
L& jpori (10 6 (ic\6

Jr oi 'i: O P -w> 5:i

Design and Development
of

an Efficient and Secure Lightweight Protocol
for

Wireless Sensor Networks

UNIVERSITY of MORATUV/A, SRI LANKA
WORATUwi^A

K.Kesavan

(139168 U)

Dissertation submitted to the Faculty of Information Technology,
University of Moratuwa, Sri Lanka, for the partial fulfilment of the requirements

of the Degree of Master of Science in Information Technology.

\

University of Moratuwa

oot I £
Cot-3^00 -tTH3168

March 2016

'/>/ .3/6 g
jt

1 JVP P-Ofr

(fH 3/60 -
r/f*3 /,9o)T:j 3168

Declaration

We declare that this thesis is our own work and has not been submitted in any form for

another degree or diploma at any university or other institution of tertiary education.

Information derived from the published or unpublished work of others has been

acknowledged in the text and a list of references is given.

Name of Student (s) Signature of Student (s)

Date :

Supervised by

'f, XV\ , 'f ,YV\,

Si^iture^f Supervisor(s)Name of Supervisor(s) \

^ 'i / tDate :

i

Dedicated to

my teacher Mr. S. Thirunavakkarasu

ii

Acknowledgement
It should be mentioned with gratitude that many individuals influenced to accomplish

this project in many ways.

First of all, I would like to respectfully express my sincere gratitude to my supervisor,

Mr. M.F.M.Firdhous (Senior Lecturer), for his guidance, insightful suggestions,

invaluable comments, and constant encouragement and optimism that not only helped

me overcome frustrations and difficulties throughout my project, but also will influence

my future career in pursuit of excellence. I was really fortunate to complete my project

under his supervision.

I am also indebted to the evaluators of the interim report of this project, Dr. L.

Ranathunga, Dr. C.R.J. Amalraj and Mr. B.H. Sudantha for their valuable advice and

comments to improve my work.

As well, I am grateful to all of the academic staff o,f the Faculty of Information

Technology who took lectures in our postgraduate programme, and specially the course

coordinator-Mr.S.C.Premaratne, without their teaching and guidance, I could not have

got the capacity to successfully complete this project. Further, the course - Literature

Review & Thesis Writing taught by Prof. ASK Karunanda - has particularly supported

very much to document this research work successfully.

Furthermore, I would like to extend my sincere thanks to my sectional head at the office

- Eng. D.S.D.Jayasiriwardena (Additional General Manager) for his encouragement

and support to pursue the postgraduate programme successfully. Additionally, I would

like to thankfully acknowledge the financial support of the National Water Supply and

Drainage Board to cover the fees of my first year programme.

Special heartiest thanks should go to my family, Ms. Bhavani, Mas.Ashvin and Mas.

Avaneesh, who always showed me their unconditional love, faith and support during

this task. Moreover, I would like to thanks to my friends who encouraged to perform

the project.

111

Moreover, I would like to express my gratitude to Park & Miller, Carta, Marsaglia,

University of Sheffield, GlibC, ANSI C and National Security Agency for utilizing their

proposed pseudo random number generators and secure hash algorithms in this study.

Finally, I humbly bow before the almighty God for showering his blessings upon me

and giving me the strength, wisdom and luck to reach this important milestone in my

academic life.

iv

Abstract

Water supply and sanitation services can no longer tolerate inefficiencies of their

traditional non-intelligent distribution infrastructures due to the growth of demand for

their uninterrupted services in quantity and quality wise. Wireless Sensor Networks can

be employed to address these issues in a'very cost effective manner. Already, Wireless

Sensor Networks have been started to utilize in some countries for implementing their

infrastructures of water supply and sanitation services as intelligent to provide better

services and reduce financial losses. Ensuring efficient and secure data communication

in Wireless Sensor Network is one of the major aspects in its wide range of applications.

But, security solutions developed for traditional networks are not suitable for Wireless

Sensor Networks due to its specific features. Many researches have been carried out to

propose suitable efficient and secure lightweight protocols for Wireless Sensor

Networks to improve their data communication.

In this project, an efficient and secure lightweight protocol has been proposed for

Wireless Sensor Networks. Many literatures related to various security threats, security

protocols and key management schemes of Wireless Sensor Networks have been

critically reviewed at the beginning of the study. Literatures regarding the pseudo

random number generators and hash algorithms relevant to these security architectures

have also been critiqued to analyse the suitability of them.

In 2004, Park and Shin have proposed a lightweight protocol called Lightweight

Security Protocol(LiSP). The salient feature of this protocol is the novel rekeying

mechanism to tradeoff between security and resource consumption for large scale

sensor networks. In 2006, Sun and coworkers have presented a lightweight security

protocol with similar key management scheme of Park and Shin, but improved security

mechanism by employing a pseudo random number generator - Linear Congruential

Generator(LCG). In 2015, Jain and Ojha have identified that Park-Miller pseudo

random number generator is better than Linear Congruential Generator for the

lightweight security protocol. Further, in 2015, Ojha and Jain analysed some other

pseudo random generators to evaluate the performances of the lightweight security

protocol and concluded that Park-Miller pseudo random number generator is the most

suitable one. But, these studies didn’t consider Park-Miller’s latest recommendation, or

v

other variations of the pseudo random number generators. Pseudo random number

generators play vital role in the security and efficiency of the lightweight protocols.

Moreover, It has been identified that Secure Hash Algorithm-l(SHA-l) employed in

this protocol has similar effect as pseudo random number generator in the security and

efficiency of the protocol.

Therefore, the performance of the lightweight protocol can be enhanced without

compromising its security features, by utilizing more appropriate pseudo random

number generator and hash function in its architecture.

So, the latter part of the project, the secure lightweight protocols having different

pseudo random number generators and secure hash algorithms have been designed and

implemented to evaluate their suitability for proposing an efficient and secure

lightweight protocol.

Implementations have been modeled and evaluated in MATLAB software which had

been recommended and utilized in many previous literatures for this purpose. Times

taken for the computations have been analysed with pseudo random number generators

and secure hash algorithms employed with their specific features.

The pseudo random number generator, LCG Sheffield, has been identified as a most

suitable pseudo random number generator for the lightweight protocol. Secure Hash

Algorithm -1 proposed in the previous studies has been identified as a most efficient

hash function for the lightweight protocol.

This study proposes a secure lightweight protocol which is experimentally shown as, in

average, 5.7% more efficient than the secure protocol proposed in the study by Jain and

Ojha in 2015.

vi

Table of Contents

Page No.

Abstract v

List of Figures ,xi

List of Tables .XIII

Abbreviations .xv

1Chapter 1 - Introduction

1.1 Prolegomena......................

1.2 Background and Motivation

1.3 Problem definition..............

1

1

4

1.4 Aim and Objectives 4

1.4.1 Objectives related to the problem

1.4.2 Objectives related to the solution

.5

5

1.5 Hypothesis 6

1.6 Resources
required 6

1.7 Structure of the thesis 6

1.8 Summary 6

Chapter 2 - Developments in security of Wireless Sensor Network

2.1 Introduction...

,7

7

2.2 Review of Literature ,7

2.3 Summarization of the reviews and Problem definition 12

2.3.1 Problem Definition 15

2.3.2 Identified Technologies 15

2.4 Summary 15

Chapter 3 - Technologies adopted for the proposed protocol

3.1 Introduction...

16

16

vii

Page No.

163.2 Onetime pad(OTP) ..

3.3 Pseudo Random Number Generator (PRNG)

3.3.1 Linear Congruential Generator (LCG)

3.3.2 Park-Miller pseudo random number generator

3.3.3 Park-Miller-Carta pseudo random number generator.... 19

17

17

18

3.4 Block cipher

3.5 Dynamic key

20

20

3.6 Hash function 21

3.6.1 Secure Hash Algorithm -1

3.7 Symmetric key cryptosystems

3.8 Encryption primitives of cryptosystems

3.8.1 Addition operation..........

3.8.2 Subtract operation...........

3.8.3 XOR operation

3.8.4 Transpose operation

3.8.5 Swap operation..............

21

.22

,22

23

,23

,23

.24

.24

3.9 MATLAB 24

3.10 Summary 25

Chapter 4 - Approach for Efficient and Secure Lightweight Protocol

4.1 Introduction...

.26

26

4.2 Hypothesis

4.3 Input.........

4.4 Output.....

26

.26

.27

4.5 Process ,27

4.5.1 Encryption process.

4.5.2 Decryption Process

27

,28

4.6 Features 30

4.7 Users 31

viii

Page No.

314.8 Summary

Chapter 5 - Design of the Efficient and Secure Lightweight Protocol

5.1 Introduction ...

32

,32

5.2 Top Level Architecture of the Secure Lightweight Protocol

5.2.1 Generation of Dynamic Binary Key

5.2.2 Encryption Process

5.2.3 Decryption Process

5.3 Theoretical Analysis of the Architecture

,32

32

34

,35

39

5.3.1 Selection ofPRNGs 39

5.3.2 Selection of Hash Functions 41

5.4 Summary .42

Chapter 6 - Implementation of the Efficient and Secure Lightweight Protocol

6.1 Introduction..

43

43

6.2 Overview of the implementation...

6.3 Software and Platform used for the implementation.......................

6.4 Implementation of the module ‘Generate Dynamic Binary Key' .

6.5 Implementation of the function ‘EnccryptionProcess’...................

6.6 Implementation of the function ‘DecryptionProcess’....................

6.7 Implementation of the Module ‘AutomateDataCollection_PRNG?

6.8 Implementation of the Module ‘ AutomateDataCollectionJHF' ...

6.9 Implementation of the Module ‘ AutomateFunctionalityTesting' .

6.10 Summary ...

43

.43

44

,46

47

48

.48

49

49

Chapter 7 - Evaluation.

7.1 Introduction

50

50

7.2 Testing the functionality of the Implementation

7.3 Evaluation Strategy ..

50

50

ix

Page No.

7.4 Average execution times of the Implementations with different PRNGs 51

7.5 Average execution times of the implementations with different Hash
Algorithms

7.6 Summary

56

60

Chapter 8 - Conclusion and Further Work 61

8.1 Introduction 61

8.2 Conclusion 61

8.3 Further work 62

8.4 Summary 62

References 63

Appendix A - Detailed design Diagram

Appendix B - Selected Source Code .

67

71

B.l Listing ‘AutomateDataCollectionJPRNGEvaluation’
(Only the specific modules)

B.2 Code Listing ‘AutomateDataCollectionJHF’
(Only the specific modules)

Appendix C - Measured Execution Times...

Appendix D - Results of the Functionality Testing ..

D.l Evaluating architectures having different PRNGs.............................

D.2 Evaluating architectures having different Hash Algorithms

D. 3 Results of the Automated Functionality Testing................................

Appendix E - Screen Images ..

E. l Testing the Functionalities of the Implemented Designs

E.2 Demonstrating the Processes of the Architecture...............................

71

93

104

113

113

115

118

119

119

120

•A;
X

&

List of Figures

PageDescriptionNo.
No.

Figure 1.1 Some Smart components in a Smart City

Figure 1.2 Some applications of WSNs in the infrastructure of a Water

Supply System

Figure 3.1 Addition operation
Figure 3.2 Subtraction operation

Figure 3.3 XOR operation

Figure 3.4 Transpose operation
Figure 3.5 Swap operation

Figure 5.1 Top level architecture of the Efficient and Secure

Lightweight Protocol
Architecture of the Module ‘Generate Dynamic Binary Key’

Architecture of the Module ‘Encrypt Plain Data’

Architecture of the Module ‘Decrypt Cipher Data'

Execution time vs PRNGs for the input data size 25Kbyte

Execution time vs PRNGs for the input data size 30Kbyte

Execution time vs PRNGs for the input data size 35Kbyte

Execution time vs PRNGs for the input data size 40Kbyte

Execution time vs PRNGs for the input data size 45Kbyte

Execution time vs PRNGs for the input data size 50Kbyte

Execution time vs PRNGs for the input data size 55Kbyte

Execution times of LCGSheffield vs ParkMiller PRNGs

architectures

Figure 7.9 Execution time vs Hash Algorithms for the input data size

25 Kbyte

Figure 7.10 Execution time vs Hash Algorithms for the input data size

30Kbyte

Figure 7.11 Execution time vs Hash Algorithms for the input data size

35Kbyte

2
o

23

23

23

24

24

33

Figure 5.2

Figure 5.3

Figure 5.4

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

34
37
38
52
52
53
53
54
54
55
56

58

58

59

* xi

Execution time vs Hash Algorithms for the input data size

40Kbyte
Execution time vs Hash Algorithms for the input data size

45Kbyte
Execution time vs Hash Algorithms for the input data size

50Kbyte
Execution time vs Hash Algorithms for the input data size

55Kbyte
Architecture of the Module ‘Encrypt Data Block: Round V

Architecture of the Module ‘Encrypt Data Block: Round 2’

Architecture of the Module ‘Encrypt Data Block: Round 3s

Architecture of the Module ‘Encrypt Data Block: Round 4’

Architecture of the Module ‘Decrypt Data Block: Round 1 ’

Architecture of the Module ‘Decrypt Data Block: Round 2’

Architecture of the Module ‘Decrypt Data Block: Round 3’

Architecture of the Module ‘Decrypt Data Block: Round 4’

Successive screen shots of testing the functionality of the

designs with different PRNGs
Successive screen shots of the demonstration processes of

the architecture.

59Figure 7.12

60Figure 7.13

60Figure 7.14

61Figure 7.15

68Figure A.l

Figure A.2

Figure A.3

Figure A.4

Figure A.5

Figure A.6

Figure A.l

Figure A.8

Figure E.l

68

69
69

70

70

71

71

122

127Figure E.2

xii

List of Tables

Page No.No. Description
Summarization of the identified issues in the literatureTable 2.1 10
review.

Values of the constants of well-accepted PRNGs

Values of the constants of Selected PRNGs

Properties of the selected Hash Algorithms

Measured average execution times for different sizes of

input data, with the same hash algorithm.

Efficiency comparison architectures having

LCGSheffield and ParkMillereen

Measured average execution times for different sizes of

input data, with the same PRNG.

Measured execution times of the input data 25 Kbyte -
same PRNG

Measured execution times of the input data 30 Kbyte -

same PRNG

Measured execution times of the input data 35 Kbyte -
same PRNG

Measured execution times of the input data 40 Kbyte -

same PRNG

Measured execution times of the input data 45 Kbyte -

same PRNG

Measured execution times of the input data 50Kbyte -
same PRNG.

Measured execution times of the input data 55Kbyte -
same PRNG.

Measured execution times of the input data 25Kbyte -
same Hash Algorithm

Measured execution times of the input data 30Kbyte -
same Hash Algorithm.

Table 5.1 38
Table 5.2 39
Table 5.3

Table 7.1 49

Table 7.2 54

Table 7.3 55

Table C.l 114

Table C.2 115

Table C.3 115

Table C.4 116

Table C.5 117

Table C.6 117

Table C.7 118

Table C.8 119

Table C.9 119

xiii

Measured execution times of the input data 35Kbyte -

same Hash Algorithm.-

Measured execution times of the input data 40Kbyte -

same Hash Algorithm.
Measured execution times of the input data 45Kbyte -

same Hash Algorithm.

Measured execution times of the input data 50Kbyte -

same Hash Algorithm.
Measured execution times of the input data 55Kbyte -

same Hash Algorithm.
List of cipher texts and decrypted plain texts generated

by the protocol which have different PRNGs in its

architecture
List of cipher texts and decrypted plain texts generated

by the protocols which have different the Hash

Algorithms in its architecture

Test results of the Automated Functionality Testing

120Table C. 10

121Table C.ll

121Table C. 12

122Table C.13

122Table C. 14

125Table D.l

127Table D.2

128Table D.3

xiv

Abbreviations

Micro version of Timed Efficient Streamed Loss-tolerant Authentication

American National Standards Institute

Intrusion Detection System

Internet of Things

Linear Congruential Generator

Lightweight Security Protocol

Link Layer Security Protocol

Lightweight Security Protocol

Message Authentication Code

Micro Electro Mechanical Systems

National Institute of Standards and Technology

National Security Agency

Pseudo Random Number Generator

Secure Hash Algorithm -1

Sensor Network Encryption Protocol

Wireless Sensor Network

pTESLA

ANSI

IDS

IoT

LCG

LiSP

LLSP

LSec

MAC

MEMS

NIST

NS A

PRNG

SHA-1

SNEP

WSN

xv

Chapter 1

Introduction

1.1 Prolegomena

required to ensure the uninterruptedWater supply and sanitation services are

satisfactorily services in quantity and quality wise to the growing number of consumers.
Traditional non-intelligent distribution infrastructures obstacles to improve the services

provided to consumers in an efficient way. Introducing intelligence distribution

infrastructure can solve these issues in a very cost effective manner. Already, some

countries have been commenced to implement the intelligent infrastructure to provide

better services and reduce financial losses[l]-[5]. Wireless Sensor Networks(WSNs)

prime and essential components of the intelligence infrastructure. Nowadays, WSNs

have emerged as modem day technology under the push of recent technological

advances in Micro Electro Mechanical Systems (MEMS) technology, wireless

are

communications and digital electronics[6].

Successful implementations of WSNs are influenced by their efficient and secure data

communications. Due to the specific features of WSN, traditional security solutions are

not suitable for it. This issue creates major challenges of its wide range of applications

effectively. Thus, the issue enables the emergence of new dimensions of research to

propose suitable efficient and secure solutions[7]. We have conducted a research to

offer an efficient and secure lightweight protocol for WSNs having large number of

nodes. Our solution has recorded positive performance in efficiency, while

maintaining the recommended security features of WSNs.
sensor

1.2 Background and Motivation

Sri Lanka is one of the developing countries which quickly adopt modem Information

and Communication Technologies(ICT)[8]. Government of Sri Lanka shows much

interest to develop major cities as Smart Cities to provide better services to its citizens

[9], [10]. Already, this concept has been commenced to implement in major cities of

many developed countries to improve the services provided to their citizens in a cost

effective manner[l]-[5]. In general, Smart City have several Smart components

1

including Smart Water Supply & Sanitation services to provide high level services to

the people who lived in that city. Improving utilities’ performance is crucial to ensure

continuous high quality service and lower levels of leakage which affect both the

quality and quantity of water available to end-users, and the utilities’ revenue and its

financial sustainability.

Figure 1.1: Some Smart components in a Smart City

Smart Water Supply & Sanitation sendees must have intelligent treatment and

distribution systems. Such important intelligent systems require WSNs to monitor the

environment efficiently and effectively in a very cost effective manner. WSNs provide

capable platform for low cost, high performance and real-time monitoring. Many

researches have been done to utilize WSNs in Water Supply & Sanitation services[l 1]-
a

[15].

2

Figure 1.2 : Some applications of WSNs in the infrastructure of a Water Supply System

Further, having Wi-Fi facility, makes easy for the implementation of WSNs. Since Sri

Lanka has been selected as the first country in the world to implement the Goolgle’s

Loon project, It increases the possibility of getting Wi-Fi facility island-wide soon[8].
These developments in ICT upsurge the implementations of WSNs in many application

areas.

But, one of the major factors of the successful implementation of WSNs depends on its

secure data communication. Traditional security mechanisms cannot be employed on

WSNs due its specific features such as resource limitations, computational constraints

and deployment in unattended hostile environments[16]. Therefore, specific security

mechanisms satisfying WSN’s features must be developed. This is a very challengeable

task because just increasing the security mechanism will require more computing power

and resulting make the mechanism not suitable for WSNs. Similar manner, just

modifying the mechanism to consume less computing power results affect the security

of the WSNs.

In this study, critical review of wide ranging literatures related to various security

threats, security protocols with it evolution and key management schemes of WSNs

have been done. Literatures regarding the pseudo random number generators(PRNGs)

relevant to these security implementations are also reviewed.

3

In 2004, Park and Shin have proposed a lightweight protocol called Lightweight
Security Protocol(LiSP). The salient feature of this protocol is the novel rekeying

mechanism to tradeoff between security and resource consumption for large scale

sensor networks. In 2006, Sun and coworkers have presented a lightweight security

protocol with similar key management scheme of Park and Shin, but improved security

mechanism by employing a pseudo random number generator - Linear Congruential

Generator(LCG). In 2015, Jain and Ojha have identified that Park-Miller PRNG is

better than LCG for the lightweight security protocol. Further, in 2015, Ojha and Jain

analysed some other PRNGs to evaluate the performances of the lightweight security

protocol and concluded that Park-Miller PRNG is the most suitable one. But these

studies didn’t consider Park-Miller’s latest recommendation, or other variations of the

PRNG. PRNGs play vital role in the security and efficiency of the lightweight

protocoI[17]. Moreover, It has been identified that Secure Hash Algorithm-1 employed

in this protocol has similar effect as PRNG in the security and efficiency of the protocol.

Therefore, performance of the lightweight protocol can be enhanced without

compromising its security features, by utilizing more appropriate PRNG and secure

hash functions in its architecture.

1.3 Problem definition

Based on the literature review, it has been identified that there is a lack in the selection

of appropriate PRNG and secure hash function when designing the secure lightweight

protocol for Wireless Sensor Networks which have large number of sensor nodes and

are used to monitor environmental parameters in real-time.

1.4 Aim and Objectives

Aim of the project is to design and develop an efficient and secure lightweight protocol

for WSNs which have large number of sensors deployed in hostile environments.

There are two types of objectives have been identified for this study such as related to

the problem and related to the solution. *

4

1.4.1 Objectives related to the problem

• Critically review the developments and issues in the secure lightweight

protocols of WSNs which have large number of sensor nodes and are used to

monitor environmental parameters in real-time.

• Critically study the technology used for designing and implementing the secure

lightweight protocols for WSNs which have large number of sensor nodes and

are used to monitor environmental parameters in real-time.

1.4.2 Objectives related to the solution

• Identify the variables which can affect the efficiency of the secure lightweight

protocol.

• Search and identify suitable new values for the identified variables.

• Design secure lightweight protocols with the selected new values, in addition to

the previously proposed value for bench mark.

• Learn the technology, MATLAB, which is most suitable for the implementation

and evaluating the selected values.

• Develop prototype models using MATLAB for the designed protocols.

• Test the functionalities of the implemented prototype models.

• Measure the computation times of the implemented models for various sizes of

input data.

• Analyse the results obtained during the measurement of computation times.

• Interpret the analysis, conclude a decision and recommended it.

• Identify appropriate PRNGs including the PRNGs used in the study[18] as

control parameter.

• Prepare the documentation for the project work.

5

1.5 Hypothesis

Performance of a secure lightweight protocol of WSNs can be increased without

compromising any of its security features, by utilizing a suitable PRNG and a secure

hash algorithms in its architecture.

1.6 Resources required

Resources required for the design and implementation is a personal computer with MS

Windows Operating System, MATLAB, and MS Excel.

Resources required to measure the computation time are two virtual machines with

identical configurations with MS Windows Operating System, MATLAB, and MS

Excel on a server which must be capable to function long hours without disturbances.

1.7 Structure of the thesis

The rest of the thesis is structured as follows. Chapter 2 is on critical review of the area

of security of WSNs and PRNGs relevant of the security of WSNs. Chapter 3 presents

technology adopted toward an efficient and secure lightweight protocol for WSNs.
Chapter 4 provides the overall picture of our novel approach to design the lightweight

protocol. Chapter 5 discusses the design of the solution. Chapter 6 is about the

implementation of the secure light weight protocol. Chapter 7 reports on the evaluation

of the proposed solution. Chapter 8 concludes the results analysed in the evaluation

with the note for further work.

1.8 Summary

This chapter gave the overview of the thesis. Importance, background and motivation

of this project have been discussed initially. Studies done in this domain also presented

briefly. Problem definition, Objectives, Hypothesis, and Resources required to perform

the project also expressed. Finally, structure of thesis described chapter by chapter.

Next chapter provide details regarding the developments in security of WSNs and

PRNGs relevant to the security of WSNs.

6

Chapter 2

Developments in security of Wireless Sensor

Networks

2.1 Introduction

Chapter 1 has presented the importance and challenges in the security measures of the

Wireless Sensor Networks (WSNs). Moreover, it has described the objectives,
hypothesis and required resources of the project. This chapter critically reviews wide

ranging literature regarding the developments in security protocols of WSNs. Also,

literature regarding the pseudo random number generators (PRNGs) relevant to these

security implementations is reviewed. At the end of the chapter, summarization of the

critical reviews, the problem definition derived and identified technologies identified

from the review are presented.

2.2 Review of Literature

Perrig and his colleagues[19] worked to identify variety of security threats including

physical tampering, node capture and DoS attacks. Further, they highlighted the state

of security procedures such as key establishment, robustness to DoS attacks,

authentication and secrecy of WSNs. They suggested that these aspects could be

achieved by implementing high level security services rather than existing services.

But, they didn’t provide any high level security services for WSNs.

Further, Brown et al.[20] identified that security algorithms based on public key such

as Rivest, Shamir and Adleman (RSA)[21] require in the order of tens of seconds and

upto minutes to perform encryption processes in WSNs. They recommended that public

key algorithms are not suitable for WSNs. Although, they didn't suggest any suitable

key scheme for WSNs.

Moreover, Carman and coworkers[22] shown that public key algorithms take more

processing power in contrast with symmetric key algorithms and hash functions in

WSNs. However, in this study, suitable symmetric key algorithms or hash functions for
WSNs have not been mentioned specifically.

7

Suitability of symmetric key algorithms on sensor nodes was analysed by Ganesan et

al.[23]. They evaluated the feasibility of software implementations of the algorithms

such as RC4[24], skipjack[24], International Data Encryption Algorithm(IDEA)[24]

and Advanced Encryption Standard(AES)[24] in sensor nodes. It was concluded that

security algorithms such as IDEA and AES give more overhead than others. But, any

proposal for the improvements in the less overhead symmetric key algorithms was not

made.

In the study by Ahmed[7], five popular security protocols of WSNs such as

TinySec[25], LLSP[26], SPINS[27], LiSP[28], and LEDS[29] have been examined.

Major features of the selected protocols have been evaluated based on packet transfer

types, key management, location-aware, In-Network process and scalability. Also, this

study has evaluated the strength and weakness of the protocols based on the security

requirements such as Encryption, Authentication, Message Integrity. Availability and

Secure localization. This evaluation supports the selection of suitable security protocol
for a given application. Nevertheless, this work doesn’t provide any suggestions for

improving any of the security protocols, or propose any new security protocol for
WSNs.

Moreover, Ren et. al.[29] have proposed a location aware end-to-end security protocol

called as LEDS. It provides en-route filtering, end-to-end authentication and location

aware key management. It can be used in small as well as large WSNs. The drawback

in this study is the number of keys utilized in the cryptosystem are proportional to the

cell size. In addition, this protocol doesn’t prop up dynamic topology which is required

by most of the WSNs.

Further, Karlof and coworkers have proposed a link layer lightweight security protocol

for WSNs, named as TinySec[25]. This protocol supports two special security options

such as authenticated encryption (TinySecAE) and authentication only (TinySecAuth).

Also, It is included into the official TinyOS release. The main limitation of this protocol

is that It is not fully resistant against node capture attack created by compromised nodes.

An energy efficient link-layer security protocol(LLSP) for WSNs has been developed

by Jian et. al.[30]. This protocol has been developed based on the idea of TinySec. But,

8

dissimilar packet format and crypto structure are used by this protocol. It ensures

message confidentiality, message authentication, access control and replay protection.

The major drawback of this protocol is low scalability as node counters are unable to

maintain large networks.

Furthermore, Perrig and coworkers have presented a link layer security protocol for
WSNs named as SP1NS[27]. SPINS consists of Micro version of Timed Efficient

Streamed Loss-tolerant Authentication(pTESLA), Sensor Network Encryption

Protocol(SNEP) and a routing protocol based on these protocols. pTESLA protocol is

used in identity authentication broadcasting. SNEP provides semantic security, identity

authentication, recursion protection, data freshness and low communication overhead.

However, this protocol has scalability issues because the number of required security

keys for this protocol are directly proportional to the number of nodes in the network.

Jeffery and coworkers[31] proposed a lightweight security protocol. This protocol

functions in the base station. It provides security by enabling the base station to detect
and remove the compromised nodes in WSNs. This lightweight security protocol

doesn’t specify any security measures for the protection against the passive attacks on

a node where an adversary is intercepting the communication. Moreover, this scheme

increases the overhead of neighbouring nodes of the base station.

Later, Park and Shin[28] have proposed another lightweight security protocol for WSNs

called Lightweight Security Protocol (LiSP). The salient feature of this protocol is the

novel rekeying mechanism to tradeoff between security and resource consumption for

large scale sensor network. It uses a stream cipher for its cheap and fast processing. The

active temporal key stream is directly applied to the input stream for the encryption

process. The main constraints of the proposed protocol are usage of stream cipher rather

than block cipher[24], limited number of temporal keys and direct application of the

temporal keys as secret keys for encryption/decryption processes.

Further, Shaikh et. al. have presented a lightweight security protocol for distributed

WSNs called as LSec[32]. This protocol utilizes energy and memory efficient technique

that assumes grouping network nodes into clusters. It is designed with symmetric and

asymmetric security schemes. Base station must be trusted party in this scheme because

9

it needs to access the public keys of all nodes in the network. However, this protocol
suffers from higher communication overhead due to neighbouring nodes of base station

by forwarding requests and response packets during authentication and authorization

phases.

Sun and coworkers[16] have worked to improve the security protocol of Wireless

Sensor Network - LiSP[28]. Advance feature of this proposal is the usage of block

cipher [24] and Pseudo Random Number Generator(PRNG), Linear Congruential

Generator(LCG) [24] to generate pseudo random numbers in the cryptosystem.
Performance analysis proved that the proposed algorithm is more efficient than

RC5[24]. The main restrictions in this proposed protocol is the usage of the random

numbers generated directly as secret keys in the cryptosystem. Moreover, this study has

not analysed other suitable PRNGs to evaluate the performance of the algorithm.

Moreover, Mohamood et al.[33] have presented a hybridize dynamic symmetric key

cryptography using LCG algorithm. It deals with a dynamic symmetric key

cryptographic method[24] using substitution and transposition techniques. In this

algorithm, dynamic secret key has been generated using LCG[24], user input key, built-

in key and SHA-1[34] hashing scheme. The main advantage of this algorithm is the

creation of a new secret key for every pair of encryption and decryption processes. This

proposed algorithm has been demonstrated the best performance when compared with

other popular cryptography algorithms such as DES[34], 3DES[34], Rijndael[35] and

Blowfish[36], The main drawback of this study is that it has not analysed other suitable

PRNGs to evaluate the performance of the algorithm.

Further, Mahmood et al.[37] have presented a symmetric key cryptographic algorithm

using dynamic key. In this algorithm, LCG, user input key, built-in key and hash

function SHA-1[34] have been used to generate dynamic secret keys for encryption

and decryption processes. This algorithm employs four rounds of encryption and

decryption processes with different parts of the dynamic secret keys. The block cipher

method has been implemented in which input data are divided into blocks. This

proposed algorithm has been demonstrated the best performance when compared with

other popular cryptography algorithms such as DES[34], 3DES[34], Rijndael[35] and

Blowfish[36]. Moreover, this algorithm is more efficient and secure than the algorithm

10

proposed in [33]. The main shortcomings in this study is that it has not analysed other

suitable PRNGs to evaluate the performance of the algorithm.

Jain and Ojha[18] have extended the study done in [16], [33], and [37]. Park-Miller’s

PRNG[38] algorithm has been used to generate random numbers rather than LCG as

implemented in [16], [33] and [37]. Four rounds of encryption and decryption process

has been implemented as similar in the study [37]. One of the strong security features

of this work is the use of dynamic key to encrypt and decrypt messages. Block cipher

algorithm[39] has been used to encrypt and decrypt the data. This research has shown

that Park-Miller algorithm is more efficient than the LCG algorithm[34] to design the

protocol. This study doesn’t consider the latest recommendations made by Park-Miller
regarding their proposed algorithm. Also, It has not analysed other suitable PRNGs,
except LCG and Park-Miller, to evaluate the performance of the security protocol.

Jain and Ojha have extended the previous study [18] by using different PRNG generator

algorithms to identify the efficient PRNG algorithm to implement LiSP[40]. PRNG

algorithms such as LCG[34], RC4[41], Park-Miller[38], Blum Blum shub[42], and

Wichman-Hill[43] have been tested and time and energy taken when using these

algorithms have been measured. Eventually, It has been found that Park-Miller’s

PRNG is the best one for the implementation of the security protocol - LiSP. The main

limitation of this study is that it has not analysed other suitable PRNGs to evaluate the

performance of the security protocol. This study also doesn’t consider the latest

recommendations made by Park-Miller regarding their proposed algorithm.

Park and Miller[38] have proposed a new algorithm to generate pseudo random

numbers based on Lehmer PRNG [44]. This study has recommended two different

implementations for integer calculation and real calculation. This scheme has good

features such as full period sequence, efficient implementation with 32-bit arithmetic,
and satisfactorily random sequence. However, the proposed implementations are not

suitable for low level languages.

Later, Carta[45] has optimized the implementation of the PRNG suggested by Park and

Miller[38]. In this implementation, the-algorithm for calculations of Park and Miller

PRNG has been simplified by introducing shift operations. Therefore, It is more

11

suitable for low level languages. But, the efficiency of the algorithm has not been

demonstrated experimentally with lightweight security protocols.

Further, Marsaglia[43] proposed a variant of LCG. The Box-Muller algorithm[46] has

been improved by Marsaglia in a way that the use of trigonometric functions can be

avoided. It is important, since the computation of trigonometric functions is very time-
consuming. So, it has been theoretically proved that efficient than Box-Muller

algorithm. However, the efficiency of the algorithm has not been demonstrated

experimentally with lightweight security protocols.

2.3 Summarization of the reviews and Problem definition

The above study shows numerous limitations of the security protocol of WSNs. Among

other issues, methods used in cryptography algorithms and generation of dynamic keys

relevant to the cryptography can be highlighted. These issues are summarized in Table

2.1

Research Limitations

“Security in wireless sensor
networks” by Perrig, 2004 [1],

Didn’t provide any high level security

services for WSNs.
1

“PGP in Constrained Wireless Didn’t suggest any suitable key schemes for
WSNs.

2

Devices” by Brown et al. 2000 [20].

“Constraints and approaches for

distributed sensor network security”

by Carman et al. 2000 [22].

Suitable symmetric key algorithms or hash

functions for WSNs have not been

mentioned particularly.

3

“Analyzing and modeling

encryption overhead for sensor
network nodes” by Ganesan et al.
2003 [23].

No proposal for the improvements in the

low overhead symmetric key algorithms.
4

“An Evaluation of Security

Protocols on Wireless Sensor
No suggestions for improving the existing

security protocols or proposal for new

security protocol for WSNs.
5

Network” by Ahmed2009 [7].

“LEDS: Providing Location-aware

End-to-end Data Security in
Number of keys used is limited by the cell
size6

12

Wireless Sensor Networks.” By Ren

et. al. 2006 [29]

and

Doesn’t prop up dynamic topology.

TinySec: a link layer security

architecture for wireless sensor

It is not fully resistant against node capture

attack created by compromised nodes.7
networks by Karlof et al 2004[25].

“A Power Efficient Link-Layer

Security Protocol (LLSP) for

Wireless Sensor Networks” by Jian

et. al. 2005.

Low scalability as node counters are unable

to maintain large networks.
8

“SPINS: Security protocols for
sensor networks” by Perrig et al.
2002 [27].

Has scalability issues because number of

security keys are proportional to number of

nodes in the WSN. Therefore, not suitable

for larger WSNs.

9

“Security for sensor networks” by

Undercoffer et al. 2002 [31].
No protection against passive attacks, and

Increases the overhead of neighbouring

nodes of the base station.
10

“LiSP: A lightweight security

protocol for wireless sensor

networks” by Park and Shin

2004[2 8].

The usage of stream cipher, limited number

of temporal keys and direct application of

temporal keys for encryption are the main

drawbacks.

11

“LSec: lightweight security protocol

for distributed wireless sensor

Base station must be trusted node and

It suffers from higher communication

overhead.
12

network” by Shaikh et al. 2006 [32].

“A lightweight secure protocol for

wireless sensor networks” by Sun et
al. 2006 [16].

The usage of the random numbers generated

directly as secret keys in the cryptosystem
and13
Considered only one PRNG for generating

dynamic keys.

“Hybridize Dynamic Symmetric

Key Cryptography using LCG” by

Mohamood et al. 2012 [33].

Considered only one PRNG to generate

dynamic keys.

Has only two rounds of encryption.

Also, less efficient and secure than the

algorithm proposed in the study[37]

14

13

“Symmetric Key Cryptography

using Dynamic Key and Linear

Congruential Generator (LCG)” by

Mohamood et al. 2012 [37].

Considered only one PRNG to generate

dynamic keys.
15

“Implementation of LiSP using

Park-Miller for Wireless Sensor

Not analysed other suitable PRNGs, except

LCG and Park-Miller, to evaluate the

performance,

Not considered latest recommendations

made by Park-Miller regarding their

proposed PRNG,

Network” by Jain and Ojha 2015

[18].

16

and

Not considered latest recommendations

made by Park-Miller regarding their

proposed PRNG.

“Implementation of LiSP using

Different Random Number
Generator as a Dynamic Key for

Wireless Sensor Network” by Ojha

and Jain 2015 [40].

Not considered other available simple

PRNGs for generating dynamic keys
and

17 Not considered latest recommendations

made by Park-Miller regarding their

proposed PRNG.

“Random number generators: good

ones are hard to find” by Park and

Miller 1988 [38].

Not suitable for low level languages.

18

Two fast implementations of the

‘minimal standard’ random number
Efficiency of the algorithm has not been

demonstrated experimentally with

lightweight security protocols.
19

generator”, by Carta 1990[45].

“A comparison of four pseudo

random number generators

implemented in Ada” by Graham

1992[43].

Efficiency of the algorithm has not been

demonstrated experimentally with

lightweight security protocols.
20

Table 2.1 : Summarization of the identified issues in the literature review

14

2.3.1 Problem Definition

Based on the above critical review, the research problem is defined as the inadequate

attention given to the algorithms of pseudo random number generators(PRNGs), when

designing and developing secure lightweight protocols for WSNs.

2.3.2 Identified Technologies

Some technologies have been identified as more suitable for designing and developing

lightweight security protocols for WSNs by reviewing the literature. The technologies

are Symmetric key cryptosystem, One Time Pad(OTP), Secure Hash Algorithm(SHA),

Block cipher cryptosystem, Dynamic key and Group-based key management. These

technologies and their relevant our proposed solution will be described in the next
chapter.

2.4 Summary

This chapter discussed the studies done in the areas of security of WSNs and PRNGs

relevant to the design and implementation of the lightweight security protocols of

WSNs. Protocols proposed to implement the security mechanism on WSNs including

TinySec, LLSP, LEDS, SPINS, LiSP and LSec have been critically analysed. Further,

problem definition has been derived by analyzing the critical reviews of these

literatures. Identified technologies in the literature have also been presented. Next
chapter, technologies adopted for designing and developing the secure lightweight

protocol will be discussed. These technologies have been identified as suitable

technologies in designing and developing the lightweight security protocols for WSNs.

15

Chapter 3

Technologies adopted for the proposed protocol

3.1 Introduction

Chapter 2 discussed the studies have been done in the security protocols for wireless

sensor networks and pseudo random number generators. Some suitable technologies

for the design and implementation of the proposed protocol have been identified in the

literature reviews. Those technologies are Dynamic key. Onetime pad(OTP), Pseudo

Random Number Generators(PRNGs), Block cipher, Hash function. Symmetric key,

Group-based key management, and Encryption primitives. Further, MATLAB

application, as used in many studies found in the literature review, is chosen for

modeling and evaluating the proposed algorithm. The identified technologies are

described in this chapter.

3.2 Onetime pad(OTP)

A onetime pad(OTP) is an encryption technique in which a key generated randomly is

used only once to encrypt a message. Then, the key will be discarded to avoid the future

usage of the key for encryptions. Messages encrypted with keys based on randomness

have the advantage that there is theoretically no way to “break the code” by analyzing

a succession of messages. Each encryption is unique and bears no relation to the next

encryption. During the decryption, the same key used to encrypt the message must be

required. This situation raises the problem of how to get the key for decryption which

is at different location safely or how to keep the keys securely at both encryption and

decryption locations. The key used in a one-time OTP is called a secret key because if

it is revealed, the messages encrypted with it can easily be deciphered[37], [40], [18],
[33].

Further, if the secret key is truly random, is at least as long as the plain text, is never-

reused in whole or in part, and is kept completely secret, then the resulting cipher text
will be impossible to decrypt or break[24].

16

This technique has been implemented in the proposed secure lightweight protocol to

increase the security. PRNG is used to ensure the creation different keys at each

encryption process.

3.3 Pseudo Random Number Generator (PRNG)

Random numbers are critical in every aspect of cryptography. Unfortunately, true

random numbers are very difficult to generate, especially on computers that are

typically designed to be deterministic. This brings the concept of pseudo-random

numbers, which are numbers generated from some random internal values, and that are

very hard for an observer to distinguish from true random numbers. It is important to

see the difference between the meaning of pseudo-random numbers in the context of

cryptography, where they must be indistinguishable from real random numbers.

A pseudo random number generator (PRNG) is an algorithm for generating a sequence

of numbers whose properties approximate the properties of sequences of random

numbers. The PRNG-generated sequence of numbers is not truly random, because it

completely determined by a relatively small set of initial values and parameters of the

mathematical equation. Good statistical properties and time efficient are a central

requirement for the output of a PRNG. PRNGs are important in practice for their speed

in number generation and their reproducibility[43], [42], [47].

PRNG is a basic for the generation of dynamic key of the proposed secure light weight

security protocol. The below mentioned PRNGs are implemented with the protocol to

evaluate and choose an appropriate PRNG.

3.3.1 Linear Congruential Generator (LCG)

A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo

randomized numbers calculated with a discontinuous piecewise linear equation. The

method represents one of the oldest and best known pseudo random generator

algorithms. This method can be easily implemented and fast, especially on computer

hardware which can provide modulo arithmetic by storage-bit truncation[42].

17

The generator is defined by the recurrence relation:

Xn+i=(aXn+c) mod m

Where X is the sequence of pseudo random values, and

m, 0 < m - the‘modulus’

a, 0 < a < m - the ‘multiplier’
c, 0 < c < m - the ‘increment’

Xo, 0 < Xo < m - the ‘ seed ’ or the ‘ start value ’

are integer constants that specify the generator.

Algorithm of LCG to generate pseudo random number is given below,
function LCGPseudoRandomNumber : real

// Assume seed is global variable and has an initial value.

Step 1: Initialize parameters

a <—48271; m<—2147483647; c<-4;

Stept 2: Xl<— (a x seed + c) mod m

Step 3: seed <— XI

Step 4: return <— yl/m

3.3.2 Park-Miller pseudo random number generator

Park and Miller[38] proposed minimal standard for LCG and efficient way for
implementation.

The generator is defined by the recurrence relation:

Xn+i= aXn mod m

Where X is the sequence of pseudo random values, and

m =2147483647-the ‘modulus’

a =16807 - the ‘multiplier’

. Xo, 0<Xo<m-the ‘seed’ or the‘start value’
are integer constants that specify the generator.

18

V. -VI’UVersity o? aoR/jf;'-
' SfflLAMaa;osa/o,„i

Algorithm of ParkMiller to generate pseudo random number is given below,

function ParkMillerPseudoRandomNumber: real

// Assume seed is global variable and has an initial value.

Step 1: Initialize parameters

a <—16807; m<-2147483647; q<-127773; r<-2836;

Step 2: hi <— seed div q

Step 3: lo <— seed mod q

Step 4: test <— a x lo - r x hi

Step 5: if (test>0) then seed <— test

else seed <— test + m

Step 6: return <— seed /m

3.3.3 Park-Miller-Carta pseudo random number generator

Carta[45] has improved the PRNG implementation proposed by Park and Miller[38].

Algorithm of ParkMillerCarta to generate pseudo random number is given below,
function ParkMillerCartaPseudoRandomNumber: real

// Assume seed is global variable and has an initial value.

Step 1: Initialize parameters

a <-16807; m<-2147483647;

Step 2: lo <— (a x (seed & OxFFFF))

Step 3: hi <— (a x (seed » 16)

Step 4: lo <- lo + (hi & 0x7FFF) «16

Step 5:lo <— lo + (hi» 15)

19

T 3168

Step 6: if (lo > 0x7FFFFFFF) then lo <- lo - 0x7FFFFFFF

Step 7: seed <— lo

Step 7: return <— lo /m

3.4 Block cipher

In this cryptography technique, messages are divided into fixed length blocks before

the encryption process. Then encryption will be performed block by block. In the same

way, during the decryption process, the cipher data is divided into fixed length blocks

and decrypted block by block[24]. In the study[48], It has been recognized that block

cipher is more suitable than stream cipher to get higher security in WSNs[47].

3.5 Dynamic key

Cryptosystems utilizes keys to encrypt messages into cipher data and decrypt cipher
data into original messages. Cryptosystems utilizes more than one key to strengthen the

security of the cipher text. Dynamic key cryptosystems utilizes key which varies on

subsequent execution of the processes of the cryptosystems. Security protocols which

employ dynamic key cryptosystems are immune to known-key attacks.

Dynamic key means a kind of key which is changed every time. It is new and an

advanced concept. These dynamic keys are used for each pair of encryption and

decryption. After the decryption these dynamic keys are discarded. Therefore, it is

called as dynamic key. Whole keys are not shared between the parties, sender and

receiver, but little bit information are shared between two parties. So on the basic of

this information, both parties produce the dynamic key. In this key is applied different
part of the message[47], [33], [28], [37]; [24].

20

3.6 Hash function

One of the fundamental primitives in modem cryptography is the cryptographic hash

function, often informally called a one-way hash function. A hash function is the

implementation of an algorithm that, given some data as input, will generate a short

fixed length result called digest or hash. In another way, it can be defined as a

computationally efficient function mapping binary strings of arbitrary length to binary

strings of some fixed length, called hash values[24].

Information security often includes situations where a user wants to transform one

block of information into another block of information in such a way that the original

block cannot be recreated. Also, it is very essential the input block is processed; it will

produce the same output block. This means that the process is deterministic.

A cryptographic hash can be described as f(message)=hash and has property that the

hash function is one way. A given hash value cannot feasibly be reversed to get a

message that produces the hash value, ie. there is no useful inverse hash function

f (hash)=message.

Good hash functions must have the following properties:

Preimage resistant: Given H it should be hard to find M such that H=hash(M).

Second preimage resistant: Given an input ml, it should be hard to find another input,

m2 (not equal to ml)such that hash(ml)=hash(m2).

Collision-resistant: It should be hard to find two different messages ml and m2 such

that hash(m 1)=hash(m2). Because of the birthday paradox this means the hash function

must have a larger image than required for peimage-resistance[24].

3.6.1 Secure Hash Algorithm -1

Secure Hash Algorithm -1 (SHA -1)[49] is in widespread use and was designed to

provide protection against collision finding of280. It was proposed by National Institute

of Standards and Technology(NIST) for certain U.S. federal government applications.

The hash value of SHA-1 is 160 bits[24]. It is a member of the Secure Hash Algorithm

family which has four algorithms.

21

3.7 Symmetric key Cryptosystems

Symmetric key Cryptosystems is one that uses the same key to encrypt messages as it
does to decrypt messages[37], [28], [18], [24].

Formal definition:
Any cryptosystem on a symmetric key cipher conforms to the following definition:

M : message to be enciphered

K : a secret key

E : enciphering function

D : deciphering function

C : enciphered message. C=:E(M,K)

For all M, C, and K, M=D(C,K) = D(E(M,K), K)

Rehman et al.[48] have analysed many cryptographic techniques for WSNs. They have

identified that symmetric key techniques offer better energy efficiency than public key

techniques.

This technique is also called as secret-key cipher, or one-key cipher, or private-key

cipher, or shared-key cipher.

3.8 Encryption primitives of Cryptosystems

Encryption primitives of cryptosystems are basic operations to encrypt plain text into a

cipher data and decrypt cipher data into plaint text. Encryption primitives adopted in

this work are Addition operation, Subtraction operation, XOR operation and Transpose

operation. These encryption primitives are utilized in the lightweight security

protocol[24], [34].

22

3.8.1 Addition operation
In this operation, the length of the key and block of the message need to be encrypted

must have same number of bits. During the operation, key and block of message will
be added and the result will be given as output. It is described in the following diagram.

Block of message : 01101011110100001
:00111101111010100Key

Cipher data :10101001101110101

Figure 3.1 : Addition operation

3.8.2 Subtraction operation

In this operation, the length of the key and block of the cipher data need to be decrypted

must have same number of bits. During the operation, key will be subtracted from the

block of cipher data and the result will be given as output. It is described in the

following diagram.

Block of cipher data : 01101011110100001
:00111101111010100Key

Original message :00101101111001101

Figure 3.2 : Subtraction operation

3.8.3 XOR operation

In this operation, the length of the key and block of the message or cipher data need to

be encrypted or decrypted must have same number of bits. During the operation, XOR

operation will be performed between input data and the key and the result will be given

as output. It is described in the following diagram.

Input data :01101011110100001
:00111101111010100Key

Output data : 10101100011101010

Figure 3.3 : XOR operation

23

3.8.4 Transpose operation

In this operation, the block of message is arranged in square format row by row, then

the arranged data will be read column by column to perform encryption. The reverse

operation will be performed for decryption operation.

Block of message : 0110101111010000
Bits are arranged row by row

N f in square format
0 1 0
10 11
110 1
000 0

N, Bits are read column by column

Cipher data :0110101011000110

Figure 3.4 : Transpose operation

3.8.5 Swap operation

In this operation, block of message is divided into predefined number of sub blocks.

Then, these sub blocks of messages will be swapped and merged together by changing

its order of position to create cipher data.

Block of message :0110101111010000

Divided sub blocks :01101 01111 010 000

Changing the order of sub blocks : 010 01101 000 01111

Cipher Data : 01001101 00001111

Figure 3.5 : Swap operation

3.9 MATLAB

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment

and fourth-generation programming language. It is proprietary software developed by

MathWorks. It allows matrix manipulations, plotting of functions and data,
implementation of algorithms, creation of user interfaces, and interfacing with

programs written in other languages, including C, C++, Java, Fortran and Python.

24

MATLAB provides a high-level language and development tools that let us quickly

develop and analyze algorithms and applications.

The MATLAB language provides native support for the vector and matrix operations

that are fundamental to solving engineering and scientific problems, enabling fast

development and execution.

With the MATLAB language, we can write programs and develop algorithms faster

than with traditional languages because we do not need to perform low-level
administrative tasks such as declaring variables, specifying data types, and allocating

memory. In many cases, the support for vector and matrix operations eliminates the

need for for-loops. As a result, one line of MATLAB code can often replace several

lines of C or C++ code.

We can produce immediate results by interactively executing commands one at a time.

This approach lets us quickly explore multiple options and iterate to an optimal

solution. We can capture interactive steps as scripts and functions to reuse and automate

your work.

MATLAB application has been used for modeling and evaluating the security protocols

of WSNs in many studies[40], [18], [33], [37], [17],[50], [51], [52]. Therefore, in this

study, MATLAB R2014b software has been used to design, implement and evaluate

the proposed algorithms and measuring the execution time.

3.10 Summary

In this chapter, technologies selected to design and implement the proposed security

protocol have been described. The mentioned technologies include Dynamic key.
Onetime pad(OTP), Pseudo Random Number Generators(PRNGs), Block cipher, Hash

function, Symmetric key, Group-based key management, and Encryption primitives.

Finally, the MATLAB application used to model and evaluate the algorithm have been

described. In the next chapter, approaches pursued to develop the efficient and secure

lightweight protocol will be discussed.

25

Chapter 4

Approach for Efficient and Secure Lightweight

Protocol

4.1 Introduction

Chapter 2 presented the critical review of many literatures which were required to

design and develop the efficient and secure light weight protocol. Chapter 3 discussed

the technology for implementing efficient and secure lightweight protocol for Wireless

Sensor Networks(WSNs). This chapter presents our approach to efficiently

implementing the lightweight protocol under several headings, namely, hypothesis,

input, output, process, users and features. Our approach is lightweight block cipher
symmetric key cryptosystem with dynamic key employing onetime pad concept. This

chapter highlights the key features that distinguish our novel approach from other

existing approaches for security protocols of WSNs. Further, this chapter highlights

how the novel approach offers a cost effective and efficient solution for security

protocol for WSNs.

4.2 Hypothesis

Performance of a secure lightweight protocol for WSNs can be increased without

compromising any of its security features, by utilizing a suitable PRNG and a secure

hash algorithm in its architecture.

4.3 Input

When data gathered from environment, Data sensed by wireless sensor nodes are the

main inputs for the secure lightweight protocol in the encryption process. These sensed

data may include numerical values of temperatures, pressures, PH values, voltages, and

mechanical vibrations are main inputs. These inputs are given by the specific sensor
nodes deployed in the field. These inputs are given by the sensors continuously in a

predefined time intervals. This secure lightweight protocol gets these data in binary

forms since it perform processes in bit levels.

26

When data received from sensor nodes by base stations, encrypted data received by

base stations are the main inputs for the secure lightweight protocol in the decryption

process. Base stations may receive encrypted data from more than one sensor nodes.

4.4 Output

When data gathered from environment, Encrypted data generated by the secure

lightweight protocol are the outputs of the encryption process. Then the data transmitted

to the base station directly or via other sensor nodes.

When data received from sensor nodes by base stations, decrypted data generated by

the secure lightweight protocol are the outputs of the decryption process. Decrypted

data will be in binary form since the secure lightweight protocol perform processes in

bit levels. These data may represent the parameters such as temperatures, PH values,

pressures, voltages, mechanical vibrations, etc. which have been sensed by the sensors

in the field.

4.5 Process

4.5.1 Encryption process

During the encryption process, given binary stream - plain data - will be converted to

as cipher data with the involvement of dynamic key. Length of the plain data can be

any length which satisfies the hardware configurations of the sensor node. But, length

of the plain data and cipher data will be same. Careful consideration is given in the

encryption process to increase the security as maximum possible without increasing the

computation times.

4.5.1.1 Generation of Dynamic key

Initially dynamic key with the length of 196 bits will be generated. It will be in binary

form. Generating random dynamic key requires three basic keys such as built-in key,

user input key and pseudo random number. Built-in key is specific and unique for each

sensor nodes, that is, each sensor node has a non-identical built-in key and it cannot be

modified. User input key will be injected to the sensor nodes before deployment or it

will be updated in some predefined long periods. A pseudo random number will be

generated using a PRNG during the each encryption processes. Based on these three

27

keys randomized matrix with the size 14x14 will be generated by performing various

matrix operations. Finally, 196 bit stream will be generated as hash value by giving the

randomized matrix as input to a hash function.

4.5.1.2 Preparation of data blocks

Before the encryption process, given binary stream - plain data - will be divided into

blocks with the size of 49 bits. If the last block doesn’t have enough bits for getting 49

bits length, additional pad bits will added to get the required bits.

4.5.1.3 Performing encryption

Using the binary key generated, given plain data will be encrypted block by block.
Encryption process has four rounds and each round uses sub keys of 49 bits obtained

from the dynamic key for the encryption process. Encryption process includes simple

addition, transpose, XOR, and rotation operations. Simple operations are employed

because to reduce the computation time and energy in the sensor nodes. Each rounds

has applied these basic operations in different manners to increase the security. In the

first third and fourth rounds between two basic operations, bits in the block will be

swapped in various manners.

After encryption of the all blocks, they will be merged as a single encrypted cipher data.

4.5.2 Decryption process

During the decryption process, given binary stream - cipher data - will be converted to

as plain data with the involvement of dynamic key which was used in the encryption

process. Length of the cipher data can be any length which satisfies the hardware

configurations of the sensor node. But, length of the cipher data and plain data will be

same. The decryption process can be viewed as a reverse operation of the encryption

process.

4.5.2.1 Generation of Dynamic key

The dynamic key used for the encryption is necessary to decrypt the cipher data. But,

in this approach, there is no need to get the dynamic key form the encryption location.
The dynamic key with the length of 196 bits can be generated at the decryption location.

28

It will be in binary form. Generating random dynamic key requires three basic keys

such as built-in key, user input key and pseudo random number. Built-in key is specific

and unique for each sensor nodes, that is, each sensor node has a non-identical built-in

key and it cannot be modified. User input key will be injected to the sensor nodes before

deployment or it will be updated in some predefined long periods. A pseudo random

number will be generated using a PRNG during the each decryption processes. The

pseudo random number must be same the number which was used during the

encryption. This can be achieved simply passing the. round of the PRNG because the

functions of the PRNGs are deterministic. Based on these three keys randomized matrix

with the size 14x14 will be generated by performing various matrix operations. Finally,

196 bit stream will be generated as hash value by giving the randomized matrix as input

to a hash function. This dynamic key would be same as the dynamic key used for the

encryption operation.

4.5.2.2 Preparation of data blocks

Before the decryption process, given binary stream - cipher data - will be divided into

blocks with the size of 49 bits. If the last block doesn’t have enough bits for getting 49

bits length, additional pad bits will added to get the required bits.

4.5.2.3 Performing decryption

Using the binary key generated, given cipher data will be decrypted block by block.

Decryption process has four rounds and each round uses sub keys of 49 bits obtained

from the dynamic key for the decryption process. Decryption process also includes

simple addition, transpose, XOR, and rotation operations. Simple operations are

employed because to reduce the computation time and energy in the sensor nodes. Each

rounds has applied these basic operations in different manners. In the first, second and

fourth rounds between two basic operations, bits in the block will be swapped in the

reverse manner as done in the encryption process.

After decryption of the all blocks, they will be merged as a single decrypted plain data.

29

4.6 Features

The proposed efficient and secure lightweight protocol has the following features:

• Secret key used for the encryption is not required to share with the decryption

party, this feature will reduce the chance of opponents/ eavesdroppers get to

know the secret key. Further, it makes easy for the key management process.

• Once a secret key used for encryption will not he used for the successive

encryption processes, this will enhance the security by if someone get to know

one of the secret key, she/he cannot decrypt successive messages, even if she/he

knows the encryption process.

• Utilization of a PRNG which is performed efficiently with the cryptosystem and

has good randomness properties. This feature will increase the efficiency of the

protocol and ensure excellent randomness of the secret key.

• Utilization of simple encryption primitives in the cryptosystem. This feature

increases the efficiency of the protocol.

• Having four rounds of encryption in each of the encryption processes, 'this

feature increases the strength of the cipher data.

• Utilization of different sub keys of the dynamic key at each rounds of

encryption. This feature makes impossible to opponents easily decrypt the

cipher data.

• Utilization of the symmetric key concept rather than asymmetric key concept in

the cryptosystem. This feature increases the efficiency of the protocol.

• Generation of dynamic key based on three basic keys, utilization of matrix

operations and utilization of the hash function. This process makes harden to

opponents to generate similar key to decrypt the cipher data.

• Utilization of the efficient hash function to generate the binary dynamic key.
The feature increase the efficiency of the protocol.

• This protocol supports group wise key management scheme rather than pair
wise key management scheme. Therefore, It can be used in large scale WSNs.

30

4.7 Users

This lightweight protocol will be used by wireless sensor nodes and base stations in the

Wireless Sensor Networks(WSNs) to get efficient and secure data communication for
their sensitive data. Application areas of the WSNs include smart water supply,

structural monitoring, smart metering of utility services, health care, battle field,
environmental monitoring, smart traffic controlling, etc.

4.8 Summary

This chapter presented our novel approach to design and develop an efficient and secure

lightweight protocol for WSNs. It pointed out how the novel approach offers an

efficient and accurate solution for efficient security in WSNs. The next chapter shows

the design of the novel approach presented here.

31

Chapter 5

Design of the Efficient and Secure Lightweight

Protocol

5.1 Introduction

Chapter 3 discussed the technology for implementing efficient and secure lightweight

protocol for Wireless Sensor Networks(WSNs). Chapter 4 presented the approach to

develop an efficient and secure lightweight protocol for WSNs. This chapter elaborates

the approach and describes the architecture of the solution. The top level architecture

of the solution includes three modules namely Generation of Binary Key, Encryption

Process, and Decryption Process. Also, this chapter briefly analysis the theoretical
aspects of the architecture and describes the modules which have been used to evaluate

the suitable PRNG and Hash function for the proposed protocol.

5.2 Top Level Architecture of the Secure Lightweight Protocol

The top level architecture of the efficient and secure lightweight protocol is shown in

Figure 5.1. Within the architecture, modules ‘Encrypt Plain Data’ and ‘Decrypt Cipher
Data’ work as the core of the solution. Module, ‘Generate Dynamic Binary Key', is

connected and facilitate the functions of the modules, ‘Encrypt Plain Data’ and

‘Decrypt Cipher Data’. Next we briefly describe the function of each modules.

5.2.1 Generation of Dynamic Binary Key

For the function of the modules, Encryption Process and Decryption Process, 196 bits

length binary key is essential. This key has to be renewed during the encryption process

of each messages before the message is transmitted. Therefore, every encryption

process require a new 196 bits length binary key.

The module, Generation of Dynamic Binary Key, provides 196 bits length dynamic

binary key at the encryption process of every messages. Similar manner, during the

decryption process, this module, Generation of Dynamic Binary Key, provides 196 bits

length dynamic binary key at the decryption process of every cipher messages. This

32

module requires two basic keys such as user input key and built-in key to generate 196

bits length binary keys. Architecture of this module is shown in Figure 5.2.

Sensor Node

Built- in Key Plain Data
▼

1 A Dynamic
Binaiy Key

2

Seed Generate
Dynamic

Binaiy Key

Encrypt Plain
Data

>>

<4-

User Input KeyDeployment User

Cipher Data
via transmis ;ion media

User Input Key
Application User

Seed
▼

31 B Dynamic
Binaiy Key Deciypt

Cipher DataGenerate
Dynamic

Binaiy Key

>

Plain Data
Built-jin Key

Base Station

Figure 5.1 - Top level architecture of the Efficient and Secure Lightweight Protocol
(Module441 A" and441B" are identical processes, but in different devices)

33

Deployment User Application User Sensor Node

/
Inbuilt Keyeed User Input Key /

1.1 1.2

Generate Pseudo
Random Number

Generate

Matrix (14 x 14)

/(14Matp: x 14)Pseudo rani number

1.3

Generate Randomize
Matrix

(14 x 14)

Randomized Matrix (14 x 14)

1.4

Generate

Hash Value

Dynamic Binary Key (196 bits length)
i y

Figure 5.2 - Architecture of the Module ‘Generate Dynamic Binary Key

5.2.2 Encryption Process

The module, 'Encrypt Plain Data’, performs the encryption process on the received

plain data and gives the output as chipper data. This module has seven sub modules

such as 'Prepare Sub Keys’, 'Prepare Data Blocks’, 'Encrypt Data Block - Round 1’,

34

‘Encrypt Data Block - Round 2’, ‘Encrypt Data Block - Round 3\ and ‘Encrypt Data

Block - Round 4’, and ‘Merge Data Blocks’. The architecture of this module is shown

in Figure 5.3.

During the encryption process, initially, given plain data is divided into fixed sized data

blocks. In this scheme, size of the block is 49 bits. If the last block doesn’t have enough

bits for 49 bits length, padding bits will be added to make the length of the block as 49

bits.

Then, each data block will be encrypted in four rounds using simple operations such as

addition, transpose, XOR, and rotation operations. If there are two keys used in a round,
between the encryption processes in the round, bits in the data blocks will be swapped

in different manner in each rounds. Finally, all encrypted data blocks will be merged as

one chipper data and given as output of the module.

For the encryption process in each module, sub keys with the length of 49 bits will be

obtained from the dynamic binary key which has the length 196 bits. In each rounds,
sub keys are obtained from the different parts of the dynamic binary key.

5.2.3 Decryption Process

The module, ‘Decrypt Cipher Data’, performs the decryption process on the received

cipher data and gives the output as plain data. Decryption process has reverse operations

of the encryption process. This module has seven sub modules such as ‘Prepare Sub

Keys’, ‘Prepare Data Blocks’, ‘Decrypt Data Block - Round 1\ ‘Decrypt Data Block

- Round 2’, ‘Decrypt Data Block - Round 3’, and ‘Decrypt Data Block - Round 4’,

and ‘Merge Data Blocks’. The architecture of this module is shown in Figure 5.4.

During the decryption process, initially, given plain data is divided into fixed sized data

blocks. In this scheme, size of the block is 49 bits. If the last block doesn’t have enough

bits for 49 bits length, padding bits will be added to make the length of the block as 49

bits.

Then, each data block will be decrypted in four rounds using simple operations such as

addition, transpose, XOR, and rotation operations. If there are two keys used in a round,

35

between the decryption processes in the round, bits in the data blocks will be swapped

in different manner in each rounds. Finally, all decrypted data blocks will be merged as

one plain data and given as output of the module.

For the decryption process in each module, sub keys with the length of 49 bits will be

obtained from the dynamic binary key which has the length 196 bits. In each rounds,

sub keys are obtained from the different parts of the dynamic binary key.

Diagrammatical descriptions of the design architectures of the modules ‘Encrypt Plain

Data’ and ‘Decrypt Cipher Data’ are given in the next pages.

36

Plain Data

2.2
Dynamic Binary Key

(19 > bits) Prepare Data Blocks

(49 bits)

Data Blocks (49 bits)

2.1 2.3
DPI

Prepare Sub Keys > Encrypt Data Block

Round 1

DP2
(49 bits)

RP1

2.4

DL1 Encrypt Data Block

Round 2

RP2
^ r

2.5

DL2 Encrypt Data Block*
DF1 Round 3

DF3DF2
RP3

i f

2.6

Encrypt Data Block

Round 4

>

2.7

Cipher Data Merge Data Blocks

(49 bits)
<

RP4
’ r

Figure 5.3 - Architecture of the Module ‘Encrypt Plain Data’

. 37

CipherjData
_______ T

3.2
Dynamic Binary Key

(19 5 bits) Prepare Data Blocks

(49 bits }

Data Blocks (49 bits)

3.1
DKF2

Prepare Sub Keys

(49 bits)

Decrypt Data BlockDKF3

Round 1

RCT1
't

3.4

DKL2 Decrypt Data Block>
DKF1 Round 2

RCT2

3.5

• DKL1 Decrypt Data Block♦

Round 3
DKP2DKP1

RCT3
▼

3.6

Decrypt Data Block*•

Round 4
3.7

Plain Data Merge Data Blocks

(49 bits) RCT4
’ r

Figure 5.4 - Architecture of the Module ‘Decrypt Cipher Data1

38

5.3 Theoretical Analysis of the Architecture

In this study, a PRNG and a hash function which function most efficiently with the

secure lightweight protocol have to be identified. Moreover, the identified PRNG must

not affect the security feature of the protocol. To identify the efficient PRNG and hash

function, recommended PRNG and hash function in recent studies will be used as

control factors. Further, some PRNGs and hash functions will be selected to analysis

with the control factors.

PRNG and hash function used in the studies of Jain and Ojha[18] and [40] in 2015 have

been selected as controlled variables for our study. Jain and Ojha have identified ‘Park

Miller PRNG’ as PRNG and SHA-1 as hash function for lightweight protocol.

5.3.1 Selection of Pseudo Random Number Generators (PRNGs)

5.3.1.1 Theoretical aspects of PRNGs

A PRNG having the ability to produce genuinely random numbers is a mechanism for

generating a sequence of random numbers Ui, U2, U3,.....with the properties of each
Ui distributed between 0 and 1 uniformly and the Ui are independent mutually.

Simple Linear Congruential Generator (LCG) has the mathematical equation as
follows:

Xi+i=(a Xj +c)mod m ; Here a - multiplier and m - modulus

Suitability of a PRNG is evaluated based on its properties such as period length,
reproducibility, speed, portability, and randomness.

If c=0 and m is prime, full period is achieved from any Xo ^ 0, if a™'1 - 1 is a multiple
of m and a*'1 -1 is not a multiple of m, Then a is called a primitive root of m.

Main consideration in design is to avoid overflow. If axi can be represented exactly for
every xi in the sequence, then no overflow occurs. If a is very large then overflow
occurs.

We can say the desired properties of a good generator are

• It should efficiently computable. The period should be large, The
successive values should be independent and uniformly distributed.

• Selection of LCG parameters
• a,b, and m affect the period and autocorrelation
• The modulus m should be large
• The period can never be more than m.

39

For ‘mod m’ computation to be efficient, m should be a power of 2 => ‘mod m’ can be
obtained by truncation.

If b is nonzero, the maximum possible period m is obtained if and only if:

• Integers m and b are relatively prime, that is, have no common factors other
than 1

• Every prime number that is a factor of m is also a factor of a-1
• If integer m is a multiple of 4, a-1 should be a multiple of 4.

Notice that all of these conditions are met if m=2k, a=4c+l, and b is odd. Here, c,b, and
k are positive integers.

A generator that has the maximum possible period is called a full-period generator.

5.3.1.2 Selection process

The below given table lists the well-accepted PRNGs and values of the constants of

well-accepted PRNGs which is used in many popular compilers[53],[38],[45].

m (modulus) a (multiplier) c (increment)Method
231 - 1LCG Apple Carbon 16807 01
232LCG Borland CPlusPlus 226954772 1
231 - 1LCG CPlusPlusMinstd 482713 0
231 - 1LCG FishmanMoore 696214 0
231LCG Formely Common 655395 0
231LCG GlibC & ANSI C6 1103515245 12345
232LCG ISO IEC 1103515245 123457
232-2LCG Marsaglial 168078 0
232-5 69070LCG Marsaglia2 09
231 - 1LCG Native API 2147483629 214748358710
232LCG Numerical Recipes 1664525 101390422311
231LCG Sheffield 16807 012
224 114067148513 LCG VB6 12820163
23214 LCG Virtual Pascal 1347758113 1
232LCG Visual C Plus Plus 21401315 2531011
25116 69069LCG VM MTH 1
231 - 1Park Miller17 16807 0
231 - 1Park Miller Carta18 16807 0
231 - 119 Park Miller New 48271 0

Table 5.1: Values of the constants of well-accepted PRNGs

Jain and Ojha in their two studies[18] and [40] in 2015, identified the Park-Miller

PRNG as the best one. They compared Park-Miller’s PRNG with other PRNGs such as

LCG, Blum Blum Shub, RC4, and Wichman-Hill. Finally, they have concluded that

40

Park-Miller’s PRNGs is the best one for secure lightweight protocols. But, they didn’t

consider the Park-Miller’s latest recommendations in their design.

From above list, PRNG Park-Miller has been chosen as a control PRNG to select an

efficient PRNG from the study.

Jain and Ojha have used the Park-Miller’s PRNG without considering his latest

recommendations. In this study, as per Park-Miller’s latest recommendations, an PRNG

has been designed as ‘Park Miller New’.

Further, PRNGs which have good randomness properties has been chosen for the

evaluation purposes. Finally, PRNGs such as LCG GlibC & ANSI C, LCG Marsaglial,

LCG Native API, LCG Sheffield, Park-Miller, Park-Miller-Carta, and Park-Miller

New have been chosen for design the secure lightweight protocol.

Method m (modulus) a (multiplier) c (increment)
231LCG GlibC & ANSI C 11035152451 12345
232-2LCG Marsaglial2 16807 0
231 - 1LCG Native API3 2147483629 2147483587
231LCG Sheffield 168074 0
231 - 1Park Miller5 16807 0
231 - 16 Park Miller Carta 16807 0
231 - 1Park Miller New7 48271 0

Table 5.2 : Values of the constants of Selected PRNGs

5.3.2 Selection of Hash functions

Hash functions SHA-1 and SHA 256, SHA384, and SHA512 have been identified to

consider in our study. These hash functions have been designed by National Security

Agency(NSA) and approved by National Institute of Standards and Technology(NIST),

USA and widely used in many applications[49].

Name of Hash Algorithm Length of Hash Value

SHA-1 160 bits Designed by the National
Security Agency (NSA)
and published by the
National Institute of
Standards and Technology
(NIST) of USA.

SHA 256 256 bits

384 bitsSHA 384

512 bitsSHA 512

Table 5.3 : Properties of the selected Hash Algorithms

41

5.4 Summary

This chapter discussed the design of the secure lightweight protocol with top level

architecture diagram. Top level architecture has three modules such as ‘Generate

Dynamic Binary Key’, ‘Encrypt Plain Data’ and ‘Decrypt Cipher Data’. Architecture

diagram of these modules have been presented. Then, theoretical aspects of PRNGs,
and basis for the selection of PRNGs and hash functions for this study have been

elaborated. Next chapter describes the implementation aspects of the design and

implementation for choosing suitable PRNGs and hash functions.

42

Chapter 6

Implementation of the Efficient and Secure

Lightweight Protocol

6.1 Introduction

In chapter 5, the top level design of the efficient and secure lightweight protocol has

been described in terms of what each component does. Moreover, the selected PRNGs

and hash functions for the evaluation have been described. This chapter describes the

implementation of each component regarding software algorithms, platforms etc. In

that sense, this chapter is about how the system is implemented.

6.2 Overview of the implementation

Initially, the design described in the previous chapter have been implemented with each

of the PRNGs selected with the hash function SHA-1 chosen as control factor. Then

the lightweight protocol has been implemented with each of the hash function selected.

With seven PRNGs and four hash functions, eleven different lightweight protocols have

been implemented.

To collect the execution times of every implementations of the lightweight protocol
with different PRNGs and hash functions, Module, ‘Automate Data Collection' has

been implemented.

MATLAB code of the implementation of all the modules is given in the Appendix-B.

6.3 Software and Platform used for the implementation

The design has been implemented in MATLAB software. The implementation has been

evaluated in a PC with MATLAB software. Since the module ‘Automate Data

Collection’ has been needed to run in a less disturbance system for long periods with

the facility to confirm generality, It has been implemented in two identical Virtual
Machines set up in a Server.

43

To store the collected data of execution times, MS Excel is used and the module

‘Automate Data Collection’ has stored all measured times in an Excel sheet for future

analysis.

6.4 Implementation of the module ‘Generate Dynamic Binary Key5

This module has four main activities such as ‘Generate Pseudo Random Number’,’

‘Generate Matrix’, ‘Generate Randomized Matrix’, and ‘Generate Hash Value’.

‘Generate Pseudo Number’ for every PRNG has implemented with their relevant

constants values and their specific algorithms. ‘Generate Matrix’ has been developed

to combine the two basic keys such as ‘User input key’ and ‘In-built key’, and produce

a matrix with the size of 14 x 14. By combining the generated matrix and the pseudo

random number, ‘Generate Randomize Matrix’ will produce a randomized matrix with

the size of 14 x 14. ‘Generate Hash Value’ produces a binary stream of 196 bits

employing a hash function. This will be used as a Dynamic Binary Key.

Algorithms of the PRNGs such as ‘LCG’, ‘Park-Miller’ and ‘Park Miller Carta’ are
given below:

1. Algorithm of LCG :
function LCGPseudoRandomNumber: real

// Assume seed is global variable and has an initial value.

Step 1: Initialize parameters

a <—48271; m<—2147483647; c<-4;

Stept 2: X1 <— (a x seed + c) mod m

Step 3: seed <— XI

Step 4: return <— yl/m

44

2. Algorithm of ParkMi Her :

function ParkMillerPseudoRandomNumber: real

// Assume seed is-global variable and has an initial value.

Step 1: Initialize parameters

a <—16807; m<-2147483647; q^—127773; r<-2836;

Step 2: hi <— seed div q

Step 3: lo <— seed mod q

Step 4: test <— a x lo - r x hi

Step 5: if (test>0) then seed <— test

else seed <— test + m

Step 6: return <— seed /m

3. Algorithm of ParkMillerCarta :

function ParkMiHerCartaPseudoRandomNumber : real
// Assume seed is global variable and has an initial value.

Step 1: Initialize parameters

a <-16807; m<-2147483647;

Step 2: lo «— (a x (seed & OxFFFF))

Step 3: hi <— (a x (seed » 16)

Step 4: lo <— lo + (hi & 0x7FFF) «16

Step 5:lo <— lo + (hi » 15)

Step 6: if (lo > 0x7FFFFFFF) then lo <— lo - 0x7FFFFFFF

Step 7: seed <— lo

Step 7: return <— lo /m

45

6.5 Implementation of the function ‘EncryptionProcess’

As described in the Chapter 5, the processes in the ‘EncryptPlainData’, have been

implemented in the function name as EncryptionProcess. The function gets plaint data

in binary form and encrypt it as cipher data using the key given by the function

‘Generate Dynamic Key’.

High level algorithm of this function is given below:

function EncryptionProcess(DynamicBinaryKey,PlainData):CipherData

Step 1. : Get the following sub keys with the length of 49 bits from the

different parts of the DynamicBinaryKey.

Sub keys : DPI, DP2, DL1, DL2, DF1, DF2. and DF3

Step 2 : Divide the PlainData as Blocks with the length of 49 bits. If the

last the Block doesn’t have 49 bits, add pad bits.

Step 3 : For each Blocks perform the following

Step 3.1 : Round 1: Encrypt the Block with the sub keys DPI
and DP2

Between the encryption swap the bits in the Block in a specific
manner.

Step 3.2 : Round 2 : Encrypt the Block with the sub key DL1

Step 3.3 : Round 3 : Encrypt the Block with the sub keys DL2

and DF1

Between the encryption process, swap the bits in the Block in a

specific manner.

Step 3.4 : Round 4 : Encrypt the Block with the sub keys DF2

and DF3

Between the encryption process, swap the bits in the Block in a

specific manner.

Step 4 : Merge the all the Blocks as Cipher Data and return it as output.

46

6.6 Implementation of the function ‘DecryptionProcess’

As described in the Chapter 5, the processes in the ‘DecryptCiperData’, have been

implemented in the function name as DecryptionProcess. The function gets cipher data

in binary form and decrypt it as plain data using the key given by the function ‘Generate

Dynamic Key’.

High level algorithm of this function is given below:

function DecryptionProcess(DynamicBinaryKey,CipherData):PlainData

Step 1. : Get the following sub keys with the length of 49 bits from the

different parts of the DynamicBinaryKey.

Sub keys : DKL1, DKF1, DKF2, DKF3, DKP1, and DKP2

Step 2 : Divide the PlainData as Blocks with the length of 49 bits. If the

last the Block doesn’t have 49 bits, add pad bits.

Step 3 : For each Blocks perform the following

Step 3.1 : Round 1: Decrypt the Block with the sub keys DKF2

and DKF3

Between the encryption swap the bits in the Block in a specific

manner.

Step 3.2 : Round 2 : Encrypt the Block with the sub key DL1

Step 3.3 : Round 3 : Encrypt the Block with the sub keys DL2

and DF1

Between the encryption process, swap the bits in the Block in a

specific manner.

Step 3.4 : Round 4 : Encrypt the Block with the sub keys DF2

and DF3

Between the encryption process, swap the bits in the Block in a

specific manner.

Step 4 : Merge the all the Blocks as Cipher Data and return it as output.

47

6.7 Implementation of the Module <AutomateDataColIection_PRNG’

This module has been implemented to automate the operations of collection and storing

the measured computation times of the different architectures which have different

PRNGs but same hash algorithm. This module has implemented to measure the

execution times of the each design for twenty times, calculate the average execution

time, and store the values in a MS Excel work sheet. '

6.8 Implementation of the Module ‘AutomateDataCollectionJttF’

This module has been implemented to automate the operations of collection and storing

the measured computation times of the different architectures which have different hash

algorithms but same PRNG. This module has implemented to measure the execution

times of the each design for twenty times, calculate the average execution time, and

store the values in a MS Excel work sheet.

48

6.9 Implementation of the Module ‘AutomateFunctionalityTesting’

This module has been implemented to automatically test the functionality of the

developed architectures to verify their functionality and give the results in a text file

and MS Excel work sheet. Simple and user friendly interface has been created for this

module.

6.10 Summary

This chapter presented the implementation aspects of the secure lightweight protocol
with different architectures in such a way each one has specific PRNG and hash

algorithm. Next chapter describes about the results of the functionality testing of the

each implementation and measured execution times of each implementations in

numeric and graphical formats.

49

Chapter 7

Evaluation of the Implemented Protocols

7.1 Introduction

The previous chapter described the implementation of the secure lightweight protocol.

This chapter describes how the implementation has been tested and evaluated to

identify the efficient PRNG and Hash algorithm. Initially, the implemented eleven

models have been tested for their functionality. Later, execution time of the models

have been measured and presented in table and graphical formats.

7.2 Testing the functionality of the Implementations

The implementations of the eleven models have been tested to verify its functionality,
manually and automated manner. The test results are given in the Appendix - D. Test
results ensured the functionality of the implementation are correct.

7.3 Evaluating Strategy

To increase the accuracy in the measurement of execution times, the following matters

have been considered in measurements.

• Evaluations have been performed on two identical Virtual Machines having no

unnecessary applications or devices. Then, results obtained in two machines

have been compared for any considerable differences.

• Minimum size of Input data has been taken as large enough for its execution

time has been more than 40 seconds.

• Measuring twenty execution times, average times have been considered for

evaluation.

• During the measurement, first measurements have not been considered to find

the average to avoid any start up times.

• The built-in function of the MATLAB, ‘timeit’, which is recommended by

MATLAB for robust measurement of the time required for a function execution

50

and provides a more vigorous estimate, has been utilized for measurement of

execution times.

7.4 Average Execution Times of the Implementations with Different PRNGs

To identify the suitable PRNG which provides efficiency to the implementation of the

secure lightweight protocol, execution times with different input data have been taken.

Seven implementations, each one has different PRNGs but same hash algorithm -SHA-

1, have taken for the evaluation. The average execution times calculated are given

below with graphical representations. Detail measured times are given in the Appendix

-C.

PRNGs Size 25 Kbyte Size 30 Kbyte Size 35 Kbyte Size 40 Kbyte
LCGGlibC 51.46218 62.00772 73.65602 82.42930
LCGMarsaglia 60.32896 70.70038 80.4399250.25929

62.94671 83.36370LCGNativeAPI 52.20872 73.69287
LCGSheffield 49.21276 58.66130 69.15086 78.18048
ParkMiller 52.02353 62.69292 73.33440 82.88175

51.97637 62.32395 73.09633ParkMillerCarta 83.15086
ParkMillerNew 49.63269 . 59.47119 70.03893 79.26224

Size 45 Kbyte Size 50 Kbyte Size 55 KbytePRNGs
LCGGlibC 93.12619 103.58324 113.92710
LCGMarsaglia 91.03645 101.16679 111.20534
LCGNativeAPI 94.38902 104.63881 115.35699

88.45563 98.25484 108.40541LCGSheffield
103.86106ParkMiller 93.88163 114.74446

ParkMillerCarta 93.79393 104.33904 115.07245
ParkMillerNew 91.28653 98.807010 108.96367

Table 7.1 : Measured average execution times for different sizes of input data, with
the same hash algorithm.

Graphical representations of the data in the above table are presented in the below
given line graphs.

51

Execution time Vs PRNGs
52.5

52
51.5

51
q 50.5

S 50
3 49.5

-o

49
Size 25 Kbvte4S.5

48
47.5

PRNGs

Figure 7.1 : Execution time vs PRNGs for the input data size 25Kbyte

Execution time Vs PRNGs

—-Size 30 Kbyte

PRNGs

Figure 7.2 : Execution time vs PRNGs for the input data size 30Kbyte

52

Execution time Vs PRNGs

-—Size 35 Kbyte

PRNGs

Figure 7.3 : Execution time vs PRNGs for the input data size 35Kbyte

Execution time Vs PRNGs

—Size 40 Kbvte

PRNGs

Figure 7.4 : Execution time vs PRNGs for the input data size 40Kbyte

53

Execution time Vs PRNGs
95
94
93
92

■8 91
Eo 90

—Size 45 Kbvte

PRNGs

Figure 7.5 : Execution time vs PRNGs for the input data size 45Kbyte

Execution time Vs PRNGs
i 106

104

102
T3c
P 100

CO
98 1

—Size 50 Kbvte
l

PRNGs

Figure 7.6 : Execution time vs PRNGs for the input data size 50Kbyte

54

Execution time Vs PRNGs

108
—Size 55 Kbyte

106

104

PRNGs

Figure 7.7 : Execution time vs PRNGs for the input data size 55Kbyte

Comparisons between the implementations having ParkMiller and LCG Sheffield in

their architectures are given below. Here, ParkMiller is the PRNG proposed in previous

studies and LCG Sheffield is the identified efficient one in our experiment.

LCGSheffield Vs ParKMilier

-------LCGSheffield

—ParkMiller

Size 25
Kbyte

Input Data Size

Figure 7.8 : Execution times of LCGSheffield vs ParkMiller PRNGs architectures

55

Efficiency comparison between the two implementations which have in their
architectures ParkMiller and LCGSheffield as PRNG are given below.

Size 25 Kbyte Size 30 Kbyte Size 35 Kbyte Size 40 KbyteMethod
49.21276 58.66129LCGSheffield 69.15086 78.18048
52.02353 62.69292ParkMiller 73.33440 82.88174

LCGSheffield’s
Efficiency in Sec.
against ParkMiller 4.701262.81077 4.03162 4.18354

6.43075 5.672265.40288 5.70475Efficiency in %
Average
Efficiency 5.70179

Method Size 45 Kbyte Size 50 Kbyte Size 55 Kbyte
LCGSheffield 88.45562 98.25484 108.4054
ParkMiller 93.88163 103.8611 114.7445

LCGSheffield’s
Efficiency in Sec.
against ParkMiller 5.42601 5.60622 6.33905

5.77962 5.39781 5.52449Efficiency in %
Table 7.2 : Efficiency comparison architectures having LCGSheffield and ParkMiller.

7.5 Average Computation Times of the Implementations with Different Hash
Algorithms

To identify the suitable Hash algorithm which provides efficiency to the
implementation of the secure lightweight protocol, execution times with different input
data have been taken. Four implementations, each one has different hash algorithms but
same PRNG - LCGSheffield, have taken for the evaluation. The average execution
times calculated are given below with the graphical representations. Detail measured
times are given in the Appendix C.

56

Hash
Algorithm Size 25 Kbyte Size 30 Kbyte Size 35 Kbyte Size 40 Kbyte

69.4827848.91310 58.43929 78.76926SHA-1
51.03638 61.16325 73.06556 81.79517SHA256
49.30274 59.19036 70.34567 79.70132SHA384
49.57987 59.48701 71.21232 80.52878SHA512

Hash
Algorithm Size 45 Kbyte Size 50 Kbyte Size 55 Kbyte

89.11982SHA-1 100.55405 110.08024
SHA256 91.24310 104.96086 115.08773
SHA384 89.50947 101.39622 111.28383
SHA512 89.78659 102.11264 112.01979

Table 7.3 : Measured average execution times for different sizes of input data, with
the same PRNG.

Graphical representations of the data in the above table are presented in the below given
line graphs.

Execution Time Vs Hash Algorithms
51.5

51
i

50.5
50<Si

"a
c
0 49.5

49
ia»

—-Size 25 Kbyte
I48.5i

I 48!
47.5 .

SHA-1 SHA256 SHA384 SHA5I2
Hash Algorithms

i

Figure 7.9 : Execution time vs Hash Algorithms for the input data size 25Kbyte

57

Execution Time Vs Hash Algorithm

—Size 30 Kbyte

SHA256 SHA384 SHAM 2
Hash Algorithms

Figure 7.10 : Execution time vs Hash Algorithms for the input data size 30Kbyte

Execution Time Vs Hash Algorithms
74 r
73

.
72

(/>
"2 71

y 70
•t

5
tI -----Size 35 Kbvtego
i69 |—
I.: ;68

67
SHA-1 SHA256 SHA384 SHA5I2

Hash Algorithms
:

Figure 7.11 : Execution time vs Hash Algorithms for the input data size 35Kbyte

58

Execution Time Vs Hash Algorithmsi

-—Size 40 Kbyte

SHA256 SI I A3 84 SHA5I2
Hash Algorithms

Figure 7.12 : Execution time vs Hash Algorithms for the input data size 40Kbyte

Execution Time Vs Hash Algorithm
91.5 T :

9i :—

90.5
V)

T3 90c
c

j o 89.5 ——Size 45 Kbyte00
i 89

88.5

88
SHA-I SHA256 SHA384 SHA5I2

Hash Algorithms

Figure 7.13 : Execution time vs Hash Algorithms for the input data size 45Kbyte

59

Execution Time Vs Hash Algorithms
106

105
104

«2 103T3 ;
o 102 . i--o
SJ

oo 101 —Size 50 Kbyte
100

99 :
98

SHA-I SHA256 SHA384 SHA512
Hash Algorithms

Figure 7.14 : Execution time vs Hash Algorithms for the input data size 50Kbyte

Execution Time Vs Hash Algorithms
116
115
114

^ 113

1112
8 in I
^ no -----Size 55 Kbyte:

i

109 : |
108

.. l107
SHA-1 S11A 25 6 SHA384 SHA512

Hash Algorithms

Figure 7.15 : Execution time vs Hash Algorithms for the input data size 55Kbyte

7.6 Summary

This chapter describes the results obtained in the evaluation process. Also, It has

expressed the evaluation strategy applied during the evaluation process. The results

obtained in the evaluation are shown in tabular form and graphical representation as

line graphs. Next chapter will interpret the results described in this chapter in a

meaningful way.

60

Chapter 8

Conclusion and Further work

8.1 Introduction

The previous chapter has presented the results of the various evaluations regarding the

functionality of the implementation and execution times of various designs. Results

have been expressed in tabular and graphical forms. This chapter interprets the results

obtained in the evaluation chapter.

8.2 Conclusion

Based on the analysis, the secure lightweight protocol having a PRNG as LCG Sheffield

and secure hash algorithm as SHA-1 is more efficient. This protocol is, in average,
5.7% more efficiency than the existing similar protocol. Therefore, It is recommended

that the secure lightweight protocol having PRNG as LCG Sheffield and secure hash

algorithm as SHA-1 will be efficient one.

Further, first objective set for this project has been achieved by conducting a

comprehensive critical literature survey by covering 20 papers. In this review,

achievements and limitations in the research works have been analysed and the problem

definition has been derived.

Second objective has been achieved by critically analyzing technologies suitable for
solving the problem via the literature reviews. Then, the separate chapter on technology

has been written by showing how they can be used to in this project.

Other objectives have been achieved by designing and developing the prototype models

and evaluating those models. The prototype development is evidence from three major

chapters Approach Design & Implementation. Last objectives have been achieved by

evaluating the prototype models and analyzing the results obtained in the evaluation.
These have been described in the chapter Evaluation. Also, the research work has been

documented in a structured manner.

61

8.3 Further work

Further study has to be done to propose efficient block size and key size for the secure

lightweight protocol for WSNs.

8.4 Summary

This chapter interprets the results obtained in the previous chapter, propose an

architecture for efficient and secure lightweight protocol and suggests future studies to

improve the secure lightweight protocol.

62

References
[1] ffed_royan_smart_water_smart_city.pdf.” [Online]. Available:

http://www.swan-
forum.com/uploads/5/7/4/3/5743901/fred_royan_smart_water_smart_city.pdf.
[Accessed: 09-Mar-2016].

[2] “Singapore Strives to Become ‘The Smartest City.’” [Online]. Available:
http://www.governing.com/topics/economic-dev/gov-singapore-smartest-
city.html. [Accessed: 09-Mar-2016].

[3] B. C. 11 14 13 7:08 AM, “The 10 Smartest Cities In North America,” Co.Exist,
14-Nov-2013. [Online]. Available: http://www.fastcoexist.com/3021592/the-10-
smartest-cities-in-north-america. [Accessed: 09-Mar -2016].

[4] “Visiting the Smart City of Yinchuan, China,” Amsterdam Smart City, 08-Oct-
2015. [Online]. Available:
http ://amsterdamsmartcity.com/news/detail/id/711 /slug/visiting-the-smart-city-
of-yinchuan-china?lang=en. [Accessed: 09-Mar-2016].

[5] “Home,” Smart Cities UK Conference & Expo - Feb 1st & 2nd 2017. [Online].
Available: http://www.smartcityuk.com/. [Accessed: 09-Mar-2016].

[6] K. Chelli, “Detail Attacks SPINS TINYSEC LEAP descriptions.” Proceedings
of World Congress on Engineering VOL I, Jul-2015.

[7] A. S. Ahmed, “An Evaluation of Security Protocols on Wireless Sensor
Network,” in TKK T-l 10.5190 Seminar on Internetworking, 2009.

[8] “Google loon project to cover Sri Lanka with 3G internet.” [Online]. Available:
http://www.slbc.lk/index.php/tamil-news-update/! 361 -google-loon-project-to-
cover-sri-lanka-with-3g-internet.html. [Accessed: 08-Mar-2016].

[9] “Kandy will be developed as Sri Lanka’s first smart city.” [Online]. Available:
http://www.slbc.lk/index.php/tamil-news-update/1766-kandy-will-be-developed-
as-sri-lanka-s-first-smart-city.html. [Accessed: 08-Mar-2016].

[10] “Kandy to be Sri Lanka’s first ‘smart city’ | Colombo Gazette.” [Online].
Available: http://colombogazette.com/2015/09/06/kandy-to-be-sri-lankas-first-
smart-city/. [Accessed: 08-Mar-2016].

[11] N. O. Nweze, “Real Time Monitoring Of Urban Water Systems for Developing
Countries,” IOSR-JCE, vol. 16, no. 3, May 2014.

[12] L. Cai, R. Wang, J. Ping, Y. Jing, and J. Sun, “Water Supply Network
Monitoring Based on Demand Reverse Deduction (DRD) Technology,”
Procedia Eng., vol. 119, pp. 19—27, 2015.

[13] M. Mutchek and E. Williams, “Moving Towards Sustainable and Resilient
Smart Water Grids,” Challenges, vol. 5, no. 1, pp. 123-137, Mar. 2014.

. 63

http://www.swan-
http://www.governing.com/topics/economic-dev/gov-singapore-smartest-city.html
http://www.governing.com/topics/economic-dev/gov-singapore-smartest-city.html
http://www.fastcoexist.com/3021592/the-10-smartest-cities-in-north-america
http://www.fastcoexist.com/3021592/the-10-smartest-cities-in-north-america
http://www.smartcityuk.com/
http://www.slbc.lk/index.php/tamil-news-update/
http://www.slbc.lk/index.php/tamil-news-update/1766-kandy-will-be-developed-as-sri-lanka-s-first-smart-city.html
http://www.slbc.lk/index.php/tamil-news-update/1766-kandy-will-be-developed-as-sri-lanka-s-first-smart-city.html
http://colombogazette.com/2015/09/06/kandy-to-be-sri-lankas-first-smart-city/
http://colombogazette.com/2015/09/06/kandy-to-be-sri-lankas-first-smart-city/

^aSSett, and T. Ajmal, “Wireless Sensor Networks for Water
Monitoring, Int. J. Digit. Inf Wirel Commun. IJDIWC, vol. 4315, p. 349360,

[! 5] T R. Patil and R. M. Khaire, “Wireless Sensor Network for Real Time
Monitoring and Detection of Water Contamination,” IJSRM, vol. 3, no. 6, Jun.
2015.

[16] B. Sun, C.-C. Li, K. Wu, and Y. Xiao, “A lightweight secure protocol for
wireless sensor networks,” Comput. Commun., vol. 29, no. 13, pp. 2556-2568,
2006.

[17] N. Bharatesh and S. Rohith, “FPGA Implementation of Park-Miller Algorithm to
Generate Sequence of 32-Bit Pseudo Random Key for Encryption and
Decryption of Plain Text,” Int. J. Reconfigurable Embed. Syst. IJRES, vol. 2,
3, pp. 99-105,2013.

[18] K. Jain and A. Ojha, “Implementation of LiSP using Park-Miller for Wireless
Sensor Network,” Int. J. Comput. Appl., vol. 110, no. 8, 2015.

[19] A. Perrig, J. Stankovic, and D. Wagner, “Security in wireless sensor networks,”
Commun. ACM, vol. 47, no. 6, pp. 53-57, 2004.

[20] M. Brown, D. Cheung, D. Hankerson, J. L. Hernandez, M. Kirkup, and A.
Menezes, “PGP in Constrained Wireless Devices.,” in USENIXSecurity
Symposium, 2000.

[21] S. Chakraborty and V. Kumar, “A Study and Implementation of RSA
Cryptosystem,” ArXiv Prepr. ArXivl50604265, 2015.

[22] D. W. Carman, P. S. Kruus, and B. J. Matt, “Constraints and approaches for
distributed sensor network security (final),” DARPA Proj. ReportCryptographic
Technol. Group Trust. Inf. Syst. NAILabs, vol. 1, no. 1, 2000.

[23] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller, and M.
Sichitiu, “Analyzing and modeling encryption overhead for sensor network
nodes,” in Proceedings of the 2nd ACM international conference on Wireless
sensor networks and applications, 2003, pp. 151—159.

[24] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied
cryptography. CRC press, 1996.

[25] C. Karlof, N. Sastry, and D. Wagner, “TinySec: a link layer security architecture
for wireless sensor networks,” in Proceedings of the 2nd international
conference on Embedded networked sensor systems, 2004, pp. 162-

[26] L. E. Lightfoot, J. Ren, and T. Li, “An Energy efficient link-layer security
protocol for wireless sensor networks.” May-2007.

Perrig R Szewczyk, J. D. Tygar, V, Wen, and D. E. Culler, SPINS:
Security protocols for sensor networks,” Wirel. Netw., vol. 8, no. 5, pp. 521-534,

2002.

no.

175.

[27] A

64

[28] T. Park and K. G. Shin, “LiSP: A lightweight security protocol for wireless
ACM Tram' Embed ComPutSyst. TECS* vol. 3, no. 3, pp.

[29] K. Ren, W. Lou, and Y. Zhang, “LEDS: Providing Location-aware End-to-end
Data Security in Wireless Sensor Networks.” IEEE, Apr-2006.

[30] J. Ren, T. Li, and D. Aslam, “A Power Efficient Link-Layer Security Protocol
(LLSP) for Wireless Sensor Networks.” IEEE, Oct-2005.

[31] J. Undercoffer, S. Avancha, A. Joshi, and J. Pinkston, “Security for
networks,” in CADIP Research Symposium, 2002, pp. 25-26.

[32] R. A. Shaikh, S. Lee, M. A. Khan, and Y. J. Song, “LSec: lightweight security
protocol for distributed wireless sensor network,” in Personal wireless
communications, 2006, pp. 367-377.

[33] Z. Mahmood, A. Jain, and C. Agrawal, “Hybridize Dynamic Symmetric Key
Cryptography using LCG,” Int. J. Comput. Appl, vol. 60, no. 17, 2012.

[34] R. Oppliger, Contemporary cryptography. Boston: Artech House, 2005.

[35] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” 1999.

[36] B. Schneier, “Description of a new variable-length key, 64-bit block cipher
(Blowfish),” in Fast Softu>are Encryption, 1993, pp. 191-204.

[37] Z. Mahmood, J. L. Rana, and A. Khare, “Symmetric Key Cryptography using
Dynamic Key and Linear Congruential Generator (LCG),”/;?/. J. Comput. Appl.,
vol. 50, no. 19, 2012.

[38] S. K. Park and K. W. Miller, “Random number generators: good ones are hard to
find,” Commun. ACM, vol. 31, no. 10, pp. 1192-1201, 1988.

[39] C.-C. Lin, S. Shieh, and J.-C. Lin, “Lightweight, Distributed Key Agreement
Protocol for Wireless Sensor Networks,” 2008, pp. 96-102.

[40] A. Ojha and K. Jain, “Implementation of LiSP using Different Random Number
Generator as a Dynamic Key for Wireless Sensor Network,” IJARCCE, pp. 420-
425, Feb. 2015.

[41] R. Basu, S. Ganguly, S. Maitra, and G. Paul, “A complete characterization of the
evolution of RC4 pseudo random generation algorithm.” Jan-2008.

[42] L Blum M Blum, and M. Shub, “A simple unpredictable pseudo-random
number generatorS'SIAMJ Comput., vol. 15, no. 2, pp. 364-383, 1986.

1*431 W N Graham “A comparison of four pseudo random number generators
implemented in Ada,” ACMSIGSIMSimul. Dig., vol. 22, no. 2, pp. 3-18, 1992.

[44] H. Bauke, Tina’s random number generator library. August

sensor

,2011.

65

[45] D. F Carta, Two fast implementations of the ‘minimal standard’ random
number generator,” Commun. ACM, vol. 33, no. 1, pp. 87-88, 1990.

[46] “ChapterJ 6; 1710027857Chapter_16.pdf.” [Online]. Available:
httpv/www.ijsr.in/upload/l 710027857Chapter_l 6.pdf. [Accessed: 24-Mar-

[47] K. Jain and A. Ojha, “A Survey on Lightweight Protocol Using Dynamic Key
for Wireless Sensor Network,” IJARCCE, vol. 3, no. 9, Sep. 2014.

[48] S. U. Rehman, M. Bilal, B. Ahmad, K. M. Yahya, A. Ullah, and O. U. Rehman,
Comparison based analysis of different cryptographic and encryption

techniques using message authentication code (mac) in wireless sensor networks
(wsn),” ArXiv Prepr. ArXivl2033103, 2012.

[49] “NIST.gov - Computer Security Division - Computer Security Resource
Center.” [Online]. Available: http://csrc.nist.gov/groups/ST/hash/policy.html.
[Accessed: 07-Mar-2016].

[50] S. Sridharan, “Water Quality Monitoring System Using Wireless Sensor
Network,” Int. J. Electron. Commun. Eng. Adv. Res., vol. 3, pp. 399-402, 2014.

[51] G. V. and K. Chandrasekaran, “A Distributed Trust Based Secure
Communication Framework for Wireless Sensor Network,” Wirel. Sens. Netw.,
vol. 06, no. 09, pp. 173-183, 2014.

[52] J. Singh, K. Lata, and J. Ashraf, “Image Encryption & Decryption with
Symmetric Key Cryptography using MATLAB,”/«£ J. Curr. Eng. Technol.,
vol. 5, no. 1, pp. 448-451, 2015.

[53] “Linear congruential generator explained.” [Online], Available:
http://everything.explained.today/Linear_congruential_generator/. [Accessed:
05-Mar-2016].

66

http://www.ijsr.in/upload/l
http://csrc.nist.gov/groups/ST/hash/policy.html
http://everything.explained.today/Linear_congruential_generator/

Appendix A Detail design diagram

The detailed diagrams of the design of the architecture are given below. It is the

continuation of the diagrams given in the Chapter 5.

The below given diagrams of sub modules are of the module ‘Encrypt Plain Data’
described in the chapter 5.

Plain D? ta Block RP1
\ t

\ f
2.3.1 2.4.1DPI DL1Perform Primitive Encryption Perform Primitive Encryption

RP1 1 RP2V v
2.3.2

Figure A.2 : Architecture of the Module
‘Encrypt Data Block : Round 2'Swap bits in the Data Block

RP1 2
\r
2.3.3

DP2 Perform Primitive Encryption■>

RP1

Figure A. 1 : Architecture of the Module
‘Encrypt Data Block : Round V

I -j'"-'' 267
$

RP2 RP3\ /
2.5.1 2.6.1DL2 DF2Perform Primitive Encryption Perform Primitive Encryption

RP3 1 RP4 1
\i \t

2.5.2 2.6.2

Swap bits in the Data Block Swap bits in the Data Block

RP3 2 RP4 2\t y f
2.5.3 2.6.3

DF1 DF3Perform Primitive Encryption Perform Primitive Encryption

i iRP3 RP4

Figure A.3 : Architecture of the Module
‘Encrypt Data Block : Round 3’

Figure A.4 : Architecture of the Module
‘Encrypt Data Block : Round 4'

68

The below given diagrams of sub modules are of the module ‘
described in the chapter 5.

Decrypt Cipher Data’

Cipher Data Block RCT1
w \ /
3.3.1 3.4.1

DKF3 DKF1Perform Primitive Decryption Perform Primitive Decryption

RCT1 1 RCT2 1
v v
3.3.2 3.4.2

Swap bits in the Data Block Swap bits in the Data Block

RCT1 2 RCT2 2\r v
3.3.3 3.4.3

DKF2 DKL2Perform Primitive Decryption Perform Primitive Decryption£

RCT1 RCT2
\t V

Figure A. 5 : Architecture of the Module
‘Decrypt Data Block : Round T

Figure A.6 : Architecture of the Module
‘Decrypt Data Block : Round 2'

69

RCT2 RCT3
v _s/_
3.5.1 3.6.1

DKL1 DKP2
Perform Primitive Encryption Perform Primitive Decryption

RP1 1RCT3
vv
3.6.2

Figure A.7 : Architecture of the Module
‘Decrypt Data Block : Round 3’ Swap bits in the Data Block

RP1 2\ r
3.6.3

DKP1 Perform Primitive Decryption

iRCT4

Figure A. 8 : Architecture of the Module
‘Decrypt Data Block : Round 4*

70

Appendix B — Selected Source Code
Source code written in MATLAB for the following tasks are given in this appendix.

1. Measuring and storing the execution times of different designs, each one
utilizing different PRNGs. But all the designs have the same Hash function,
SHA-1. B.l Listing <AutomateDataCollection_PRNGEvaluation, (Only the
specific modules)

2. Measuring and storing the execution times of different designs, each

utilizing different Hash functions. But all the designs have the same PRNG -

LCGSheffield.B.2 Listing ‘AutomateDataCollection_HF’ (Only the Specific

modules)

one

B.l Listing <AutomateDataCollection_PRNGEvaluation’ (Only the specific
modules)

function AutomateDataCollection_PRNGEvaluation

% This module collects the execution times of the selected designs of the

% protocol with different sizes of input data. For this purpose, it calls

% the module -'MeasuringAllDesigns' - with the different multiples of the

% basic plain data.

%Size of the Basic Plain Data is 160 bytes

BasicPlainDatal='WSNs are primarily designed for monitoring environments that
humans cannot easily reach (e.g., motion, target tracking, fire detection, chemicals,
temperature).';

BasicPlainData—cbs sfdgsd 3246 fdsd vcbx ;

MeasuringAllDesigns_PRNG(2,BasicPlainData, S160);

% MeasuringAllDesigns _PRNG(160,BasicPlainData,'S 160');

%MeasuringAllDesigns_PRNG(l 92,BasicPlainData,'SI 92');

%MeasuringAllDesigns_PRNG(224,BasicPlainData,'S224');

71

% MeasuringAllDesigns_PRNG(256,BasicPIainData,'S256')

%MeasuringAllDesignsJPRNG(288,BasicPIainData,'S288')

%MeasuringAIlDesigns_PRNG(320,BasicPlainData,'S320')

% MeasiiringAIlDesigns_PRNG(352>BasicPlainData,,S352l)

%

disp(Automated Data Collection has been completed !');

function MeasuringAIlDesigns_PRNG(SN,Str,FN)

% SN - Number of multiples of the Basic Plain Data which is required for

% encryption process; Str - Basic Plain Data; FN - String assigned to the

% end of file name which will have the collected data

% This module evaluates all the selected designs with different PRNGs but

% with same Hash function SHA-1

global seed; % Initial value for Pseudo Random Number Generator

global MesBlockSize; % Size of block in bits

global KeyLength; % Length of key in bits

seed=17; % Assigning initial value for seed

MesBlockSize=49;

KeyLength=196;

InputKey='A&8RT98'; % User input key

%Fixed built-in key for testing purposes; 16 real numbers

0.9200 0.3802 0.9078 0.8893 0.8221 0.7610
0 9393 0.9699 0.5696 0.6978 0.3249 0.2205];

IBK=[0.9499 0.4010
0.6723 0.3033

% Preparing message as per required size that is multiples of SN, Basic

72

% Plain Data

PlainText-';

for i=l :SN

PlainText=strcat(PlainText, Str);

end;

PlainData Text2Binary(PlainText); % Converting the Plain Data which is in

% ASCII form to an binary form, Since the design will support only binary

% stream

RequiredIterations=l; % By performing more iterations, accuracy can be

% improved

%To avoid initial start up distrubances in the time for considerations

%Additional iterations are used

AdditionalIterations=l;

N=RequiredIterations+AdditionalIterations;

% Number of Designs is planned to test in this automation

NumberOfDesigns=7;

%Number of Rows will give space between collected data and the calculated

%average values in the MS Excel Sheet.

NumberOfBlankRows=5;

% Required Matrix size to store the measured execution times

RowsInMatrix=N+NumberOfBlankRows;

% Creating matrix to store the results
MeasuredTimes=zeros(RowsInMatrix,NumberOfDesigns);

73

% Keeping the initial seed in

% to use the same seed during the execution

TempSeed=seed;

a temporary location to ensure each designs

for k=l:N

xl=0

x2=0

x3=0

x4=0

x5=0

x6=0

x7=0

seed=TempSeed;

f = @() Design_PRNGGlibC(IBK,lnputKey,PlainData); % handle to function

xl=xl+timeit(f);

seed=TempSeed;

f = @0 Design_PRNGMarsaglia(lBK,InputKey,PlainData); % handle to function

x2=x2+timeit(f);

seed=TempSeed;
f = @() Design_PRMGNativeAPI(IBK,InputKey,PlainData); % handle to function

x3=x3+timeit(f);

seed=TempSeed;
f = @() Design_PRNGSheffield(IBK,lnputKey,PlainData); % handle to function

x4=x4+timeit(f);

74

seed=TempSeed;

f = @() Design_PRNGParkMi]ler(IBK)InputKey,PlainData)

x5=x5+timeit(f);
; % handle to function

seed=TempSeed;

f = @0 Design_PRNGParKMillerCarta(IBK,InputKey,PIainData): % handle to
function

x6=x6+timeit(f);

seed=TempSeed;

f = @() Design_PRNGParkMillerNew(IBK,InputKey,PlainData); % handle to
function

x7=x7+timeit(f);

j=k+NumberOfBlankRows;

% Storing the measured execution times in the Matrix

MeasuredTimesCj,!)^!;

MeasuredTimes(j,2)=x2;

MeasuredTimesG>3)=x3;

MeasuredTimes(j,4)=x4;

MeasuredTimesG,5)=x5;

MeasuredTimes(j,6)=x6;

MeasuredTimes(j,7)=x7;

count=k %Just to display the current iteration number during the

%testing process to monitor the progress

TempSeed=seed; % Changing tire initial seed for next round.THis

rounds all designs will get the same% ensures in every

% seed

75

end;

% max and min are used to keep the maximum and minimum

% times

max=-99;

min=99;

for k=l :NumberOfDesigns

MeasuredTimes(l,k)=0;

for i=(NumberOfBIankRows+AdditionaIIterations+l):RowsInMatrix

MeasuredTimes(l ,k)=MeasuredTimes(l ,k)+MeasuredTimes(i,k);

average execution

end;

MeasuredTimes(l ,k)=MeasuredTimes(l ,k)/RequiredIterations;

if (MeasuredTimes(l,k)>max)

max=MeasuredTimes(1 ,k);

end;

if (MeasuredTimes(l,k)<min)

min=MeasuredTimes(l,k);

end;

scount=k

end;

MeasuredTimes(2,1)=max;

MeasuredTimes(2,2)=min;

MeasuredTimes(253)=max-min;

% The measure values in the Matrix is written into a MS Excel Sheet with

% the required file name

PRNG'.FN);FN=strcat(TimeAnalysisDifferent_

76

FN=strcat(FN,'.xIsx');

filename = FN;

xlswrite(filename,MeasuredTimes);

function Design_PRNGGlibC(IBK,InputKey,PlainData)

% This Module have the design using PRNG as LCGGIibC and Hash function

% as SHA-1

% Global variable 'seed' must have initial value to generate XI

X1 =LCGRandomNumberGlibC;

Key=GenerateBinaryKey(X 1, IBK, InputKey);

ChiperData=EncryptionProcess(Key,PlainData); % Encrypting PlainData

PlainData=DecryptionProcess(Key,ChiperData); % Decrypting ChiperData

%Message6=Binary2Text(PlainData) %This is for verifying the functionality

function Design_PRNGMarsaglia(IBK,InputKey,PlainData)

% This Module have the design using PRNG as LCGMarsaglia and Hash function

% as SHA-1

% Global variable 'seed' must have initial value to generate XI

XI =LCGRandomNumberMarsaglia;

Key=GenerateBinaryKey(Xl, IBK, InputKey);

ChiperData=EncryptionP,ocess(Key,PlainData); % Encrypting PlainData

tionProcess(Key,ChiperData); % Decrypting ChiperData
PlainData=Decryp
%Mcss,g=*-Bina„2Tcx,(PlainData) %This it fb, verifying the fttnction.iity

PRNaNati.eAPl(IBK.InputKcy,Pl»inData)
function Design^

77

% This Module have the design using PRNG

% as SHA-1
as LCGNativeAPI and Hash function

% Global variable 'seed' must have initial value to generate XI

Xl=LCGRandomNumberNativeAPI;

Key=GenerateBinaryKey(Xl) IBK, InputKey);

ChiperData=EncryptionProcess(Key,PlainData); % Encrypting PlainData

PlainData—DecryptionProcess(Key,ChiperData); % Decrypting ChiperData

/oMessagel 0—Binary2Text(PlainData) %This is for verifying the functionality

function Design JPRNGParkMiller(IBK,InputKey,PlainData)

% This Module have the design using PRNG as ParkMiller and Hash function

% as SHA-1

% Global variable 'seed' must have initial value to generate XI

X1 =ParkMillerRandomNumber;

Key=GenerateBinaryKey(Xl, IBK, InputKey);

ChiperData=EncryptionProcess(Key,PlainData); % Encrypting PlainData

PlainData=DecryptionProcess(Key,ChiperData); % Decrypting ChiperData

%Message 17=B inary 2Text(PlainData) %This is for verifying the functionality

PRNGParKMillerCarta(lBK, InputKey, PlainData)

ParkMillerCarta and Hash function
function Design_
% This Module have the design using PRNG as

% as SHA-1

% Global variable '*>' have initial » 6«ne« X,

XI =ParkMillerRandomNumberCarta;

78

Key=GenerateBinaryKey(X 1, IBK, InputKey);

ChiperData-EncryptionProcess(Key,PlainData); % Encrypting PlainData

PlainData=DecryptionProcessfKey,ChiperData); •/, Decrypting Chip

%Message] 8=Bi„«0,2Te*t(P],i„D.t,) %This is f„r verifying the functionality
erData

function Design_PRNGParkMillerNew(IBKsInputKeyjPlainData)

^ This Module have the design using PRNG as ParkMillerNew and Hash function

% as SHA-1

% Global variable 'seed' must have initial value to generate XI

XI =ParkMillerRandomNumberNew;

Key=GenerateBinaryKey(Xl, IBK, InputKey);

ChiperData=EncryptionProcess(Key,PlainData); % Encrypting PlainData

PlainData=DecryptionProcess(Key,ChiperData); % Decrypting ChiperData

%Message20=Binary2Text(PlainData) %This is for verifying the functionality

function Design_PRNGSheffield(IBK,InputKey,PlainData)

% Global variable 'seed' must have initial value to generate XI

X1 =LCGRandomNumberSheffield;

Key=GenerateBinaryKey(Xl, 1BK, InputKey),

tionProcess(Key,PlainData); % Encrypting PlainData

tionProcess(Key,ChiperData); % Decrypting ChiperData

=Binary2Text(PlainData) %This is for verifying the functionality

ChiperData=Encryp

PlainData=Decryp

%Messagel2

function RN=LCGRandomNumberGlibC

% Rand number generation based on
LCG Method(32 bit precision)

79

% Before calling this feme,™, s«d ^ ^

% LCGRandomNumberGlibC & ANSI C

global seed;

a= 1103515245;

m= 2147483648;
c=12345;

y0=seed;

yl=mod(((a*y0)+c)s m);

seed=yl;

RN=yl/m;

function RN=LCGRandomNumberMarsaglia

% Rand number generation based on LCG Method(32 bit precision)

% Before calling this function, seed has to be initialized

% LCGRandomNumber Marsaglial

global seed;

a= 16807;

m= 4294967294;

c=0;

y0=seed;

yl=mod((a*y0), m);

seed=yl;

80

RN=yl/m;

function RN=LCGRandomNumberNativeAPI

% Rand number generation based on LCG Method(32 bit precision)

% Before calling this function, seed has to be initialized

% LCGRandomNumberNativeAPI

global seed;

a= 2147483629;

m= 2147483647;

c=2147483587;

yO=seed;

yl=mod((a*yO+c), m);

seed=yl;

RN= yl/m;

function RN=LCGRandomNumberSheffield

generation based on LCG Method(32 bit precision)

% Before calline this seed has to be initialized

% LCGRandomMumber Sheffield

% Rand number

global seed;

a= 16807;

m= 2147483648;

81

c=0;

yO=seed;

yl=mod((a*yO), m);

seed=yl;

RN=yl/m;

function RN=ParkMillerRandomNumber

% Rand number generation based on Park Miller Method(32 bit precision)

% Before calling this function, seed has to be initialized

% Random Number Park-Miller

global seed;

a= 16807;

m= 2147483647;

q= 127773;

r= 2836;

hi=fix(seed/q); % hi=seed div q

lo=mod(seed,q); % lo=seed mod q

test=a*lo-r*hi;

if (test>0)

seed=test;

else

seed=test+m;

end

82

RN= seed/m;

function RN=ParkMillerRandomNumberC

% Rand number generation based on LCG Method(32 bit precision)

% Before calling this function, seed has to be initialized

% LCGRandomNumber Carta

arta

global seed;

lo=(16807*bitand(seed,65535));

hi=(16807*bitshift(seed,-16));

lo=lo+bitshift(bitand(hi,32767), 16);

lo=lo+bitshift(hi,-l 5);

if (lo>2147483647)

lo=lo-2147483647;

end;

seed=lo;

RN=seed/2147483647;

function RN=ParkMillerRandomNumberNew

ration based on Park Miller Method(32 bit precision)
% Rand number gene

% Before calling this function, seed has to be initialized

% Random Number Park-Miller New

global seed;

a= 48271;

m= 2147483647;

q= 44488;

83

r= 3399;

hi=fix(seed/q); % hi=seed div q

lo=mod(seed,q); % Io=seed mod q

test=a*lo-r*hi;

if (test>0)

seed=test;

else

seed=test+m;

end

RN= seed/m;

function [BinaryKey]=GenerateBinaryKey(Xl, IBK, InputKey)

% Module to generate binary key based on the Hash function SHA-1

A=InputKey'; % Getting inverse matrix of the InputKey

B=InputKey; % Getting the matrix of InputKey

[x,y,TC]=find(IBK, 14,'first'); % Getting first 14 elements of IBK

C=TC’;
[x,y,D]=find(IBK, 14,'last'); % Getting Last 14 elements of IBK

% Getting Inverse

E=C*B;

F=A*D;

G=E*F;
; % Adding random number to the matrix to get randomized matrix

DSK1=G+X1;

DSK2=DSK1+X1;

84

%Creating 196 bits length binary stream based

opt = structCMethod', 'SHA-l', 'Format',

x_hashed = DataHash(DSKl, opt);

y_hashed = DataHash(DSK2, opt);

TempResultl=reshape(dec2bin(xJiashed),l,[]);

TempResult2=reshape(dec2bin(y_hashed),l,[]);

Tern pResult3=[T empResu It 1 TempResu lt2];

on random Matrix 14x14

’> 'uint8', 'Input', 'bin');

% Merging two hash values

BinaryKey=TempResult3(1:196);

function [ChiperData]=EncryptionProcess(Key,PlainData)

%This module perform the Encryption process in four rounds using the sub

%keys obtained form the Key. In this process Plain Data will encrypted as

%Cipher Data

global MesB lockSize;

global KeyLength;

PlainDataLength=length(PlainData);

R=mod(PlainDataLength,MesBlockSize);

N=PlainDataLength/int8(MesBlockSize);

if (R>0) % if length of the message is not multiples of block size,

% add padding bits-0

Pad Len gth=M esBlockSize-R;

PadData(l :PadLength)='0';

PlainData=[PlainData PadData];

end;

Output-';

85

EPosition=0;

for i=l:N

%Selecting the Block

SPosition=EPosition+l;

EPosition=EPosition+MesBlockSize;

BlockData=PlainData(SPosition:EPosition);

<%************ Rouncj Qne ***

DKP1-Key(l :MesBlockSize);

% Getting subkeys of 49 bits length

DKP2=Key(MesB locks ize+1 :MesBlockSize*2);

% Getting subkeys of 49 bits length

RP1 =EncryptionRoundOne(DKPl ,DKP2,BlockData);

%********* Round Two

DKL=Key(KeyLength-]46:KeyLength);% Assigining last 147 bits to DK.L

DKL1=DKL(1 :MesBlockSize);

RP2=EncryptionRoundT wo(DKL 1 ,RP1);

***************************************^j* * ********** Round Three

DKL=Key(KeyLength-146:KeyLength); % Last 147 bits

DKL2=DKL(147-MesBlockSize+l: 147);

DKF=Key(l :64);

DKF1=DKF(1 :MesBlockSize);
RP3=EncryptionRoundThree(DKFl ,DKL2,RP2);

**
o^************ Round Four

86

DKF=Key(l :64);

DKF2=DKF(16:64);

DKF3=DKF(8:56);

RP4-EncryptionRoundFour(DKF2,DKF3,RP3)-

0utput=[0utput,RP4];

end;

ChiperData=Output;

function [PIainData]=DecryptionProcess(Key,ChiperData)

%This module perform the Decryption process in four rounds using the sub

%keys obtained form the Key. In this process Cipher Data will decrypted as

%Plain Data

global MesBlockSize;

global KeyLength;

ChiperDataLength=length(ChiperData);

R=mod(ChiperDataLength,MesBlockSize);

N=ChiperDataLength/int8(MesBlockSize);

if (R>0) %if length of the message is not multiples of block size,

%add padding bits-0

PadLength=MesBlockSize-R;

PadData(l :PadLength)=,0';

ChiperData=[ChiperData PadData];

end;

87

Output=";

EPosition=0;

for i=l :N

%Selecting the Block

SPosition=EPosition+l;

EPosition=EPosition+MesBlockSize;

BlockData=ChiperData(SPosition:EPosition);

%** ********* * Round One **

DKF=Key(l:64);

DKF2=DKF(16:64); % Getting subkeys of 49 bits length

DKF3=DKF(8:56); % Getting subkeys of 49 bits length

RCT1 =DecryptionRoundOne(DKF2,DKF3,BlockData);

0/o********** Rounc] two

DKL=Key(KeyLength-146:KeyLength); % Last 147 bits

DKL2=DKL(147-MesBlockSize+l: 147); % Getting subkeys of 49 bits length

DKF=Key(I:64);

DKF1=DKF(1 :MesBlockSize);

RCT2=DecryptionRoundTwo(DKF 1 ,DKL2,RC11);

% Getting subkeys of 49 bits length

***************************************o/Q************ Round Three

DK L=K ey (Key Len gth -146: Key Length);

DKL1=DKL(1 :MesBlockSize);
RCT3=DecryptionRoundThree(DKLl,RCT2);

% Getting subkeys of 49 bits length

0yo ********** Round Four

DKP1 =Key(1 :MesBlockSize);

88

% Getting subkeys of 49 bits length

DKP2=Key(MesBlockSize+] :MesBlockSize*2);

% Getting subkeys of 49 bits length

RCT4-DecryptionRoundFour(DKP 1 ,DKP2,RCT3);

Output=[Output,RCT4];

end;

PlainData=Output;

function [RP1]=EncryptionRoundOne(DKP 1 ,DKP2,PlainData)

% Module to perform the round one of the Encryption process

PlainDataLength=length(PlainData);

if (PlainDataLength=49)

Tl=EncryptionPrimitivesPattern_ARTX(DKP 1 ,PlainData);

T2=[T1 (25:49),T1 (1:24)];

Output=EncryptionPrimitivesPattern_ARTX(DKP2,T2);

else

display('Issue in the size of the data block!');

end;

RP1 Output;
function [RP2]=EncryptionRoundTwo(DKLl,RPl)

% Module to perform the round two of the Encryption process

tionPrimitivesPattern_ARTX(DK.L 1 ,RP 1);Output=Encryp

89

RP2=0utput;

function [RP3]=EncryptionRoundThree(DKFl .DKL2.RP2)

% Module to perform the round three of the Encryption process

RP2Length=length(RP2);

if (RP2Length==49)

Tl=EncryptionPrimitivesPattern_ARTX(DKL2,RP2);

T2=[T1 (28:49),T1 (1:27)];

Output=EncryptionPrimitivesPattern_ARTX(DKF 1 ,T2);

else

display('lssue in the size of the data block!');

end;

RP3=Output;

function [RP4]=EncryptionRoundFour(DKF2,DKF3,RP3)

% Module to perform the round four of the Encryption process

RP3Length=length(RP3);

if (RP3Length==49)
Tl=EncryptionPrimitivesPattern_ARTX(DKF2,RP3);

T2=[T1 (35:49),T1(1:27),T1 (28:34)];
Output=EncryptionPrimitivesPattem_ARTX(DKF3,T2);

else
display('lssue in the size of the data block!');

end;

RP4=Output;

90

function [RCTI]=DecryptionRoundOne(DKF2,DKF3,Chi

% Module to perform the round one of the Decryption process
perData)

ChiperDataLength=length(ChiperData);

if (ChiperDataLength=49)

KFl=DecryptionPrimitivesPattem_XTRS(DKF3,ChiperData);

KF2=[KF 1 (16:42),KF1 (43:49),KF 1(1:15)];

Output=DecryptionPrimitivesPattern_XTRS(DKF2,KF2);

else

display('Issue in the size of the data block!');

end;

RCTl=Output;

function [RCT2]=DecryptionRoundTwo(DKFl,DKL2,RCTl)

% Module to perform the round two of the Decryption process

RCTI Length=length(RCTl);

if (RCTlLength=49)

KF 1 =DecryptionPrimitivesPattem_XTRS(DKF 1 ,RCT 1);

KF2=[KF 1 (23:49),KF 1 (1:22)];
Output=DecryptionPrimitivesPattem_XTRS(DKL2,KF2);

else
display('Issue in the size of the data block!');

end;

RCT2=Output;

function [RCT3]=DecryptionRoundThree(DKL 1 ,RCT2)

91

% Module to perform the round three of the Dccryption process

Output DecryptionPrimitivesPattern_XTRS(DKLl,RCT2):

RCT3=Output;

function [PlainData]=DecryptionRoundFour(DKPl ,DKP2,RCT3)

% Module to perform the round four of the Decryption process

RCT3Length=length(RCT3);

if (RCT3 Length=49)

KS1 =DecryptionPrimitivesPattem_XTRS(DKP2,RCT3);

KS2=[KS 1 (26:49),KS 1(1:25)];

Output=DecryptionPrimitivesPattem_XTRS(DKP 1 ,KS2);

else

display('Issue in the size of the data block!');

end;

PlainData=Output;
function [OutputData]=EncryptionPrimitivesPattern_ARTX(Key,InputData)

T1 =Addition(Key,InputData);

T2=RotationOperationsLeft(Key,Tl);

T3=TransposeOperation(Key,T2);

T4=XOR_Operation(Key,T3);

OutputData=T4;

function [OutputData]=DecryptionPrimitivesPattem_XTRS(Key,lnpu.Data)

Tl=XOR_Operation(Key,lnputData),

T2=TransposeOperation(Key,Tl),

T3=RotationOperationsRight(Key,T2);

92

T4-Subtraction(Key,T3);

OutputData=T4;

%End of B.l Listing

B.2 Code Listing lAutomateDataColIection_HF’ (Only the specific modules)

function AutomateDataCollection__HFEvaluation

% This module collects the execution times of the selected designs of the

% protocol with different sizes of input data. For this purpose, it calls

% the module -,MeasuringAllDesigns_HFl - with the different multiples of the

% basic plain data.

%Size of the Basic Plain Data is 160 bytes

BasicPlainDatal-WSNs are primarily designed for monitoring environments that
humans cannot easily reach (e.g., motion, target tracking, fire detection, chemicals,
temperature).';

BasicPlainData-cbs sfdgsd 3246 fdsd vcbx

MeasuringAllDesigns_HF(2,BasicPlainData,'S160');

% MeasuringAllDesigns_HF(160,BasicPlainData,'S 160)

% MeasuringAllDesigns JHF(192,BasicPlamData,'S 192)

% MeasuringAllDesigns_HF(224,BasicPlainData, S224)
% MeasuringAlIDesigns_HF(256,BasicPlainData,'S256')
% MeasuringAllDesigns_HF(288,BasicPlainData,'S288')

% MeasuringAllDesignsJ4F(3203asicPlainData/S320')

% MeasUringAllDesigns_HF(352,BasicPlainData,'S352')

dispC'Automated Data Collection has been completed....!');

93

function MeasuringAllDesigns_HF(SN,Str,FN)

% SN - Number of multiples of the Basic Plain Data which is required for
% encryption process; Str - Basic Plain Data; FN - String assigned to the

% end of file name which will have the collected data

% This module evaluates all the selected designs with different Hash

% functions but same PRNG - LCGSheffield

global seed; % Initial value for Pseudo Random Number Generator

global MesBlockSize; % Size of block in bits

global KeyLength; % Length of key in bits

seed=17; % Assigning initial value for seed

MesBlockSize=49;

KeyLength=196;

InputKey='A&8RT98'; % User input key

%Fixed built-in key for testing purposes; 16 real numbers

1BKM0.9499 0.4010 0.9200 0.3802 0.9078 0.8893 0.8221 0.7610
0.6723 0.3033 0.9393 0.9699 0.5696 0.6978 0.3249 0.2205];

, Basic% Preparing message as per required size that is multiples of SN

% Plain Data

PlainText=";

for i=l:SN
PlainText=strcat(PlainText, Str);

end;

94

PlainData=Text2Binary(PlainText); % Converting ,„= Plain Da,a which is in

% ASCII form to an binar, torn. Since the design will support only binary

% stream

Requiredlterations 1, % By performing more iterations, accuracy can be

% improved

%To avoid initial start up distrubances in the time for considerations

%Additional iterations are used

AdditionalIterations=l;

N=RequiredIterations+AdditionalIterations;

% Number of Designs is planned to test in this automation

NumberOfDesigns=4;

%Number of Rows will give space between collected data and the calculated

%average values in the MS Excel Sheet.

NumberOfBlankRows=5;

% Required Matrix size to store the measured execution times

RowsInMatrix=N+NumberOfBlankRows;

% Creating matrix to store the results

MeasuredTimes=zeros(RowsInMatrix.NumberOfDesigns);

itial seed in a temporary location to ensure each designs

d during the execution
% Keeping the in

% to use the same see

TempSeed=sced;

95

for k=l:N

xl=0

x2=0

x3=0

x4=0

seed=TempSeed;

f= @0 Design_HFSHAl(IBK,InputKey,PlainData); % handle to function

xl=xl+timeit(f);

seed=TempSeed;

f = @0 Design_HFSHA256(IBK,lnputKey,PlainData); % handle to function

x2=x2+timeit(f);

seed=TempSeed;

f = @() Design_HFSHA384(IBK,lnputKey,PIainData); % handle to function

x3=x3+timeit(f);

seed=TempSeed;
f = @() Design_HFSHA512(IBK,InputKey,PlainData); % handle to function

x4=x4+timeit(f);

j=k+Nuni b erOfB 1 ankRo ws,

% Storing the measure

MeasuredTimesG»1)=x *;

MeasuredTimes(j>2)==x2,

MeasuredTimesCj^)^^’

d execution times in the Matrix

96

MeasuredTimes(j,4)=x4;

count-k %Just to display the current iteration number during the

%testing process to monitor the progress

TempSeed=seed; % Changing the initial seed for next round.THis

% ensures in every rounds all designs will get the

% seed
same

end;

% max and min are used to keep the maximum and minimum average execution

% times

max=-99;

min=99;

for k=l :NumberOfDesigns

MeasuredTimes(l ,k)=0;
for i=(NumberOfBlankRows+AdditionalIterations+l):RowslnMatrix

MeasuredTimes(l,k)=MeasuredTimes(l,k)+MeasuredTimes(i,k);

end;
MeasuredTimes(1 ,k)=MeasuredTimes(1 ,k)/Requiredlterations;

if (MeasuredTimes(l ,k)>max)

max=MeasuredTimes(1 ,k);

end;
if (MeasuredTimes(l,k)<min)

min=MeasuredTimes(l ,k);

end;

scount=k

end;

97

MeasuredTimes(2,l)=max;

MeasuredTimes(2,2)=min;

MeasuredTimes(2,3)=max-min;

% The measure values in the Matrix is written into a MS Excel Sheet with

% the required file name

FN=strcat(TimeAnalysisDifferent_HF',FN);

FN=strcat(FN,'.xlsx');

filename = FN;

xlswrite(filename,MeasuredTimes);

function Design_HFSHAl (IBK,InputKey,PlainData)

% This Module have the design using PRNG as LCGSheffield and Hash function

% as SHA-1

% Global variable 'seed1 must have initial value to generate XI

Xl=LCGRandomNumberSheffield;

Key=GenerateBinaryKey_SHA 1 (X1, 1BK, InputKey),

ChiperData=EncryptionProcess(Key,PlainData); % Encrypting PlainData

DecryptionProcess(Key,ChiperData); % Decrypting ChiperData

%Message6=Binary2Text(PlainData) %This is for verifying the functionality
PlainData=

function Design_HFSHA256(IBK,InputKey,PlainData)

% This Module have the design using PRNG as

% as SHA256

LCGSheffield and Hash function

iable 'seed' must have initial value to generate XI
% Global var

98

Xl-LCGRandomNumberSheffield;

Key=GenerateBinaryKey_SHA256(Xl, IBK, InputKey);

ChiperData=EncryptionProcess(Key,PlainData); % Encrypting Plai

DecryptionProcess(Key,ChiperData); % Decrypting ChiperData

%Message6=Binary2Text(PIainData) %This is for verifying the functionality

nData
PlainData=

function Design_HFSHA384(IBK,InputKey,PlainData)

% This Module have the design using PRNG as LCGSheffield and Hash function

% as SHA384

% Global variable 'seed' must have initial value to generate XI

X1 =LCGRandomNumberSheffield;

Key=GenerateBinaryKey_SHA384(Xl, IBK, InputKey);

ChiperData=EncryptionProcess(Key,PlainData); % Encrypting PlainData

PlainData=DecryptionProcess(Key,ChiperData); % Decrypting ChiperData

%Message6=Binary2Text(PlainData) %This is for verifying the functionality

function Design_HFSHA512(IBK,InputKey,PlainData)

% This Module have the design using PRNG as LCGSheffield and Hash function

% as SHA512

% Global variable 'seed' must have initial value to generate XI

X1 =LCGRandomNumberSheffield;

Key=GenerateBinaryKey_SHA512(Xl, IBK, InputKey);

EncryptionProcess(Key,PlainData); % Encrypting PlainData

tionProcess(Key,ChiperData); % Decrypting ChiperData
ChiperData=

PlainData=Dccryp

99

%Message6=B inary2Text(PlainData) %This is for
verifying the fonctionality

function [BinaryKey]-GenerateBinaryKey_SHAl(Xl, 1BK, InputKey)

% Module to generate binary key based on the Hash function SHA-1

A-InputKey'; % Getting inverse matrix of the InputKey

B=InputKey; % Getting the matrix of InputKey

[x,y,TC] find(IBK, 14,'first'); % Getting first 14 elements of IBK

C=TC';

[x,y,D]=find(IBK, 14,'last'); % Getting Last 14 elements of IBK

% Getting Inverse

E=C*B;

F=A*D;

G=E*F;

DSK1 =G+X 1; % Adding random number to the matrix to get randomized matrix

DSK2=DSK1+X1;

%Creating 196 bits length binary stream based on random Matrix 14x14

opt = struct('Method', 'SHA-1', 'Format', 'uint8', 'Input', 'bin');

xjhashed = DataHash(DSKl, opt);

y_hashed = DataHash(DSK2, opt);

TempResult 1 =reshape(dec2bin(x_hashed), 1,[]);

TempResult2=reshape(dec2bin(y__hashed), 1,[]);

TempResult3=[TempResultl TempResult2]; % Merging two hash values

BinaryKey=TempResult3(l: 196);

function [BinaryKey]
le to generate binary key based on the Hash function SHA256

=GenerateBinaryKey_SHA256(X 1, IBK, InputKey)

% Modu

100

A=InputKey'; % Getting inverse matrix of the InputKey

B-InputKey; % Getting the matrix of InputKey

[x,y,TC] find(IBK, 14,'first'); % Getting first 14 elements of IBK

C=TC';

[x,y,D]=find(IBK,14,'last'); % Getting Last 14 elements of IBK

% Getting Inverse

E=C*B;

F=A*D;

G=E*F;

DSK1 -G+X1; % Adding random number to the matrix to get randomized matrix

DSK2=DSKJ+X1;

%Creating 196 bits length binary stream based on random Matrix 14x14

opt = struct('Method', 'SHA-256', 'Format', 'uint8', 'Input', 'bin');

x hashed = DataHash(DSKl, opt);

TempResult=reshape(dec2bin(x_hashed), 1,[]);

%TempResult has 256 digits

BinaryKey=TempResult(l: 196);
function [BinaryKey]=GenerateBinaryKey_SHA384(X 1, IBK, InputKey)

generate binary key based on the Hash function SHA384% Module to

A=InputKey'; % Getting inverse matrix of the InputKey

% Getting the matrix of InputKeyB=lnputKey;

[x,y,TC]=find(IBK, 14,'firsf); % Getting first 14 elements of IBK

101

C=TC'; % Getting Inverse

[*,y,D]=fmd(lBK,14,% Gating Us, 14el™=„B„flBK

E=C*B;

F=A*D;

G=E*F;

DSK1 =G+X1; % Adding random number to the matrix to get randomized matrix

DSK2=DSK1+X1;

%Creating 196 bits length binary stream based on random Matrix 14x14

opt = struct('Method', 'SHA-384', 'Format', 'uint8', 'Input', 'bin');

x_hashed = DataHash(DSKl, opt);

TempResult=reshape(dec2bin(x_hashed), 1,[]);

%TempResult has 384 digits

BinaryKey=TempResult(l :196);

function [BinaryKey]=GenerateBinaryKey_SHA512(Xl, IBK, InputKey)

% Module to generate binary key based on the Hash function SHA512

A=InputKey'; % Getting inverse matrix of the InputKey

B=InputKey; % Getting the matrix of InputKey

[x,y,TC]=find(lBK, 14,'first'); % Getting first 14 elements oflBK

% Getting Inverse

[x,y,D]=find(IBK, 14,'last'); % Getting Last 14 elements of IBK
C=TC';

E=C*B;

F=A*D;

G=E*F;
ber to the matrix to get randomized matrix% Adding random numDSK1=G+X1;

102

DSK2=DSK 1+X];

%Creating 196 bits length binary stream based

opt = structCMethod', 'SHA-512', 'Format',

x_hashed = DataHash(DSKl, opt);

on random Matrix 14x14

'uint8', ’Input1, 'bin');

TempResult=reshape(dec2bin(x_hashed), 1,[]);

%TempResult has 512 digits

BinaryKey=TempResult(l:196);

%End of B.2 Listing

103

Appendix C - Measured Execution Times

SHA-1 SHA256
50.85455

SHA384
49.32675

SHA512
49.3980448.938

48.89074 51.06014 49.21153 49.60363
49.0608

48.88865
51.07557 49.31323 49.87726
51.00187 49.29022 49.54536

48.96151 51.08807 49.12091 49.63156
48.87391
48.94282

51.01237 49.32651 49.55585
51.08503 49.69463 49.62852

48.86445 50.94334 49.26823 49.48683
48.73127 51.08479 49.35443 49.62828
48.93686 50.99719 49.27873 49.54068
49.30499 51.09445 49.35139 49.63794
48.87858 50.98773 49.2097 49.53122
48.94589 51.20762 49.25332 49.65661
48.89192 50.91873 49.35115 49.46221
48.93316 51.08479 49.26355 49.62828
48.87391 50.99719 49.36081 49.54068

49.25409 49.6379448.95227 51.09445
49.5286549.2481248.86445 51.11435
49.3417350.80476 49.3143748.85129
49.6200349.0624351.0815548.96152

49.514149.5274750.9935948.65295
Average

48.91310 51.03638 49.30274 49.57987
Table C. 1 : Measured execution times of the

input data 25 Kbyte - same PRNG

SHA512SHA384SHA256SAH-1
59.4272459.0085361.2399958.25746
59.5329059.2141261.0455958.46305
59.4629559.2295461.2116658.73668
59.5470459.1558461.1240658.40478
59.3693659.2420561.2213258.49098
59.5354259.16634

59.23900
59.09732

61.1146058.41527
59.44782
59.54508

61.19317
60.98142

58.48794
58.34625 59.5486659.2387761.1870158.48770 59.5113459.1511761.5551458.40010 59.3938759.2484361.1287358.49736 59.5817659.1417161.2149458.39064 59.5354259.3616061.1392358.51603

104

58.32163 61.21189
61.07021
61.25799

59.07270 59.4478258.48770 59.23877 59.54508
59.4383658.40010

58.49736
58.38807

59.15117
61.12997 59.2484^
61.16527

59.56965
59,26833
58.95874
59,23553
59.14757

59.5007458.20115 61.18701
61.13252
60.99319

59.56659
58.47945 59.57709

59.0832758.37352
________ Average
58.43929 1 61.16325 59.19036________________ 59.48701

Table C.2 : Measured execution times of the
input data 30 Kbyte - same PRNG

SHA-1 SHA256 SHA384 SHA512
69.54086 73.09046 70.42242 71.03050
69.43414 73.04321 70.22802 71.23609
69.55953 73.21326 70.39409 71.25152
69.36513 73.04111 70.30648 71.17782
69.53120 73.11397 70.40374 71.26402
69.44360 73.02637 70.29703 71.18831

70.37560 71.2609869.54086 73.09528
70.16385 71.1192973.0169169.43157

71.2607470.3694472.8837369.24465
71.1731470.7375773.0893269.52295
71.2704070.3111673.4574569.41702
71.1636870.3973773.0310569.30096
71.3835770.3216673.0983569.50655
71.0946770.3943273.0443869.78018
71.2607470.2526473.0856269.44827
71.1731470.4404173.0263769.53448
71.2704070.3124073.1047369.45877
71.29030
70.98071

70.34770
70.36944
70.31495

73.0169169.53143
73.0037669.38975

71.2575073.1139869.53120
71.1695470.1756272.8054269.68349

Average
69.48279 1 73.06556 | 70.34567 [71.212.j3
Table C.3 : Measured execution times of the

innut data 35 Kbvte - same PRNG-------

SHA512SHA384SHA256SAH-1 80.5527979.6415581.6133478.79416 80.4375779.7472181.8189378.74691 80.5392779.6772682.0925678.91696

105

78.74481 81.76066 79.76135 80.5162678.81767 81.84686 79.58367 80.3469578.73007
78.79898

81.77116 79.74973 80.55254
81.84382 79.66213 80.9206778.72061 81.70213 79.75939 80.4942778.58743 81.84358 79.76297 80.58047

78.79302 81.75598 79.72564 80.50476
79.16115 81.85324 79.60818 80.57743
78.73475 81.74652 79.79606 80.43574
78.80205 81.87191 79.74973 80.47935
78.74808 81.67752 79.66213 80.57719
78.78932 81.84358 79.75939 80.48959

80.5868578.73007 81.75598 79.65267
79.7839678.80843 81.85324 80.48013

78.72061 81.74395 79.71505
79.78090

80.47416
78.70746 81.55703 80.54040
78.81768 81.83533 79.79140 80.28846
78.50912 81.72940 79.29757 80.75350

Average
78.76926 81.79517 79.70132 80.52878

Table C.4 : Measured execution times of the
input data 40 Kbyte - same PRNG

SHA512SHA384SHA256SHA-1
89.786689.5094791.2431189.11983

89.8324989.3351291.2207689.14359
89.7625489.5767991.3908189.15901
89.8466289.4702891.2186689.08531
89.6689489.5675491.2915289.17152
89.8350189.4221491.2039289.09581
89.7474189.5332491.2728389.16847
89.8446789.5486691.1944689.02679
89.84825
89.81092

89.4749691.0612889.16824
89.5612591.2668789.08064

89.6934589.6021891.63589.1779
89.8813489.4221491.208689.07118
89.8350189.5212491.275989.29107
89.7474189.6273191.2219389.00217
89.8446789.4466191.2631789.16824 89.7379589.5611691.2039289.08064 89.8692489.3905891.2822889.1779 89.8003389.5581291.1944689.1978 89.8661889.4164391.1813188.88821 89.8766789.4290391.2915389.165 89.3828589.7246390.9829689.07704

106

______________ Average
89.11983 9\243uTm™m
Table C.5 : ___________ 89.7866

Measured execution times of the
input data 45Kbyte - same Prnh

SHA-1 SHA256 SHA384
101.21440
101.41999

SHA512
102,05288
102.15854

100.63080 104.98577
104.93852100.43640

100.60247 105.10857 101.69362 102.08859
100.51486 104.93642 101.36171 102.17267
100.61212 105.00928 101.44792 101.99499

102.16106100.50541 104.92168 101.37221
100.58398 104.99059 101.44487 102.07346
100.37223 104.91222 101.30319 102.17072
100.57782 104.77904 101.44464 102.17430
100.94595 104.98463 101.35704 102.13697
100.51954 105.35276 101.45429 102.01950
100.60575 104.92636 101.34758 102.20739
100.53004 104.99366 101.47297 102.16106

102.07346100.60270 104.93969 101.27857
101.44464 102.17072104.98093100.46102

102.06400101.35704104.92168100.64879
102.19529101.45429105.00004100.52078
102.12638101.34501104.91222100.55608
102.19223101.15808104.89907100.57782
102.20272101.43639105.00929100.52333
101.70890101.33046104.70073100.38400

Average
102.11265100.55405 104.96087 101.39622

Table C.6 : Measured execution times of the input
data 5QKbvte-same PRNG._______

SHA512
111.83796

SHA384SHA256SAH-1
111.36058114.90591110.10426

112.04356111.16619115.11150109.98903
1 12.058981 11.33225115.38513110.09074
1 11.98528111.24465115.05322110.06772 112.07148111.341911 15.13943109.89842 111.99578111.23519115.06372110.10401 112.06844111.31377115.13638110.47214 111.92676111.10201114.99470

115.13615
110.04573 112.06820

111.98060
112.07786

111.30760110.13194 JJJL67573
TTT24933

1 15.04855
U5A45ST

110.05623
110.12889

107

109.98721 115.03909 111.33553
H 5.16448m 1.25QRi
114.97008

111.971141 10.03082
112.19104110.12866 111.33249

TTTT9Q80
111.37858
111.25056

111.90214
112.06820
111.98060
112.07786
112.09776

110.04106 115.13615
1 10.13832
110.03160

115.04855
115.14581
115.03652110.02562 111.28587

110.09187 114.84960
115.12790
115.02197

111.30760
111.25311
111.11378

111.78817
109.83993 112.06496
110.30497 111.97701
_________ _______Average
110.08025 1 115.08774 | 111.28384 | 11201Q7Q

Measured execution times of the input
data 55Kbyte - same PRNG.

Table C.7 :

GlibC Marsag NAPI Sheffield PM PMCart PMNew
51.53892 50.07746 52.23362 49.28006 51.96376 52.00038 49.45087
51.34453 50.28305 52.18637 49.03841 52.06943 51.88516 49.65646
51.51059 50.29848 52.35642 49.28008 51.99947 51.98686 49.93009
51.42299 50.22478 52.18427 49.17357 52.08356 51.96385 49.59818

49.6843949.27083 51.90588 51.7945450.31098 52.2571351.52025
49.6086852.0001352.0719552.16953 49.1254450.2352851.41353

52.36826 49.6813451.9843449.2365352.2384450.3079451.49211
49.5396651.9418652.0816049.2519552.1600750.1662551.28035
49.6811152.0280652.0851849.1782552.0268950.3077051.48594
49.5935151.9523652.0478649.2645452.2324850.2201051.85407
49.6907752.0250251.9303949.3054752.6006150.3173651.42767
49.5840551.8833352.1182849.1254452.1742050.2106451.51387
49.7094451.9269452.0719549.2245452.2415150.4305351.43817 49.5150452.0247851.9843449.3306152.1875450.1416451.51083 49.6811151.9371852.0816049.1499052.2287850.3077051.36914 49.5935152.03444

51.92772
51.9748849.2644652.16953

52.24789
52.16007
52.14691

50.2201051.55692 49.6907752.1061749.0938750.31736
50.33726

51.42890 49.5814851.9217552.03726
52.10311

49.26141
49.11973

51.46421 49.3945551.98799
50.0276751.48594 49.6728651.7360552.1136149.1323352.2571450.3044651.43145 49.5669352.2010951.6197949.4279251.9485750.2165151.29213

Average
49.21276 51.97637 49.6326952.0235352.2087250.25929,______________

: Measured execution times nf the input data 25Kbyte51.46218 — same Hash Algorithm.
Table C.8 :

PMNew
59.54793
59.35354

PMCart
62.39124
62.14960

PMSheffield
58.68531
58.57009

NAPI
62,76488
62.97047

Marsag
60.35386
60.30661

GlibC
61.94795
62.05362

62.51109
62.71669

108

61.98366 60.47667
60.30452
60.37738

62.98589
62.91219
62.99840
62.92269

58.67179
58.64878

62.99031 62.39127 59.5196062.06775
62,65841
62.74461

62.28476 59.4320061.89007 58.47947 62.38202 59.5292662.05614 60.28977
60.35868

58.68506 62.66891
62.74157

62.23662 59.4225461.96853 62.99535 59.05319 62.34771 59.5011262.06579 60.28031 62.85367 58.62679 62.59988 62.36314 59.2893662.06937 60.14714 62.99512 58.71299 62.74133 62.28944 59.4949662.03205 60.35273 62.90752 58.63729 62.65373 62.37573 59.8630861.91458 60.72085 63.00478 58.70995 62.75099 62.41666 59.4366862.10247 60.29445 62.89806 58.56826 62.64427 62.23662 59.5228862.05614 60.36175 63.11795 58.61188 62.76967 62.33572 59.44718
61.96853 60.30779 62.82905 58.70971 62.57527 62.44179 59.51984
62.06579 60.34903 62.99512 58.62211 62.74133 62.26109 59.37815
61.95907 60.28977 62.90752 58.71937 62.65373 62.37564 59.56593
62.09036 60.36813 63.00478 58.61265 62.75099

62.64170
62.20506 59.43791

62.02145 60.28031 63.02468 58.60668 62.37260 59.47322
62.08730 60.26716 62.71509 58.67292 62.45478 62.23091 59.49496
62.09780 60.37739 62.99188 58.42099 62.73308 62.24351 59.44046
61.60398 60.06882 62.90392 58.88602 62.62715 62.53911 59.30114

Average
62.69292 62.32395 59.4711960.32896 62.94671 58.6613062.00772

Table C.9: Measured execution times of the input data 30Kbyte - same Hash Algorithm.

PMNewPMCartPMSheffieldNAPIMarsagGlibC
70.0638472.9145073.4111569.0910973.7168870.5185573.72331
70.0165873.1201073.2167569.1967573.6016670.7241473.48167
70.1866473.1355273.3828269.1268073.7033670.9977773.72334
70.0144973.0618273.2952169.2108973.6803570.6658773.61683
70.0873573.1480273.3924769.0332173.5110470.7520773.71409 69.9997573.0723273.2857569.1992773.7166370.6763773.56869 70.0686573.1449873.3643369.11167

69.20893
74.08476
73.65836

70.7490373.67978 69.9902973.0032973.1525870.6073473.69521 69.8571173.1447473.3581769.2125173.7445670.7487973.62151 70.0627073.0571473.7262969.1751873.6688670.6611973.70780 70.4308373.1544073.2998969.0577273.7415270.7584573.74872 70.0044273.0476873.3860969.24560
69.19927

73.5998370.6517373.56869 70.0717373.2675873.3103973.6434570.7771273.66779 70.0177672.9786873.3830569.1116773.7412870.5827373.77386 70.0590073.1447473.2413769.2089373.65368
73.75094
73,64422
73.63825

70.7487973.59316 69.99975
70.07810
69.99029

73.05714
73.15440
73.17430

73.42914
73.30113
73.33643

69.10221
69.23350
69.16459

70.66119
70.75845
70.64916

73.70771
73.53713
73.70467 69.97713

70.08736
72.86471
73.14150
73.05355

73.35817
73.30368
73.16435

69.23044
69.24094
68.74711

73.70449
73.45256
73.91760

70.46224
70.74054
70.63461

73.56298
73.57558
73.87118

69.77i
$NCy

Cft « 5109 £ • ■■ &2

Average
.---------------- - 69.15086 1 733344073.65602 70.70038 73.69287 73.09633Table C.10: 70.03893

~ same Hash Algorithm.

GlibC Marsag NAPI Sheffield
78.25722

PM PMCart PMNew82.45420 80.46393
80.34871

83.18188 82.59992 83.09108 79.3595482.40695 83.38747 78.06283
78.22889

82.80551
82.82093

83.19675 79.0878982.57700 80.45041 83.66110 83.12680 79.3295682.40485 80.42740 83.32919 78.14129 82.74723 83.21088 79.2130582.47771 80.25809 83.41540 78.23855 82.83344 83.03320 79.32031
82.39011 80.46368 83.33969 78.13183 82.75773 83.19927 79.17492
82.45902 80.83181 83.41235 •78.21041 82.83039 83.11167 79.28601
82.38065 80.40541 83.27067 77.99865 82.68871 83.20893 79.30143
82.24747 80.49161 83.41212 78.20424 82.83016 83.21251 79.22773
82.45307 80.41591 83.32451 78.57237 82.74256 83.17518 79.33402
82.82119 80.48857 83.42177 78.14597 82.83982 83.05771 79.35495
82.39479 80.34688 83.31506 78.23217 82.73310 83.24560 79.17492
82.46209 80.39049 83.44045 78.15647 82.95299 83.19927 79.34402
82.40812 80.48833 83.24605 78.22913 82.66409 83.11167 79.38008

79.1993878.08744 82.83016 83.2089382.44936 80.40073 83.41212
79.3139383.1022182.7425683.32451 78.2752280.4979982.39011

83.23350 79.1433582.8398278.1472083.4217780.3912782.46847
79.3108983.1645982.8597278.1825183.3124880.3853082.38065
79.1692183.2304382.5501378.2042483.1255680.4515482.36750
79.1818083.2409382.8269278.1497583.4038780.1996082.47772
79.3974082.7471182.7389678.0104383.2979480.6646482.16916

Average
79.2622482.78175 83.1508680.43992 1 83.36370 ___________ ____ _________ , A1 ..

Measured execution times of the input data 40Kbvte - same Hash Algorithm,
78.1804882.42930

Table C. 11 :

110

GlibC Marsag
91.06135
91.01410
91.18415
91.01200
91.08486
90.99726

NAPI Sheffield PM PMCart PMNew93.18426 94.46576
94.27137
94,43743
94.34983

88,27380
88.47939
88.49482
88.42112

93.80565 93.86123 91.2267693.07754
93.69042
93.79212

93.61958 91.3324293.20293
93.86126 91.2624793.00854

93.76911 93.75475 91,34655
91.16887

93.17460 94.44709 88.50732
88.43162
88.50428
88.36259

93.59981 93.8520093.08700 94.34037 93.80540 93.70661 91.3349493.18426 91.06617 94.41895 94.17353 93.81770 91.2473493.07497 90.98780 94.20719 93.74712 93.83312 91.34460
92.88805 90.85462 94.41278 88.50404 93.83333 93.75942 91.34818
93.16635 91.06021 94.78091 88.41644 93.75762 93.84571 91.31085
93.06042 91.42834 94.35451 88.51370 93.83028 93.88664 91.19338
92.94436 91.00194 94.44071 88.40698

88.62687
93.68860 93.70661 91.38127

93.14995 91.06924 94.36501 93.73221 93.80571 91.33494
93.42358 91.01527 94.43767 88.33798 93.83005 93.91178 91.24734
93.09168 91.05651 94.29598 88.50404 93.74244 93.73107 91.34460
93.17788 90.99726 94.48376 88.41644 93.83970 93.84563 91.23788
93.10218 91.07562 94.35574 88.51370 93.73299 93.67504 91.36917

93.84258 91.3002690.98780 94.39105 88.53360 93.7270193.17484
91.3661193.79326 93.7009088.2240194.4127890.9746593.03315
91.3766093.7135093.5413288.5008094.3582991.0848793.17460
90.8827894.0090994.0063688.4128494.2189690.7763193.32690

Average
93.79393 91.2865388.45563 93.7816394.3890291.03645 _________________ __________

: Measured execution times of the input data 45Kbyte — same Hash Algorithm.
93.12619
Table C.12

PMNewPMCartaPMSheffieldNAPIMarsagGlibC 98.83102104.27927103.6792498.27974104.71556101.23409103.40141 98.71580104.38494103.8848398.23249104.52116100.99244103.60700 98.81750104.31498104.1584698.40254
98.23039
98.30325

104.68723101.23411103.62243 98.79449104.39907103.82655104.59962101.12760
101.22486
101.07947
101.19056

103.54873 98.62518104.22139
104.38746
104.29985
104.39711
104.40069
104.36337

103.91276
103.83705
103.90971
103.76803
103.90948
103.82188

104.69688
104 59017 98.21565
104.66874
104.45699
104.66258
105.03071

103.63493 98.83077
99.19890
98.77250
98.85870
98.78300

103.55923 98.28456
103.63189 98.20619

98.07301
98.27860
98.64673
98.22033
98^28763
98.23366
98.27490
98.21565

101.20598
101.13228
101.21857
101.25950
101.07947

103.49020
103.63165

98.85566104.24590103.54405 103.91913] 04.60430
104.69051

98.71397
98.75759

104.43379
104.38746

103.64131 103.81242
103.93781103.53459

104.61480 98.85542
98.76782
98.86508

101.17856 104.29985
104.39711
104.29040

103.75448 103.74341
j 03.90948
103.82188

104.68746
\ 04.54578
To4/73355

101.28463
ToT7io393
I0L2I848

103.46559
103.63165
103.54405

• 111

103.64131 101.04790
101.21544
101.07376
101.08635
101.38195 104.46876

104.60554 98.29401
98.20619

103.91913
103.80985
103.62292

104,42168
104,35277
104.41862
104.42912

103.66121 98.75836
98.75239

104.64084
104.66258103.35162

98.19304 98.81863103.62841 104.60809 98.30326
97.99470
Average

103.90123 98.56670103.54045
103.79530 103.93530 99.03174

103.58324 1 101.16679
Table C. 13 :

104.63881. . .------------------ ------ - 103.86106 I 104,33904 I 98.807m
Measured execution times ofthe input data 50Kbyte - same Hash Algorithm.

98.25484

GlibC Marsag NAPI Sheffield PM PMCarta PMNew
113.95201 111.22935 115.17516 108.48216 114.56263 115.01268 109.06096
113.90475 111.11413 115.38075 108.28776 114.76823 115.11834 108.78931
114.07481 111.21583 115.65438 108.45383 114.78365 115.04839 109.03099
113.90266 111.19282 115.32248 108.36623 114.70995 115.13247 108.91448
113.97552 111.02351 115.40868 108.46349 114.79615 114.95479 109.02174
113.88792 111.22910 115.33298 108.35677 114.72045 115.12086 108.87634

115.40564 108.43534 114.79311 115.03326 108.98743113.95682 111.59723
109.00286114.65142 115.13052108.22359115.26395113.87846 111.17083
108.92915115.13410114.79287108.42918115.40540111.25703113.74528

115.09677 109.03544114.70527108.79731115.31780111.18133113.95087
109.05637114.97930114.80253108.37090115.41506111.25399114.31900
108.87634115.16719114.69581108.45711115.30834111.11230113.89259
109.04544115.12086114.91571108.38140115.43373111.15592113.95990
109.08151115.03326114.62681108.45406115.23934111.25375113.90593 108.90080115.13052114.79287108.31238115.40540111.16615113.94717 109.01536115.02380114.70527108.50015115.31780111.26341113.88792 108.84478115.15509114.80253108.37214115.41506

115.30577
115.11885
115.39715
115.29122

111.15669113.96627 109.01231115.08618114.82243
114.51284

108.40744
108.42918
108.37469

111.15072113.87846 108.87063115.15203111.21696
110.96503
111.43007

113.86530 108.88323115.16252
114.66870

114.78963
114.70168113.97553 109.09S82108.23536113.66696

Average
115.07245 I 108.96367114.74446108.40541113.92710 1 111.20534 115.35699^------- .----- -

Measured execution times ofthe input data 5. Rb)t_ — same Hash Algorithm.
Table C.14:

112

Appendix D - Results of the Functionality Testing
D.l Evaluating architectures having different PRNGs

The below given plain text
PRNG in their architecture,

was given to every implementations which have different

- “7 -7
one part of the verification to test the functionality of the implementations.

Given plain text : “WSNs are primarily designed for monitoring environments that
humans cannot easily reach (e.g., motion, target tracking, fire detection, chemicals,
temperature).WSNs are primarily designed for monitoring environments that humans
cannot easily reach (e.g., motion, target tracking, fire detection, chemicals,
temperature). “

PRNG and
Hash
algorithm in

Generated cipher text Generated plain text from
the cipher text

the
architecture

-inly J K+bArf- h+ an + VA. 3Jfv>- bRvit.i)<yl
0'-d3 67N&(Fvt gGivT zE'FFb; pog4 bPXin(L/'
EuSoDkz''\8'- s'-f 4 Y)6XzL J 7aD::c
EBR2u h 4 o_csEKS?CM Kb\
• hv#4*-s -M

WSNs are primarily designed
for monitoring environments
that humans cannot easily
reach (e.g., motion, target
tracking, fire detection,
chemicals,
temperature).WSNs are
primarily designed for
monitoring environments that
humans cannot easily reach
(e.g., motion, target tracking,
fire detection, chemicals,

LCG GlibC
with SHA-1

temperature).
WSNs are primarily designed
for monitoring environments
that humans cannot easily
reach (e.g., motion, target
tracking, fire detection,
chemicals,
temperature).WSNs
primarily designed for
monitoring environments that
humans cannot easily reach
(e.g., motion, target tracking,
fire detection, chemicals,
temperature). -----
WSNs are primarily designed
for monitoring environments
that humans cannot easily—

J >4- .SZEDbO I
»wl i ujuiXHwn qk ;o^w« n’O
, 11 P(c3 -*1 I

LCG Marsaglia
with SHA-1 i >-n is- p

RkOLrs6o<JuqVj
KEUxJU >tc i I

- - Sil -Wttl !<shSV.P* SW-

are

LCG NativeAPI
with SHA-1 %. ii, <it «• '''' **

113

reach (e.g., motion, target
tracking, fire detection,
chemicals,
temperature).WSNs are
primarily designed for
monitoring environments that
humans cannot easily reach
(e.g., motion, target tracking,
fire detection, chemicals,
temperature).LCG Sheffield

with SHA-1 WSNs are primarily designed
for monitoring environments
that humans cannot easily
reach (e.g., motion, target
tracking, fire detection,
chemicals,
temperature).WSNs are
primarily designed for
monitoring environments that
humans cannot easily reach
(e.g., motion, target tracking,
fire detection, chemicals,
temperature).

FW- ><| fcr T6B.W «lblE<]53 !)>"&-| XXf.Zv-JX&o^l
m| (:1 (2K6b-I L VsNnOYO L h>)g41 2:jo t-, N3 <
Cil/MSI MO 15-L-v3M58”+R.X^-3h5(& a[a- _
St !! IyV -5 ::

WSNs are primarily designed
for monitoring environments
that humans cannot easily
reach (e.g., motion, target
tracking, fire detection,
chemicals,
temperature).WSNs are
primarily designed for
monitoring environments that
humans cannot easily reach
(e.g., motion, target tracking,
fire detection, chemicals,
temperature).___________
WSNs are primarily designed
for monitoring environments
that humans cannot easily
reach (e.g., motion, target
tracking, fire detection,
chemicals,
temperature). WSNs
primarily designed for
monitoring environments that
humans cannot easily reach
(e.g., motion, target tracking,
fire detection, chemicals,
temperature).________

ParK Miller
with SHA-1 IU- rw-L K. L S=T 3

-uV-| iDen' 1EA5HW* DxSr/I\9M
5+ ;K
Kp"I t @L s-I %• q!y)l
nngA{w sF:WgBI07I
SQfa 5VV) /;

oa(I i kll1

-<knH|:YiSgl
SAnv~g21 r'Mn'fl - I

Park Miller
Carta with
SHA-1

are

114

ParK Miller
New with SHA- WSNs are primarily designed

for monitoring environments
that humans cannot easily
reach (e.g., motion, target
tracking, fire detection,
chemicals,
temperature).WSNs are
primarily designed for
monitoring environments that
humans cannot easily reach
(e.g., motion, target tracking,
fire detection, chemicals,

_____ temperature).
List of cipher texts and decrypted plain texts generated by the protocol

which have different PRNGs in its architecture

•»< bl IP.u>: ;; 1 r •JMW uae |t41

Table D.l:

D.2 Evaluating architectures having different Hash Algorithms

The below given plain text was given to every implementations which have different
Hash Algorithm in their architecture, and got the cipher text from the implementation,
and again, plain text was got from the cipher text by performing the decryption. This
was done one part of the verification to test the functionality of the implementations.

Given plain text : “WSNs are primarily designed for monitoring environments that
humans cannot easily reach (e.g., motion, target tracking, fire detection, chemicals,
temperature). WSNs are primarily designed for monitoring environments that humans

easily reach (e.g., motion, target tracking, fire detection, chemicals,cannot
temperature). “

Generated plain
data from the
cipher data

Generated cipher dataPRNG and
Hash
algorithm
in the
architectur
e WSNs are

primarily
designed for
monitoring
environments that
humans cannot
easily reach (e.g.,
motion, target
tracking, fire
detection,
chemicals,
temperature). WS
Ns are primarily

c)[i8YgK! JyKI IiU niX < P

ldHi'j-jf llR

SHA-1 with
LCG
Sheffield

>, j. I V mxK'Y-'.Y •

115

designed for
monitoring
environments that
humans cannot
easily reach (e.g.,
motion, target
tracking, fire
detection,
chemicals,
temperature).SHA256

with LCG
Sheffield

ScL'-’j,dj)n.{\VL.U.o-1* JxJ3cC]])i xLfi-f sSt • »i$=« 18v
- g2I.HyI JpS; S?KA{ WSNs areD-idBa ns.

primarily
designed for
monitoring
environments that
humans cannot
easily reach (e.g.,
motion, target
tracking, fire
detection,
chemicals,
temperature).WS
Ns are primarily
designed for
monitoring
environments that
humans cannot
easily reach (e.g.,
motion, target
tracking, fire
detection,
chemicals,
temperature).

fcD1 $E'&v* TykfB0G2-s-V20NQT A!>
x"Go?ilvYh| 6t [d- g- ”l hf.OXkh |

1 z| LkH« \ +9?
>fO J ?’7u’0?Sl0-*cU#iKx

WSNs are
SHA384
with LCG
Sheffield

’SSSSmVh m,primarily

ill IX':

r H 'll (-?;QbiI+ n_l xK@OUi>v*l 4*l »fofi
ilhl4L@ll-Ml

1.oavs: T:"Sj*l v-Muw HI*

designed for
monitoring
environments that-1. latZa-S-lSb-

humans cannot
easily reach (e.g.,
motion, target
tracking, fire
detection,
chemicals,
temperature).WS
Ns are primarily
designed for
monitoring
environments that
humans cannot

FF.
L’BJ ICOVul

)DkXy4H

116

easily reach (e.g.,
motion, target
tracking, fire
detection,
chemicals,
temperature).SHA512

with LCG
Sheffield

WSNs are
nU*7ZrLqe z primarily
lquvpy designed for

monitoring
5 r<-S* aAvi+'?[4™s!rrL“'vYu; *>FO •*" environments that

\ 90JwE-5y- weumxyc55« 5hsjN@d<i xoASUdL[vniov<humans cannot
Jd!! e) I- F|&r? 'oJ ul JSO''Q+WP>k • %US n=E_| MZ> easily reach (e.g.,

motion, target
tracking, fire
detection,
chemicals,
temperature). WS
Ns are primarily
designed for
monitoring
environments that
humans cannot
easily reach (e.g.,
motion, target
tracking, fire
detection,
chemicals,
temperature).

Table D.2 : List of cipher texts and decrypted plain texts generated by the
protocols which have different the Hash Algorithms in its architecture

117

D.3 Results of the Automated Functionality Testing
Architecture Input Data 1 Input Data 2 Input Data 3 Input Data 4LCGGlibC &
SAH-1

Input Data 51 1 1 1
LCGMarsaglia &
SAH-1________
LCGNativeAPI
& SAH-1
LCGSheffield &
SAH-1

1 1 1 1 1
1 1 1

1 1 1 1 I
ParkMiller &
SAH-1

1 1 1 1

ParkMillerCarta
& SAH-1

1 1 1

ParkMillerNew &
SAH-1

1 1 1 1 1

SHA256 &
LCGSheffield

1 1 1

SHA384 &
LCGSheffield

1 1 1 1

SHA512&
LCGSheffield

1 1 1 1 1

Table D.3 : Test results of the automated functionality testing

In the above table, the value €V means implementation functions as expected and ‘O'
implementation functions as not expected. The above results indicates that all

the implementations functioned as expected.
means

118

universe:'.si
teOSATUrtA ''

Appendix E - Screen Images
Testing the Functionalities of the Implemented DesignsE.l :

<5 msTesting

Testing the functionalities of the Developed Models

Enter message :_____________________________________ _________________ __ °.a--dc-n Kxt • j,-e 3-jo

ihnology, wireless commun.cations and d.gital electronics! 1} With the emeraence ofWSN and' - ‘
its usage in sensitive controlling, monitoring and tracking applications, the need of ensunng
compete security is gaining more importance than ever before Due to the specific features of
WSN, traditional sec

!

V

Designs with Different HAs An Designs with various inputs|

lesigns with Different PRNGs Close

Click
here

>- Testing

Testing the functionalities of the Developed Models

Ransom t«xl saa 3C0Enter message:
hnology. wireless communications and digital etectronicsPl. With the emergence ofWSN and
its usage in sensitive controlling, momtonng and tracking applications, the need of ensunng
complete security is gaining more importance than ever before. Due to the specific features of
WSN. traditional sec

A

V

System status

Execution progress; Please wail... vith various inputsDesigns wit1 ,__
:■

CioseDesigns with Different PRNGs
t____

Testing

Testing the functionalities of the Developed Models
System status - 8^®

5S=5Eiss|| ~
its usage in sensitive cc \
complete security is gai
WSN. traditional soc

s

300*m t*vt sc*

ot ensunng
• cific features otOK J

... .. :r.

V

AS Designs with various inputs
Designs with Different HAs

I
Close

Designs with Different PRNGs

functionality of the designs with different
shots of testing theFigure E.l : Successive screen

PRNGs.

119

3168

E.2 : Demonstrating the Processes of the Architecture

■ r«
Demonstration for the ProcessB

Sensor Node
Base StationInput Data

0 ecvptrf DataA

L V

?!
Binary Foim of the Plain Data

Butary Fern cf»t,Owya«l DataA Transmission mediumi A

1
V

V ;

Dynamic Binary Key
Dynamic Binary Key

A

;•!
j

. V

Encrypted Data
r?«wje«i rncryptw) Da-a

A
A

.Start DemoVJ V .

MDemonstration for the Process

;
:: Base StationSensor Nodesi Decrypted Data
, i Input Data

Wireless Sensor Network has a
many sensor nodes

A

H V

,.vi
Binary Form «tha CwyfXeJ Data

A .
Binary Form of the Pla n Datai i - Transmission mediumA ; Ii

ii; V ivJ i
Oyn*m<e Binary Kay

Dynamic Binary Key___________
A i

A

IF :
li v

vg Received Crcryrted
AEncrypted Data• 1

a:! ■

i
! : ;

- i| Ons*Rf satStart Demo ■i L .• .<i
H

Click here

120

pille Demonstration for the Process

i Sensor Node
■ Inpul Data

VVWess Sensor Network has “a]
many sensor nodes.

Base Station
Decrypted Cau

----- -
•j

V

Omary Form of the Plain Data

RoiuYn i 1010011 nooionoc i a
I 01110110011001011110011111

00110100000101001111001011
!10111011100111101111111001
00100000100111011001011111]^

'I

Dynamic Binary Key

B«a'y rorr* of fre Decrypted Csta
Transmission medium

i
i

Dyr.an* Dinar/ Key
■ r-----------------------A

V

Encrypted Data
Receded Encrypted Data

r\ (

i;
i

St3it CJemo i Reset Clase V

7.:-. * *.rr- " "TW^njilllTJlV -

.r--—--v—-'• -.1.- -~;.-yrr --T •

Demonstration for the Process;.l*j ■

i|:l Base StationSensor Node.!
Decrypted Data

Input Data __
| Wireless Sensor Network has a

j j many sensor nodes

A

;
: •1V

y i V*

Brory Fo*m cf lb* Otciypled Data: ; iB.nary Form of the Pla n Data _
' [1010111 i undo 111100101100 i a
! 01110*10011001011110011111

|00110100000101001111001011
‘10111011100111101111111001 v

i ,oaiiMoooinniiionnniaimo

ATransmission medium 3w
. V
l..

Dynwric Binary Key
Dynamic Binary Kay___ _____
jl 1101001011000110000011011 a

: 110000001110101101100001100
11100110110101111101110010

■11011101111000100001000110

Encrypud Data _______

A

j ■

1 •
V

yRecenvd Encrypted Data

",
; A

ii ■*

:i VCloseResetSunt Demo I
1i! >/ 1
i... —■! —

121

1 ~
Demonstration for the Process - ~WK

Sensor Nodei
Input Oata Base Station

: Wireless Sensor Network has a
|marry sensor nodes

Dscrycred Data

.
v :

Binary Form of the Plain Data
, (10101111101001111001011001 a ! c;----------------- T . .

{omonooiioeiof 1110011111' jOiiioiooinooi a; iransmisston medium
! 00110100000101001111001011 .00000100001110

',10111011100111101111111001 ! (1101110°0100CO
looiQooon.iOQinQuooinii3io v ; 11110001 iooigo

110110001030010
Dynamic Binary Key '00110101111011

ii '111010010110001100000noliX “M*MiU“iUasofla—1
10000001110101101100001100
11100110110101111101110010
11011101111000100001000110 v

Sr.a-f Form 3ht Decrypted Data

Ctyrari: Binary Kay

V

Encrypted Data

[on 1010011 locTdoodoiooobn 7j
101101110001G0001111000110
01001011000100001000110101
1110110011001010100C011100

111110001010010111100010001 v!

Reci.ved Encrypted Caa

..
Start Demo !

J.i

Demonstration for the Processi?; ■

Base StationSensor Node
Decrypted Ha’a

r “ ■.........
Input Oata

A
'Wireless Sensor Network has a;
jmany sensor nodes.

:
I

I’

V
V

Ehary Form tfwO*cryg«f Data
: Binary Form of the Plain Data
I [10101111101001111001011001 a:

;oiiioiiooiiooioiiiiooiiin
|OD110100000101001111001011

■ !l3111011100111l011111110C1 v
'n'linoonojnou joiiaoion no—
Dynamic Einary Key

111101001011000110000011011 a:
i130C0001110101101100001 ICO

!« 11100110110101111101110010
• 11011101111000100001000110 v'

Encrypted Data_______________ _

■i joTlTdiooil1001000001000011 a
!i '10110111000100001111000110
j: I01001011000100001000110101

!11101100110010101000011100
Ll! 11poo 101 oo_to 1 njooo1 oopj.

•• a
[on medium01110100111001 A|

00000100001110
; 110111CC010000
j 11110001100100
10110001030010
00110101111011 v|
nQatwmtAin*™------

i
V

.
Oynaroc Bnary K«y

Aj
•J

Recw.ed Encrypted Oata
A |

I

r1 ,—.—
v ;•\ Clasel Reset I .Start Demo;i

I,-

ll
R8V

122

:k ', VfCaSSBSBS SRs* — v-.—.

Demonstration for the Process gayyargjp*--ifc&i'Ji.: ...
:

Sensor Nodet
Base StationInput Data

;Wireless Sensor Network has a .
msny sensot nodes

Dectyjsed Zxt

i

V

V

Binary Form of the Plain Data
ji [10101111101001111001011001 a!

j0111011C011001011110011111
00110100000101001111001011
:10111011100111101111111001
noinoofloifiniuounoiomio^.

;!
Dynamic Binary Key

!: ;inoiooioiioodii‘6d30oiToii a
10000001110101101100001100

'11100110110101111101110010
■ 11011101111000100031000110 v

Bnar/ rcrerrftnt Decrypts DataTransmissio011v0~;00t11(KI1- ^
C00C0100301110

j 11011100310000
11110001100100
10110001300010
00110101111011
nnjmatnininnn T

A

V

Dynamic Binary Ks y

i

I v

fcnerypted Dal a
Rec Encrypted Dxa

01110100111001000001000011 a

10110111000100001111000110
101001011000100001030110101
11101100110010101030011100
11110001010010111100010001 vi

A

i r*] Stan Demo

L—
■

■

!! { V-J
gsffgraefgaaggtfgig.;

: ft Demonstration for the Process
•I

Base StationSensor Node
Decrypted Data

Input Data

; • [wireless Sensor Network has a
nodes.

A ‘

j many concor

V/

1 B.7W, Formdtn* CecryWsdDxa
i Binary Form of the Plain Data

[10101111101001111001011001 X]
! 01110110011001011110011111

II 00110100000101001111C01011 j
'10111011100111101111111001
ooincofloioomaiinflioiuiQ-—I

it

Dynamic Binary Key____ ________(
]1110160101100011000001ioii a 1

j '10000001110101101100001100 !
! 111100110110101111101110010 |

jiioiuoimoociooooioooiio vi

Encrypted Data _________
:{ [01110100111001000001000011 a

• j 10110111000100001111000110
01001011000100001000110101
11101100110010101000011100

!• 11110001010010111100010001 y

A

Transmission medium 01110106111061 a
0CO00120001110
11011100010000
11110001100100
101100010000to

• 00110101111011
.nnurwirtuttiwa.

i
;

____ r__ ZJ liI:
v j Oynanw Binary Key

a!
S

[B j Start Demo 1' !
I

i

123

^ j-.v-
r,
Demonstration fcr the Process1 ~

■

Sensor Node
Input Oata

j jWiieiess Seusoi Nelvvort. has a ‘
many sensor nodes

Base Station
Decrypted Cala

I V

V *
binary Form of the Plain Data

;.j (1010111110100111 f001011001 |
, 01110110011001011110011111

V Fct- r the Cesr/3»d3*3
Transmission medium

00110130000101001111001011 ■
10111011100111101111111001 I

'ooionnnniooiiioiionioinin V|
Dynamic Binary1 Key

' |7l 101031011000110000011011 a I
. ,10000031110101101100001100 !

11100110110101111101110010 i
11011131111000100001000110 V I

}

V

Dynamic Binary Key
11101001011003110033311011~

!ioooocoiiioioiioiico:oiioo '
111001101*0101111:01110010

i 110111CW10001CC001COC110 V iI i
Encrypted Data
011 idiboiii ocTidoobo i oooo Ft"’V]
10110111000100001111000110

Received Encrypted Data
;01110100111001000TOt3CC011 a
■ 10110111003100001111X0110
01001011C00133«1C3J1i:i01
•111011C01100131C10C031113Q
niiio«i;,Gigoi3iiiiq<Kiicoo^.

01001011000100001000110101
1110110011001010*000011100
11110031010010111100010001 _w

•i

!!i n ~: • r?. w '•

rsDemonstration for the Process&

Base StationSensor Node
Decrypted Dm
VV reiess Scnsar Netv.stx has a

’.many sense* nodes

Input Data______ _______
jWiteless Sensor Network has a]
• many sensor nodos i!r i, V! . Demonstration completed 1

ok ;
v si Binary Farm ot the Decrypted Cata

! 13101111101C01111001011031 A.
01110110311(01011110011111
03110100300101031111001011

,13111011100111101111111001 *.
O.lirOM'V.K) 111011 ol toui 111

Dynamic Binary Key
’ ii 1C1001311CC01 locoociioii •',
;ixiccooincioiioiieo3oiioo
111001101l0l011t1101113310

.11011101111C00133CC1C03110 v

iiBinary Form of the Rain Data
11010111110100111,1001011001 A j
101110110011001011110011111
■00110100000101001111001011 j
■13111011100111101111111001 I
100100000100111011001011.110 - J
Dynamic Binary Key

(11101001011000110000011011 * j
10000001110101101100001100 i
1110011011010111110111C010 j
11011101111000130001000110 vj

Encrypted Data_____________
101110100111001000001000011 A !
10110111000100001111000110

■01001011000100001000110101
i11101100110010101000011100
(ill 10001010010111100010001v

Kec«i'«d fcneryated Oata
, dt i i'oToo i i icdioMM iooooft a
‘13110111300100031111303110
.01001011000100031000113101 j
111C11Cai10C10l31CC3C-1ti03
11110001010C10111100013001 vClose

Sla t Demo

shots of the demonstration processes of the architecture.
Figure E.2 : Successive screen

124

