1501/97 28/00N/86/2014

VEHICLE PROBLEM DIAGNOSIS EXPERT SYSTEM

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

N. E. Chinthaka Jayasekera 10/ 8559 J

A dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Degree of MSc in Information Technology.

004 "13"

July 2013

107126

107126

Declaration

I declare that this dissertation does not incorporate, without acknowledgement, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organizations,

N. E. Chinthaka Jayasekera Name of Student

Signature of Student Date: 2013 July 30

Supervised by

Professor Asoka S. Karunananda Name of Supervisor

konte

Signature of Supervisor Date: 35[07/13

Dedication

I dedicate this dissertation to my parents who gave me support when I'm studying for the Master of Science. My parents accompanied me with their love, unlimited patience, understanding and encouraging me throughout the time period. Without their support, I would never be able to accomplish this work.

Acknowledgement

I have been fortunate to have enthusiastic and generous research advisor, Professor Asoka S. Karunananda, of University of Moratuwa, whose direction and efforts helped me to produce the final outcome of this research study. His immeasurable encouragement and assistance throughout this study will always be remembered. Further, without his effort and advice this work would not have been possible.

I would like to give my heartfelt appreciation to all my lecturers, who gave their knowledge of the faculty of Information Technology, University of Moratuwa. I'd like to thank to the coordinators of the MSc course and the staff of the University of Moratuwa who gave their maximum support to me. Finally, I'd like to thank all staff of the Department of Computer Science, Faculty of Science, University of Ruhunato share my office workload with understanding my dedication to this project.

I have been fortunate to have Ms. J. Karunanayake, who gave me the fullest support, by doing the proof reading of this dissertation and correcting grammatical errors.

Abstract

The vehicle is a complex system which requires a variety of parts for appropriate functioning. Because of this complexity there are numerous things which can malfunction in a vehicle. Diagnosing malfunctioning parts and fixing those issues in vehicles are very complex and time consuming due to the varying technologies used in vehicles. According to literature, since 1980s, expert systems have been the ideal technology for the diagnosing task in physical and biological systems. However, the use of expert systems in Sri Lanka is very limited. This project presents the development of an expert system to diagnose problems in vehicles. The research mainly focused on mechanical problems which might occur in vehicles. There are variety of users that might find the system beneficial. Users of the developed system include expert mechanics, novice mechanics, drivers and vehicle owners. Managers of garages can also be benefited by this system when doing preliminary investigations.

Requirements that were needed to develop the expert system were gathered by interviewing the staff of the project sponsor. Some requirements were taken through manuals and from the Internet. Expert system has been developed by using the client server architecture. Apache Tomcat was used as the web server. To develop the expert system e2gRuleEngine shell had been used. The shell contains the knowledge base as well as the inference engine. The rules requiring for inference making are stored in the knowledge base. New rules for the knowledge base could be added by using the e2gRuleWriter. Inference engine uses forward chaining technique to infer. According to the selection by the user rules were matched and matching rules were fired and a solution was given. Working with incomplete information, provision of reasons/explanations for answers and uncertainty handling are also built into the inference engine. The developed expert system was first evaluated by the expert mechanics. By expert evaluation it could be tested whether the correct rules have been added to the system. A questionnaire was designed and it was used to check the userfriendliness and the usability of the developed expert system. A questionnaire was distributed among a sample which has taken from simple random sampling. According to the statistical analysis it can be concluded that expert system works on par with human expert with the 84% confidence.

V

Table of Contents

	Page
Chapter 1 Introduction	1
1.1 Introduction	1
1.2 Background and Motivation	1
1.3 Aim and Objectives	3
1.4 Proposed Expert System on Vehicle Problem Diagnosis	4
1.5 Structure of the Dissertation	5
Chapter 2 Expert Systems for Task Diagnosis	6
2.1 Introduction	6
2.2 Description about Expert System	6
2.3 Usage of Expert Systems	7
2.4 General Architecture of an Expert System	8
2.5 Features of an Expert system	9
2.6 Contribution by Others	9
2.7 Major Problems in Current Expert Systems in Vehicle Problem Diagnosis	11
2.8 Summary	12
Chapter 3 Approach to Vehicle Problem Diagnosis System	13
3.1 Introduction	13
3.2 Hypothesis	13
3.3 Technology Adapted	13
3.4 Summary	16
Chapter 4 Analysis and Design of the System	17
4.1 Introduction	17
4.2 Requirement Capturing and Verification	17
4.3 Top Level Architecture	17
4.4 Functional Overview of the Proposed System	19
4.5 Class Diagram for the Proposed solution	23
4.6 Sequence Diagram	24
4.7 Web Based Expert System	24
4.8 Summary	25
Chapter 5 Implementation of the Diagnosis System	26
5.1 Introduction	

5.2 Hardware Requirement	26
5.3 Software Requirement	26
5.4 Server Side Implementation	27
5.5 Client Side Implementation	30
5.6 Summary	30
Chapter 6 Evaluation	31
6.1 Introduction	31
6.2 Statistical Survey	31
6.3 Selection of Participants	31
6.4 System Testing	33
6.5 Interview Technique	33
6.6 Design of the Questionnaire	33
6.7 Reliability Assessment	34
6.8 Evaluation Result	35
6.9 Summary	38
Chapter 7 Conclusion and Further Work	39
7.1 Introduction	39
7.2 Conclusion	39
7.3 Limitations	40
7.4 Further Work	41
References	42
Appendix A: Screen Shots of the Expert System	44
Appendix B: Questionnaire	46
Appendix C: Installation Guide	48
Appendix D : Sample Code	50

List of Figures

	Page
Figure 2-1: General Architecture of an Expert System	8
Figure 4-1: Top Level Architecture of the Proposed System	
Figure 4-2: Use Case View of the Proposed System	20
Figure 4-3: Class Diagram	23
Figure 4-4: Sequence Diagram for Searching a Fault	24
Figure 5-1: Forward Chaining Algorithm	28
Figure 5-2: Rule Writer Window	29
Figure 6-1: Confidence Level survey graph	
Figure 6-2: Satisfactory Level of the users about explanation facility graph	

List of Tables

	Page
Table 2-1: Comparison of a Human Expert and an Expert System	12
Table 4-1: Login Use Case Specification	21
Table 4-2: Use Case Specification for View Solution	
Table 4-3: Use Case Specification for Give Explanation	23
Table 6-1: Types of Participants	
Table 6-2: Reliability Statistics	
Table 6-3: Descriptive Statistics	
Table 6-4: Confidence Level of the user about the problem	
Table 6-5: Satisfactory Level of the users about explanation facility	
Table 6-6: Decision is taken when information missing	
Table 6-7: Evaluation of Interfaces	