8. Open Source Speech Recognition Toolkit -Source forge Project [4]

3. Technology Adapted: Sphinx 4...

3.1. Introduction...

3.2. Why Sphinx 4?..

3.3. Overview [5]...

3.4. Acoustic Model...

3.6. Language Model...

3.6.1. JSGF (Java Speech Grammar Fonnat) [8]..................................

3.6.2. Dictionary...

3.7. Summary..

4. Research Approach...

4.1. Introduction..

4.2. Approach in Steps...

4.3. Obstacles faced and how they overcome with this Approach?..........

5. Analysis and Design..

5.1. Introduction..

5.2. Abstract of the System Design...

iii

iv

v

viii

viii

1

2

2

2

2

4

5

7

8

8

10

10

10

10

12

13

13

13

14

15

15

15

16

17

17

17

vi

175.3. Functional overview of the system............

5.4. System Architecture and structure.............

5.4.1. Architecture..

5.5. Detail System Software Design..................

5.5.1. Use Cases...

6. Implementation..

6.1. Introduction..

6.2. Major Parts of the Implementation.............

6.6. Outline Architecture in Brief......................

6.7. Logical View of the Implementation..........

6.8. Class Description...

6.9. Activity Diagram...

6.9.1. User Training Activity........................ .

6.9.2. Recognizing speech Activity...............

6.10. Sequence Diagram for Decoding Speech.

6.11. Deployment Architecture........................ .

7. Evaluation...

8. Discussion...

9. Conclusion...

18

18

19

19

22

22

22

23

23

24

26

26

26

27

28

29

29

30
10. Future Work. 30
11. References 31

12. Appendixes 32

vii

List of Figures
3Figure 2-1 - MATLAB Code Sample____________________________

Figure 2-2- Zero Crossing____________________________________

Figure 2-3- PSD estimate of three different utterances of the word “ONE.”

Figure 2-4 PSD estimate of three different utterances of the word “TWO.”
Figure 3-1 - Sphinx 4 - Architecture_____________________________
Figure 4-1- Research Approach in brief__________________________

Figure 5-1- Frontend Behavior of the System_____________________
Figure 5-2- Level 0 Use case__________________________________
Figure 5-3- Level 1: Use Case for “Initiate New User Profile”_________

Figure 5-4 -Level 1: Use Case for “Recognize Digits” _______________
Figure 6-1- Main Class Diagram_______________________________
Figure 6-2 - User Training Activity Diagram_______________________

Figure 6-3 - Recognizing Speech Activity Diagram__________________
Figure 6-4 - Decoding Speech Sequence Diagram___________________

4

5

6
12

16

18
19

20

21
24

26

27

28

List of Tables
Table 3-1- Sample Dictionary, 14

viii

1. Introduction
Ceylon Electricity board is the main electricity generating company in Sri Lanka.
With the market share of almost 95 - 99%, it controls the electricity generation,

distribution and maintenance activities all around the county. To help those activities

Ceylon Electricity Board has established several customer call centers all around the

island to make customer complaints regarding any electricity issue. In those call

centers there are several agents are working for collect the customer complaints

especially thru phone calls. All call centers are currently running a web based

software solution to capture those complaints and to redirect them in to correct

maintenance parties.

As a government owned organization, management of the CEB is planning to offer

some call center jobs for disable persons as a charity work and also to get disabled

people’s contribution to the government work force. So CEB management is

researching to use those disabled people (especially blind) as call center agents. Their

duty is to get the customer complaints through telephone line and log them into the

call center software without using brail system. Call center application needs to

identify the agents’ voice signals and need them to convert into numbers and text as

inputs. This need to be done for identifies digits and words in Sinhala language. This

research is conducting as the first phase of above mention process of acquire disable

work force to CEB. Research activities conducting to identify the digits accurate as

possible in Sinhala as first phase

Java based speech recognition libraries and APIs will be using to read and recognize

the user inputs. Users need to speak to a microphone and system will automatically

identify the user by his/her vocal profile which is captured at the user registration

process. Then user needs to input customers account number to the system by speak

out one number at a time in the account number. At the end system identify the

customer according to the audio input and load relevant customer details to the

complaint. This process of recognizing will be discussed in details in the later

chapters of this document.

1

2. Review of others work - Literature Review

2.1. Introduction
This chapter discusses the others work in the related research area. Here we take some

example how the researches approached towards speech recognition and what are the

pros and cons of those researches and how we can use them to generate good speech

recognition model for Sinhala language.

2.2. Classification of Speech Recognition Systems
Most speech-recognition systems are classified as isolated or continuous. Isolated

word recognition requires a brief pause between each spoken word, whereas

continuous speech recognition does not. Speech-recognition systems can be further
classified as speaker-dependent or speaker-independent. A speaker-dependent system

only recognizes speech from one particular speaker's voice, whereas a speaker-

independent system can recognize speech from anybody.^
This literature review will discuss some of various available speech recognition

frameworks and researches in the field of speech recognition.

2.3.Speech Recognition in MATLAB
This section will focus on how to use the MATLAB built in facilities and related

products to develop an algorithm for isolated speech recognition approach.
Unfortunately this algorithm is speaker dependent according to the MATLAB which

means it recognizes speech only from one particular speaker's voice. ^ This approach

is having two major stages in order to identify vocals

1. Training stage - in this stage MATLAB developer is creating the dictionary

for each word, acoustic model for each word, in a digit identification this

dictionary will contain digits from zero to nine

2. Testing stage - here they use the created acoustic models algorithm recognizes

the words or the digits

Now let’s see how they capture vocals fortesting

Seconds of speech from a microphone input at 8000 samples per seconds, which is the

frequency of the microphone. The MATLAB code shown below is used to read the

microphone input from Windows sound card

2

% Define system parameters

framesize = 80;

Fs = 8000;

RUNNING = 1;

% Framesize (samples)

% Sampling Frequency (Hz)

% A flag to continue data capture

% Setup data acquisition from sound card

ai = analoginput(’winsoundf);

addchannel (ai, 1);

% Configure the analog input object.

set(ai, 'SampleRate', Fs);

set(ai, 'SamplesPerTrigger1, framesize);

set(ai, ’TriggerRepeat^inf);

set(ai, 'TriggerType', 1 immediate’);

% Start acquisition

start(ai)

% Keep acquiring data while "RUNNING"

while RUNNING

% Acquire new input samples

newdata = getdata(ai,ai.SamplesPerTrigger);

0

% Do some processing on newdata

<DO SOMETH ING>

% Set RUNNING to zero if we are done

if <WE __ ARE _ DONE>
RUNNING = 0;

end

end

% Stop acquisition
Figure 2-1 - MATLAB Code Sample

3

MATLAB uses Data Acquisition toolbox to set up continuous acquisition of the

speech signal and simultaneously extract frames of data for processing.

This process is running until the RUNNING flag is set to ZERO (While loop), in this

code we need to set the target action to <WE_ARE_DONE> after system reach that

stage recording will be stopped.

Now next question, How they Analyzing this acquired speech?

They begin it by developing a word-detection algorithm that separates each word

from ambient noise. Then derive an acoustic model that gives a robust representation

of each word at the training stage. Finally, select an appropriate classification

algorithm for the testing stage.

2.4. Speech Detection Algorithm
The speech-detection algorithm is developed by processing the prerecorded speech

frame by frame within a simple loop to detect isolated digits, they use a combination

of signal energy and zero-crossing counts for each speech frame zero crossing is a

point where the sign of a mathematical function changes (e.g. from positive to

negative)

Figure 2-2- Zero Crossing

Signal Energy works well for detecting voiced signals and zero crossing of the signal
works well to detect unvoiced signals

They have use inbuilt MATLAB functions to calculate above two metrics

To avoid ambient noise they assumed that each isolated image lasts at least 25
milliseconds

Next step is the Acoustic Model Development

4

2.5. Acoustic Model Development
Here first of all to investigate frequency characteristics they examined the power

spectral density (PSD).Power spectral density basically describes the signal power

distribution over the frequency

Since the human vocal tract can be modeled as an all-pole filter, they use the Yule-

Walker parametric spectral estimation technique from Signal Processing Toolbox™ to

calculate these PSDs.

Following figures demonstrate the calculated PSD for Number one and to two for
three various voices

Figure 2-3- PSD estimate of three different utterances of the word "ONE."

5

Yul*-Vv'alk#f Pcv.fr Spectra! Density Estimate Yute-Y/afcw Pwc-r Spectral Density Esurx*
•55--------- 1--------- 1------ •■■j---------- -55--------- 1--------- 1--------- r--------

Yi4e-V/*>.« P«*t Spectra! D*m*7
•5: T i i

<0

t
i

w
i 5o

I -7! a
y- Jrg s g:l § B
| -M40 .4 43

s zI I©
CL 0.

-25 •85

-SO -SO -so

-55 •95 -95

-ICO -103 -1000 1 2 3 0 1 2 3 4 1 2 3
Frequency (kHz)

Figure 2-4 PSD estimate of three Different utterances of the word TWO."

Most important thing we can see is that the peaks in the PSD remain consistent for
particular digit but differ between digits. This means that we can derive the acoustic

models in a speech recognition system from spectral features. Here they have

specified that one set of spectral features commonly used in speech applications

because of its robustness is Mel Frequency Cepstral Coefficients (MFCCs). MFCCs

give a measure of the energy within overlapping frequency bins of a spectrum with

waiped (Mel) frequency scale 1.

Frequency (kHz) Frequency (kHz)

a

a

What they have done here is that MFCC feature vectors are calculated for each frame

of detected speech. Then they are trying to estimate a multidimensional probability

density function for an each and every digit

They planned to extract the MFCC vectors from the test speech and use a probabilistic

measure to determine the source digit with maximum likelihood, they use Gaussian

mixture model (GMM) also to get the most likelihood log value from the MFCC

parameters

This will conclude the summarizing the effort of MATLAB to have an Isolated

Speech Recognition system

6

Next we are going to explore the Google research for speech recognition

2.6. Google Speech Recognition Researches

Today most of the Google apps such as Google maps are embedded with speech to

text or speech recognition application in the internet and the mobiles.Those

applications are the results of these continuous researches which are conducting by

the Google using global research teams. This chapter will summarize the efforts of

those researches and problems faced by them [2J

In Google speech processing research is basically focused on two areas, one is

speaking to mobile and computer devices. Other one is to search or access the videos

in the web.

Google also look at parallelism and cluster computing in a new light to change the

way experiments are run, algorithms are developed and research is conducted. The

field of speech recognition is data-hungry, and using more and more data to tackle a

problem tends to help performance, Google kind of organization easily can generate

larger data set because millions of users are trying to access and search by calling in

to the Google software, so lot of samples are available with Google to go with speech

processing research successfully comparing to others.

But according to Google research page as well as increasing accuracy, more data have

other problems too which need to overcome.

Some of the problems identified by Google are as follows
1. How do you deal with data overload?

2. How do you leverage unsupervised and semi-supervised techniques at
scale?

3. Which class of algorithms merely compensate for lack of data and which

scale well with the task at hand?

As this review mentioned earlier researches of Google have the facility to get various

vocal inputs all around the world using different mobile and computational interfaces

which are running the Google apps. Also Google Researches are expanding over 25

languages due to this data availability and spread of researchers.

7

2.7. Automatic Pronunciation Verification for Speech Recognition

This research is conducted to verify the automatic pronunciation for speech

recognition, research creates various lexicons and a lexicon understanding processes

to identify the automatic pronunciations. Basically this is a data driven pronunciation

learning research [31

At the start system has a defined lexicon to verify the speech; with the data system

will have kind of a learning process according to the new pronunciations

Learning set up is divided into three major recognition engines

1. Baseline : This is the baseline pronunciations for words to be verified

2. Append: This is the engine who adding new sounds to baseline

3. Replace: This engine will replace the old base with new pronunciations

Those three engines will work to fulfill the lexicon with the new incoming utterances.

This is an ongoing training process to improve the baseline engine to identify

and more utterances
more

Then research focused on some mathematics specially log based metrics and

recognition based metrics to gauge if the result difference is good, bad or neutral to

update the baseline engine

2.8. Open Source Speech Recognition Toolkit -Source forge Project

This is a speech recognition toolkit which is developed as a source forge project; 141

this toolkit kit is having a larger number of supportive tools and functions to conduct

speech recognition research.

Name is given to this framework is CMUSphinx toolkit, basically this has four major

parts build in

1. Pocketsphinx — lightweight recognizer library written in C.

2. Sphinxbase — support library required by Pocketsphinx

3. Sphinx4 — adjustable, modifiable recognizer written in Java

4. Sphinxtrain — acoustic model training tools

Pocketsphinx is the lighter version to do a speech recognition when comparing to the

Sphinx4, Pocketsphinx is speed and portable (even can work with android kind of

8

applications) but less flexible and manageable than the Sphnix4. But when it comes to

accuracy it depends on many factors, not just the engine. The thing is that engine is

just a part of the system which should include many more components. If we are

talking about large vocabulary decoder, there must be idolization framework,
adaptation framework and post processing framework. They all need to cooperate

somehow. Flexibility of sphinx4 allows you to build such a system quickly. It's easy

to embed sphinx4 into flash server like red5 to provide web-based recognition; it's

easy to manage many sphinx4 instances doing large-scale decoding on a cluster.

On the other side, if your system needs to be efficient and reasonably accurate, if

you are running on embedded device or you are interested in using recognizer with

some exotic language like Erlang, pocketsphinx is your choice. It's very hard to

integrate Java with other languages not supported by JVM pocketsphinx is way better

here.

9

3. Technology Adapted: Sphinx 4

3.1. Introduction

This chapter will discuss the implementation technology of the research in detail

manner, also discuss reasons to select the kind of technology and reasons to reject

some of other available mechanisms

3.2. Why Sphinx 4?

One of the major reason to select this technology is the easy integration with the

already implemented call center application. Since underlying technology is JAVA, it

is very easy to integrate with other application and it is platform independent

Another reason to select such a technology is with the package we get the source code

too, because this is a freely available open source bundle. If we need to adjust or have

to do some changes, it is totally doable with this package

One reason to refuse MATLAB kind of an implementation which is discussed in the

literature review is the integration difficulty and the high resource requirement of

MATLAB package.

3.3. Overview

Sphinx stands for Site-oriented Processor for HTML INformation extraction is one of

speech recognition engine that developed by The Sphinx works based on Hidden

Markov Model (HMM) ^algorithm.

Sphinx4 is a pure Java speech recognition library. It provides a quick and easy API to

convert the speech recordings into text with the help CMUSphinx acoustic models.

It can be used on servers and in desktop applications. Beside speech recognition

Sphinx4 helps to identify speakers, adapt models, and align existing transcription to

audio for time stamping and more.

There are several high-level recognition interfaces in Sphinx-4:

■ LiveSpeechRecognizer

■ StreamSpeechRecognizer

■ SpeechAligner

10

For the most of the speech recognition jobs high-levels interfaces should be enough.

And basically you will have only to setup four attributes:

■ Acoustic model

■ Dictionary
■ Grammar/Language model.
■ Source of speech

First three attributes are setup using Configuration object which is passed then to a

recognizer. The way to point out to the speech source depends on a concrete

recognizer and usually is passed as a method parameter.

One of the major reasons to select this technology is, it is written in java and

published ad set of java libraries. CEB call centre application is running as a web

application it is very easy to couple java application to that to identify the speech, in

that case we don’t need to provide several interfaces to user, we can use one interface

get the audio signal and then we can presume with call center application.

Following diagram illustrate the Sphnix architecture in brief

11

Figure 3-1 - Sphinx 4 - Architecture

Now let’s look in to each of the above mentioned attributes briefly

3.4. Acoustic Model

An acoustic model is used in Automatic Speech Recognition to represent the

relationship between an audio signal and the phonemes or other linguistic units that
make up speech. The model is learned from a set of audio recordings and their

corresponding transcripts. Models are Creates by taking audio recordings of speech,

and their text transcriptions, and using software to create statistical representations of

the sounds that make up each word. CMUSphinx libraries acts as the intermediate

software to create statistical representations

CMUSphinx is coming with several high quality acoustic models. But here

problem is currently it does not have in built acoustic model for Sinhala language. So

we need to create sample acoustic model to use Sinhala language within the

CMUSphinx.

our

12

3.5. Data Preparation for Training
Trainer learns the parameters of the sound unit models using set of sample audio

signals, that is called training database. In this research we need training data base

contains Sinhala digit vocals. This database will contain information required to

extract statics from the speech using acoustic model. In order to be a good database it

should have enough speakers recording, variety of recording conditions, enough

acoustic variations and all possible linguistic sentences.

CMUSphinx needs audio files with following parameters

Sampling rate is 16KHZ 16bit with mono (single) line

For small vocabulary CMUSphinx is different from other toolkits. It's often

recommended to train word-based models for small vocabulary databases like digits.
But it only makes sense if HMMs could have variable length. CMUSphinx does not
support word models. Instead, need to use a word-dependent phone dictionary.

3.6. Language Model
Statistical language models describe more complex language. They contain

probabilities of the words and word combinations. Those probabilities are estimated

from a sample data and automatically have some flexibility.

Since we are considering digits for this research, we don’t need more complex

language model. But need to have accurate model in Sinhala language.

3.6.1. JSGF (Java Speech Grammar Format)
This the widely used grammar format to create language models in Sphinx 4. JSGF is

a textual representation of grammars for use speech recognition[21

3.6.2. Dictionary

This is responsible for determining how the words are pronounced for a given phase

or for a given digit.

13

Following example demonstrate a dictionary created for English digits

PronunciationWord
HHWAHNONE

ONE(2) WAHN

TWO TUW

THREE THRIY

FOUR F AO R

FIVE F AY V

SIX SIHKS

SEVEN S EH V AH N

EIGHT EYT

NINE NAYN

ZERO ZIHROW
ZERO(2) ZIYROW

OH OW

Table 3-1- Sample Dictionary

3.7. Summary

As conclusion to this chapter we can summarize following as the adapted

technologies to implement the this research

Java based Spinix 4 libraries used as the main recognition framework, and to support
that JSGF is used as the grammar formatter to the system

14

4. Research Approach

4.1. Introduction
This chapter will discuss the approach of this research step by step in later paragraph.
This approach contains details regarding how the research conducted and what are

steps followed and why they followed and obstacles faced during the research and

how they overcome.

4.2. Approach in Steps
This research uses the Sphinx4 as the underlying technology to implement outcome of

the research activity

First of all, need to create Language model and Dictionary in Sinhala to identify

digits. By doing that need to identify all possible phonetics of the Sinhala digit speech

from 0 to 9, then list down all the possible combination of phonetics to make words

representing all the ten digits.

After creating language model with dictionary, system trained using several
individual vocals in order increase the efficiency. After create the trained language

model, it needs to be test the quality of the tested database in order to select best
parameters, understand how application performs and optimize performance. With the

trained and tested acoustic model, research implemented front end UI level
application to capture the user inputs via microphone and dashboard to show the

results

Once user sends the vocal input system needs to verify it and pass it to the recognizer

to do the analysis process. Once recognizer completes the recognition it needs to send

the identified digit back to the front level application. Above steps describes the basic

approach to the research with Sphinx 4, furthermore to train the system we need to

use several users and need to create as much as accurate language model.

15

Train the Acoustic
Model with

maximum possible
samples

Identify possible
pronunciation

breakdowns for all
Digits in sinhala

Create Database for
Identified

Pronunciations ----/

\7
Develop the Front End
of the Application to
get User Inputs and
Display the outputs

Develop the
Recognizer using
Sphlnx4 Libraries

Finalize the
Acoustic Model

Here we need to research and do
analysis on sinhala vocal inputs

to identify sinhala vocal
parameters using Sphinx4

libraries

Figure 4-1- Research Approach in brief

4.3. Obstacles faced and how they overcome with this Approach?
Major obstacle is creating accurate acoustic model to compare with user input once

the user has spoken in to the microphone. Lot of unnecessary noises are adding up to

user inputs especially in a call center kind of environment. So we have to use well

equipped and less noisily microphones to get agent voice to the system

Another obstacle is accuracy and the speed of the software package classes to identify

a given voice using recognizer. To overcome this we have to increase some system

memory variables and has to do some code level changes by removing unnecessary

bindings happens at the runtime.

16

5. Analysis and Design

5.1. Introduction
This chapter will discuss the analysis and design aspects of the implementation part of

this research. Design is explained using use cases and their decomposition. System

architecture section discuss the overall design aspects of the research.

5.2. Abstract of the System Design
This research is basically focused for recognize and interpret the human voice in to

text. As the first part system is designed to identify the digits speak in Sinhala

language. Microphone is use to capture the human voice

System also has set of recognized words which are used as command such as start,

exit, stop etc...

Basically system contains two major components, one use to capture the user data and

process the acoustic signal. Other component is meant to interpret the processed

signal into matching digits

5.3. Functional overview of the system
As mentioned in the abstract system contains two major components at first. When we

are going to detail design system has three major functional behaviors under those

two major components

First component takes the audio input and process it, extract the features from input
signal to help the recognition. This is basically the front end of the system. Most of

the user interactions are happening with this component

Second component is the most important part of this system design. It is the decoder,

decoder use the output of the first component the match the output with the

knowledge base and performs search to match the correct digit according to the vocal

signal

Next is the knowledge base, it basically contains three parts

1. Dictionary - Matching the Digit with Pronunciation
2. Language Model - This contains the model vocals, this will help to

refine the search

17

3. Acoustic Model - This is the acoustic database of statistical models

5.4. System Architecture and structure
This phase describes the system architecture and the interconnection between the

modules within and outside. This recognition system comprises of several modules,
so it is very important function all those interconnection properly in order to function

the recognition as whole.

5.4.1. Architecture
System contains three major components as describes above

Front end captures the user inputs thru a microphone and analyze and break the vocal

in to frames and then to features to pass into the decoder

Row data captured using a microphone sends to a data framer to frame the row data,
afterwards frames will be extracts in to signal features. Then processes the extracted

features and pass them to decoder

Following image describes front end behavior

t»> /]=» * Data Frame
Processor«=> ■=>Data Framer

Row DataMicrophone Data Frames

Extracted
Features0

Audio Signal
Feature Processor<=!Decoder

Module Processed
Features

Figure 5-1- Frontend Behavior of the System

After the signal features send to the decoder, decoder uses the knowledge base to

interpret the received features. Once decoder finishes the decoding output or the

identified digit sends to the frontend for display.

18

library
UNIVERSITY OF MORATUWA, SRI LANKA

MORATUWA

5.5. Detail System Software Design

5.5.1. Use Cases
There are two major use cases to this recognition system. Since this is developing to a

call center, always only authorized personnel can access to the system to retrieve

customer data by giving their account number, so first major use case is to create

authorized profile to call center agents. Next use case is the speech recognition use

case

5.5.1.1.1. Use Case - Level 0

Initiate New User Profile

Call Center Agent

Recognize Digits

Figure 5-2- Level 0 Use case

5.5.1.1.2. Level 0 - Use Case Decomposition

Use Case: Initiate New User Profile

Pre-Condition
User needs to provide sample voice cut to a well-functioning microphone with low

and consistent noise level

Description
This is the use case performs the user profile creation, once a person is allocated as a

call center agent he/she needs to create their own profile in order to use the system. In

order to create a user profile user needs to enter his/her sample voice cut to the

system.

19

T H 3161

Then the profile handler analyses the input voice and obtain specific features for

the given user and create new user profile by saving those data to a storage (to

Database or to a Flat file).

Level 1: Use Case for “Initiate New User Profile”

«include»
n

Create ProfileCall Center Agent

«include»

Feed Sample

Figure 5-3- Level 1: Use Case for "Initiate New User Profile"

Post Conditions
New user profile needs to create against the user

Use Case: Recognize Digits

Pre-Conditions
User needs to have proper user profile and successfully spoke to the microphone

Description
This is the most important use case of the system, this will get the vocal from user and

get the user profile from first use case and do the analytical and recognizing functions

using system resources

This use case is responsible of following areas

1. Processing the input signal
2. Match the outcome of the signal processing with the

knowledgebase
3. Retrieve the correct digit from knowledge base and return it to

front end

20

4. Display the digit

Level 1: Use Case for “Recognize Digits”

Validate Profile

«include» «include»

>{

Speech Regocnition Process Input

«communicate»
Compare with Language Model«include»

X
'View\

«include»
\ Input Vocal

Interpret Input Vocal to Digit
\ ASend OutputText

s

«include»

Display Output Match With Dictionary

Figure 5-4 -Level 1: Use Case for "Recognize Digits"

Post Conditions
System needs to display correct digit according to the users’ vocal input

Exception: If user input is invalid or login tailed, system needs to provide appropriate

error messages

21

6. Implementation

6.1. Introduction
When it comes to the implementation, first of all we need to create physical
environment fulfilled with hardware requirements. Good quality microphone with less

noise is very much essential to have good output in this research

Since Sphinx 4 libraries are using Hidden Makarov Method (HMM) so software

development of the research is tightly bound with the basics of HMM. This will be

discussing in detail in the later stages of the research. As of now all the

implementation is doing based on the libraries and functionalities provided by the

Sphinx 4 framework and additionally research needs to be conduct to identify and

implement Sinhala language model. That is the most critical and important part of this

research. Several user inputs need to capture with various differences to train the

acoustic model.

Finally output of the research needs to be integrating with the CEB call center

application in order to use with the call centers all around the country.

6.2. Major Parts of the Implementation

Implementation is consisting following parts

• Interface to get agent voice inputs

• Speech processing and Recognition using Acoustic Model, Language Model
and the Dictionary created using sample and trained data

• Interface to call center application to pass the identified account number

Now let’s briefly discuss how those components are implemented

6.3. Acoustic Model
Acoustic model is a database of statistical models. Each statistical model represents a

single unit of speech such as a word or a phoneme.

6.4. Language model
Describe what is likely to be spoken in particular context. It will help to restrain

search space.

22

6.5. Dictionary
The task of dictionary is mapping word to the pronunciations. Single word may have

multiple pronunciations.

Those three parts are well explained under technology adopted chapter of this

document.

6.6. Outline Architecture in Brief
This speech recognition speech is conducting to implement good speech to text

conversion software to the Ceylon electricity board call centers. As we mentioned

earlier in this document currently Ceylon electricity board call centers are running

.Net application to track the user complaints especially regarding the power break

downs from the customers. So this implementation need to couple with that .Net web

application to identify the input voice signals.

In order to meet above implementation since we need to find a way to communicate

Java based sphinx to .Net based call center application.

In that context this research suggest to implement the speech recognition as a java

web service, then any kind of a third party application can call it by passing the

required parameters. So dealing with microphone will be transfer to the client (here

that functionality needs to implement in the call center application). Input voice signal
need to pass to the web service and it will recognize the input and return to the client

side. Advantage of this approach is whatever the client technology does not matter to

the speech recognition application. Even though call center application change

from the .Net technology in the future it doesn’t affect the speech recognition.
use

6.7. Logical View of the Implementation
Using above mention models and dictionaries Decoding component is implemented

according to the following class diagram. This is basically developed with sphinx 4

library and we have add our own requirement to this structure

Following Figure will illustrate the class diagram of the implementation

23

0
Re&Jtftoduaer

AMREsdtO
RenDV^ted...^:

\
\\
ReaxpeerAbtra± Decorder

ReaogizeOCeaodeQ

A
Sesn±ftfenager

□sender
Resdt .

ScrtRsaognrbonO
StopFtogritionO
RecogzeQ______

SeorchNfenagerO

A0
Linguist'

SnrpleSeBfd-i^fereggrAsDustkScDrer

CakiiateScoresO GgtftesiitiistQz 'A ¥/flati-ingust DynarricLingList:

X
AdtKeListRuneruAbstractScorerCK

PnxeQ GStTotenQSoonEftotTrrfzer

r^xTTtia... y
BaseDetaRrxESSor

Figure 6-1- Main Class Diagram

6.8.Class Description
6.8.1. ResultProduccr Interface

A higher level interface which is shared by components which are able to

produce results.

24

6.8.2. AbstractDecoder class
This is the higher level class of Decoder class and it implements all

functionality which is independent of the used decoding functionality.

6.8.3. Recognizer class
Recognizer is the class which contains recognition functionality for the given

number of input, frames, or until a final result is generated

6.8.4. Decoder class
This is the primary decoder class. It decodes frames until recognition is

complete.

6.8.5. SearchManager class
The SearchManager's primary role is to execute the search for a given number
of frames. The SearchManager will return interim results as the recognition

proceeds and when recognition completes a final result will be returned.

6.8.6. SimpIeSearch manager class
This is a sub class of SearchManager and provides the advanced search

operation. To perform recognition an application should call initialize before

recognition begins, and repeatedly call recognize until Result ends.

6.8.7. Pruner class
This class provides a mechanism for pruning a set of tokens.

6.8.8. ActiveList class
In this class an active list is maintained as a sorted list and gets the list of all

tokens.

6.8.9. Acousticscorer class
AcousticScorer provides a mechanism for scoring a set of HMM states

6.8.10. Linguist class
The linguist is responsible for representing and managing the search space for
the decoder. The role of the linguist is to provide, upon request, the search

graph that is to be used by the decoder. The linguist is a generic interface that

provides language model services.

25

6.8.11. AbstractScorer class
This class implements some basic scorer functionality but keeps specific

scoring open for sub-classes.

6.9.Activity Diagram
These diagrams are drawn to show the main activity flow of the implementation

6.9.1. User Training Activity
When every time new user comes to the system, system capture that new

user’s voice input and add the acoustic values to the dictionary. In that case

dictionary and training database increase with user base.

< <> > /" Dictate Sinhala \
Oitfts j

Logged in as Newllser Makenewuser
Profile

>f Assign Acoustic
Features> Analyse the \

Vbice Input J
< (Store Profile•* Data

Figure 6-2 - User Training Activity Diagram

6.9.2. Recognizing speech Activity
This is the major activity of this implementation, once a user logged in and

input his/her voice inputs to the system, by using the trained DB and decoder

mechanisms system will generate results

26

)^ Login ^ Input Voice
>

V
(Process Input

v
)Identify Input

v
)Display Result

V

<§>
Figure 6-3 - Recognizing Speech Activity Diagram

6.10. Sequence Diagram for Decoding Speech
Following sequence diagram will explain the sequence of decoding process and class

procedure calls

The input audio file processed in the front end and extract features needed for
recognition. Then those Feature Frames forwarded to the Scorer where it get scored

according to the data in knowledge base. With the knowledge base system can impose

certain grammatical rules which are defined in language model. So Scorer allocates

scores to the features against next likely states. Then SearchManager allocate linguist
for the task and it return a SearchData which contain current state in the search space.
Depending on those statistics SearchManager identify most possible answer.

27

LinguistScorerFrontEndUsgr SearchManager

0
Retrievelnput (voice)

GetScorerData
AddScorer

StartRecognitionO>
Alloc ateAndProcassQ

«■RetwSearhData
«-

RecognizeQ
DisplayResult

if

Figure 6-4 - Decoding Speech Sequence Diagram

6.11. Deployment Architecture
As we mentioned in the architecture outline section this recognition will be hosted as

a web service, which can be reach by any application outside as client. Deployment

environment can be within a cloud or within a privet hosting environment.

28

7. Evaluation
Evaluation is done by selecting various kind of CEB call employees with

kind enviionments. Different employees used to evaluate the pronunciation effect on

the application and how the implementation

a different

a reach to overcome different
pionunciations. Also different environments used to evaluate how the environmental

aspects especially artificial and natural noise effect to the recognition process

8. Discussion
This report’s intend to discuss the interim progress of the research. As a summary,

over all this report discuss the purpose and intend to do the research and how the

progress up to current stage. Design and implementation chapters include high level
facts regarding the Software and Identified Functional and Non Functional

requirements to support the hypothesis.

Literature review contains some details regarding related works done by the different

people and some technologies used to do them. Main difference in this research is

Sinhala language model to identify Sinhala words. Although we have lot of

implemented language models for other languages, for Sinhala it is very rare to find

out good language model. By doing that research is planning to use Sphinx 4, which

is a framework consist of several java libraries to support voice recognition.

Basically this research output implementation has major functionalities to cater with.

They are as follows

1. Create and Train Acoustic model
2. Read and record user input from microphone and pass it to recognizer

the audio input and using the trained acoustic model to identify the3. Analyze

digit and pass it to the front end
4. Get the recognizer identified result and display it in the application. Handle

the input events such as start of speech, end ol speech etc...

the most critical and researching parts of theFrom above, Step 1 and step 3 aie

overall activity.

29

9. Conclusion
In this research we have try to achieve to implement efficient digit recognition system

in Sinhala language to support Ceylon electricity board call center application. Once

the system identify the account number of the complaint call center application

retrieve his/her details from the database for further processing. Implementation of the

research used JAVA based speech libraries to work with trained acoustic model for

archiving the lesearch targets. But still those acoustic models needs to do some tuning

and training to make the recognition more accurate

can

10. Future Work
As the future work this research need to conduct to identify Sinhala words, then call

center application can log the customer complain at the first place too. That is the

main target of this research. So lot of training and recognition needs to do to create

good dictionary for Sinhala language. Once it build we have to update and train it day

by day to improve the efficiency.

Since Ceylon electricity board has its call centers all around the county and

age variation within its employees, with the time progress we can create good

trained dictionary to Sinhala language with different pronunciations used around the

country

more

30

11. References

[i] M. Daryl Ning, "Developing an Isolated Word Recognition System in
MATLAB, 2010. [Online]. Available:
http://iiLmathworks.com/company/newsletters/articles/developing-an-isolated-
word-jrecognitio2-system-in-matlab.html.

Google, "Speech Processing," 2015. [Online]. Available:
http.//research.google.com/pubs/SpeechProcessing.html.

Kanishka Rao, Fuchun Peng, Franchise Beaufays, "Automatic Pronounciation
Verification For Speech Recognition," [Online]. Available:
http://static.googleusercontent.eom/media/research.google.com/en//pubs/archiv
eM3262.pdf.

[2]

[3]

sourceforge, "CMU Sphinx," 2015. [Online]. Available:

http://cmusphinx.sourceforge.net/.

G. Brandi, "sphinx-doc.org," 2015. [Online], Available: http://sphinx-
doc.org/sphinx.pdf.

D. Paul, "Speech Recognition Using Hidden Makrov Models," 2010. [Online].
Available:
https://www.ll.mit.edU/publications/joumal/pdf/vol03_nol/3.l.3.speeclirecogni
tion.pdf.

Bronto, "javasphinx User’s Guide," 2012. [Online], Available:
https://bronto.github.io/javasphinx/.

A. Hunt, "JSpeech Grammar Format," 2015. [Online], Available:
http://www.w3 .org/TR/jsgf/.

[4]

[5]

[6]

[7]

[8]

31

http://iiLmathworks.com/company/newsletters/articles/developing-an-isolated-
http://static.googleusercontent.eom/media/research.google.com/en//pubs/archiv
http://cmusphinx.sourceforge.net/
http://sphinx-doc.org/sphinx.pdf
http://sphinx-doc.org/sphinx.pdf
https://www.ll.mit.edU/publications/joumal/pdf/vol03_nol/3.l.3.speeclirecogni
https://bronto.github.io/javasphinx/
http://www.w3

12. Appendixes
Following code sniffs outline the major interface and functions of the implementation

package edu.emu.sphinx.decoder;

import edu.emu.sphinx.util. props.Configurable;

/
* Some API-elements shared by

<code>Result</code>s.
components which are able to produce

* @see edu.emu.sphinx.result.Result
* /

public interface Re suit Producer extends Configurable {

Registers a new listener for <code>Result</ccde>.
* Gparam resultListener*/

void addResultListener (ResultListener resultListener)

/ * *

;

/** Removes a listener from this <code>ResuitProducer</ccae>-
instance.

* 0param resultListener*/
void removeResultListener (ResultListener resultListener);

}

package edu.emu.sphinx.recognizer;

import edu. emu. sphinx. decoder. Decoder ;

import edu. emu. sphinx. decoder. ResultProducer;

import edu. emu. sphinx.decoder.ResultListener;

import edu. emu. sphinx. instrumentation.Monitor;

sphinx.instrumentation.Resetable;import edu.emu.

import edu. emu. sphinx. result. Result;

import edu. emu. sphinx.util.props. ;

import java.util.ArrayList;

import java.util.Collections;

import java.util.List;

j * *

32

* The Sphinx-4
4. Typical usage of acognizer. This is the main entry point for SDhinx-

recognizer is like so:
* <p/>

* <pre><code>

* public void recognizeDigits() {

URL digitsConfig = new URL("file:./digits.xml") ;
* ConfigurationManager

Conf igurationManager (digitsConfig) ;

* Recognizer sphinxDigitsRecognizer

cm = new

(Recognizer) cm.lookup("digitsRecognizer"");

boolean done = false;

Result result;

* <p/>

sphinxDigitsRecognizer.allocate() ;

* <p/>

// echo spoken digits, quit when 'nine' is spoken★

* <p/>

while (!done) {

result = sphinxDigitsRecognizer.recognize();

System.out.println("Result: " + result);

result.toString 0.equals("nine");done =*

}

* <p/>
.deallocate();sphinxDigitsRecognizer

}

* </code></pre>

* <p/>
methods may throw an

the recognizer is not in the proper state
Recognizer

IllegalStateException if
* Note that some

*/ Configurable, ResultFroducer {
implementspublic class Recognizer

33

/** The Property for the decoder to be used by this recognizer.*/

@S4Component(type =

public final static String

Decoder.class)

PROP_DECODER = "decoder” ;

/** The Property for the

@S4ComponentList(type = Monitor .class)

public final static String PROP MONITORS =

set of monitors for this recognizer */

"monitors";

/** Defines the possible states of the recognizer. */

public static enum State { DEALLOCATED, ALLOCATING, ALLOCATED,
READY, RECOGNIZING, DEALLOCATING, ERROR }

private String name;

private Decoder decoder;

private State currentState = State.DEALLOCATED;

private final List<StateListener> stateListeners =
Collections. synchronizedList (new ArrayList<StateListener> ())

private List<Monitor> monitors;

;

decoder, List<Monitor> monitors) {public Recognizer(Decoder

= decoder;this.decoder

= monitors;this.monitors

= null;name

}

public Recognizer() (

}

/* (non-Javadoc)
34

* @see
edu.emu.sphinx.util.
til.props.PropertySheet)

props .Configurable#newProperties{edu. cmu.sphinx.u

*/

QOverride

public void
PropertyException {

newProperties(PropertySheet ps) throws

decoder = (Decoder) ps.getComponent(PROP

ps.getComponentList(PROP_MONITORS/ Monitor.class);

DECODER);
monitors =

= ps.getlnstanceName();name

}

/ * ★

* Performs recognition for the given number of input frames, or
final' result is generated. This methoduntil a

* should only be called when the recognizer is in the
<code>allocated</code> state.

* @param referenceText what was actually spoken

* @return a recognition result

* @throws IllegalStateException
<code>ALLOCATED</code> state

if the recognizer is not in the

*/
referenceText) throwspublic Result recognize(String

IllegalStateException {

Result result
checkStatetState.READY);

= null;

try {
.RECOGNIZING);

.decode(referenceText)
setState(State

= decoder
;

result

} finally {

35

setState(State.READY);

}

return result;

}

/ * *

* Performs recognition for the given
until a 'final' result is generated.

should only be called when the recognizer is
<code>allocated</code> state.

number of input frames, or
This method

in the

* ©return a recognition result

* ©throws IllegalStateException if the recognizer is not in the
<code>ALLOCATED</code> state

*/

public Result recognize () throws IllegalStateException {

return recognize(null);

}

/ * *
the recognizer is in the given state.* Checks to ensure that

the recognizer should be in

the recognizer is not in the

the state that* ©param desiredState

IllegalStateException if* ©throws
desired state.

*/
desiredState) {checkState(State

private void

if (currentState - desiredState) {

Exception("Expected state " +
!

IllegalStatethrow new
desiredState

36

+ actual state "
+ currentState);

}

j * *

* sets the current state

* @param newState the new state

*/

private void setState(State newState) {

currentState = newState;

synchronized (stateListeners) {

for (StateListener si : stateListeners) {

si. statusChanged (currentState) ;

}

}

/ * *
the recognizer. Note this

is in the <code>called when the recognizer* should only be
deallocated </code> state.

is not in theif the recognizerIllegalStateException
state

* @throws
<code>DEALLOCATED</code>

*/ {IllegalStateException
throws

.DEALLOCATED);

.ALLOCATING)i

public void allocate()

checkState(State

setState(State
37

decoder.allocate();

setState(State.ALLOCATED);

setState(State.READY) ;

}

/**

* Deallocates the recognizer. This method should only be called
if the recognizer is in the <code> allocated

* </code> state.

* @throws IllegalStateException if the recognizer is not in the
<code>ALLOCATED</code> state

*/

public void deallocate () throws IllegalStateException {

checkState(State.READY) ;

setState (State . DEALLOCATING);

decoder.deallocate();

setState (State. DEALLOCATED);

/* *
be called instate. This method can

* Retrieves the recognizer
any state.

state* @return the recognizer

*/
{public State getStateO

currentState;return

}

38

/** Resets the monitors

public void resetMonitors ()

for (Monitor listener :

if (listener instanceof

((Resetable)listener) .

monitoring this recognizer */
{

; monitors) {

Resetable)

reset();

j * *

* Adds a result listener to this recognizer. A result listener
is called whenever a new result is generated by the

* recognizer. This method can be called in any state.

* @param resultListener the listener to add

*/

@0verride

public void addResultListener (ResultListener

decoder. addResultListener (resultListener);

resultListener) {

}

j ★ *
The status listener, this recognizer

of the recognizer

called in any state.

listener to* Adds a status
is called whenever the status

method can be* changes. This

to addthe listener* @param stateListener

*/ {stateListener)er(StateListener
public void addStateListen

39

stateListeners.add(stateListener) ;

}

/ * *

* Removes a previously added
called in any state.

result listener. This method can be

+

* @param resultListener the listener to remove

*/

@Override

public void removeResultListener(ResultListener resultListener) {

decoder. removeResultListener (resultListener) ;

}

/ * *

This method can be* Removes a previously added state listener,
called in any state.

*

* Qparam stateListener the state listener to remove

*/
stateListener) {void removeStateListener(StateListener

stateListeners. remove (stateListener);

public

}

/* (non-Javadoc)

java.lang.ObjecttttoString()* @see

*/

@Override

public String toStringO i

"Recognizer:
" + currentState;State:” + name + "return

}}

40

package speechrecognition.view;

import java.awt.EventQueue;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JTextField;

import edu.emu.sphinx, frontend.util.Microphone;

import edu. emu. sphinx. recognizer.Recognizer;

import edu.emu.sphinx.result.Result;

import edu. emu. sphinx. util.props.ConfigurationManager;

import speech.SpeakString;

import speechrecognition. digits. english.EnglishRecognizer;

import speechrecognition.digits.english.MainRecognizer;

public class AccountDetailView {

private JFrame frame;

private static JTextField accNoTxt;

I * *

* Launch the application.

*/
void main(String[] args) {

.invokeLater(new Runnable() {

void run() {

public static

EventQueue

public

try {
AccountDetailView window = new

AccountDetailView();

41

window.frame. setVisible(true);

} catch (Exception e) {

e.printStackTrace() ;

}

}

>);

try {

SpeakString spk = new SpeakString();

EnglishRecognizer engRec = new EnglishRecognizer();

String str = ii ii ;

accNoTxt.setText(str);

ConfigurationManager cm;

cm = new
Conf igurationManager (MainRecognizer. class. getResource ("englishdigits.
config.xml"));

Recognizer recognizer = (Recognizer)
cm.lookup("recognizer");

recognizer.allocate();

// start the microphone or exit if the program if
this is not possible

Microphone microphone - (Microphone)
.lookup("microphone") ;cm

if (!microphone.startRecording()) {

//System.out.println("Cannot start

microphone.");
"Cannot start microphone.",spk.dospeak(

"kevinl6");
recognizer.deallocate();

42

System.exit(1);

}

spk.dospeak("Enter Account
Mkevinl6");

Result result =

String resultText =
getBestFinalResultNoFiller() ;

str =
str.concat (engRec.convertStringToDigit (resultText))

Number. Please speak outnumber by number.",

recognizer.recognize();

result.

;

while (str.length() < 10 && str.lengthO > 0) {

Result resultlnLoop = recognizer.recognize();

str =
str.concat (engRec.convertStringToDigit (resultlnLoop. getBestFinalResul
tNoFiller()));

accNoTxt.setText(str);

}

spk.dospeak("Data is Loading Wait For While !!!!",
"kevinl6");

} catch (Exception e) {

}

}

/**

* Create the application.

*/

public AccountDetailView() {

initialize();

}

/**

43

* Initialize the contents of the frame.
*/

private void initialize()

frame =

{

new JFrame{);

frame.setBounds(100, 100, 450, 300);

setDefaultCloseOperation(JFrame.EXIT ON

frame.getContentPane().setLayout(null);

frame. CLOSE);

JLabel lblAccountNumber = new JLabel("Account Number");

lblAccountNumber.setBounds(10, 31, 121, 14);

frame.getContentPane().add(lblAccountNumber) ;

accNoTxt = new JTextField();

accNoTxt.setBounds (141, 28, 158, 20);

frame.getContentPane().add(accNoTxt) ;

accNoTxt.setColumns(10);

JButton btnLoadDetails = new JButton("Load Details");

btnLoadDetails.setBounds(309, 27, 115, 23);

frame.getContentPane().add(btnLoadDetails) ;

}

}

44

