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ABSTRACT 

Beams are common structural elements in most structures and generally they 

are analysed using classical beam theories to evaluate the stress and strain 

characteristics of the beam. But in the case of deep beams, higher order shear 

deformation beam theories predicts more accurate results than classical beam theories 

due its more realistic assumption regarding the shear characteristics of the beam. 

In this study a hyperbolic shear deformation theory for thick isotropic beams 

is developed where the displacements are defined using a meaningful function which 

is more physical and directly comparable with other higher order theories. Governing 

variationally consistent equilibrium equations and boundary conditions are derived in 

terms of the stress resultants and displacements using the principle of virtual work. 

This theory satisfies shear stress free boundary condition at top and bottom of the beam 

and doesn’t need shear correction factor. 

.A displacement based finite element model of this theory is formulated using the 

variational principle. Displacements are approximated using the homogeneous 

solutions of the governing differential equations that describe the deformations of the 

cross-section according to the high order theory, which includes cubic variation of the 

axial displacements over the cross-section of the beam. Also, this model gives the 

exact stiffness coefficients for the high order isotropic beam element. The model has 

six degrees of freedom at the two ends, one transverse displacement and two rotations, 

and the end forces are a shear force and two components of end moments.   

Several numerical examples are discussed to validate the proposed shear 

deformation beam theory and finite element model of the beam theory. Results 

obtained for displacements using the present beam theory and the finite element model 

are compared with results obtained using other beam theories, 2D elastic theory and 

2D and 3D finite element models. Solutions obtained using the proposed beam theory 

and finite element model are in close agreement with the solutions obtained using 2D 

elastic theory and 2D and 3D finite element models of  ‘ABAQUS’. 

Keywords: Beam theory; Finite Element; Higher order; Shear Deformation.   
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 NOTATIONS 

A - area of  cross section of  beam. 

b - width of beam. 

D - nodal degree of freedom. 

De - nodal degree of freedom in local coordinate system. 

E - elastic modulus. 

f - force vector due to distributed load. 

F - force vector due to concentrated load. 

fe - force vector due to concentrated load in local coordinate system. 

Fe - force vector due to concentrated load in local coordinate system. 

G - shear modulus. 

h - depth of beam. 

I - second moment of area about centroidal axis. 

Ks - shear correction factor. 

L - length of beam element. 

Ni - shape function. 

p(x) - axially distributed load 

q(x) - transverse distributed load. 

S - element stiffness matrix. 

Se - stiffness matrix in local coordinate system. 

T - transformation matrix. 

U - strain energy. 
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u(x) - axial displacement at centre line of beam. 

u(x, z) - axial displacement at coordinate (x, z). 

V - work done by the external forces. 

w(x) - transverse displacement of  beam at centre line. 

w(x, z) - transverse displacement at coordinate (x, z). 

𝑑𝑤

𝑑𝑥
  - bending rotation of cross section. 

ф(𝑥) - total rotation of cross section. 

(𝑧) - function which describes the distribution of transverse shear stress along      

the thickness of  beam. 

Ω - problem domain. 

Г - boundary of domain. 

 - total potential energy. 

𝜀𝑥𝑥 - normal strain. 

𝛾𝑥𝑧 - shear strain. 

𝜎𝑥𝑥 -  normal stress. 

𝜏𝑥𝑧 - shear stress
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CHAPTER I  

1. INTRODUCTION 

1.1. Background 

Beams are common structural elements in most structures and generally they 

are analyzed using classical or refined shear deformation theories to evaluate the static 

and dynamic characteristics.  In the case of thin beams, the well-known elementary 

theory of bending (Euler-Bernoulli) [1] is commonly used to analyse the beam which 

gives reasonably accurate prediction of stress and strain characteristics of beam. But 

as the depth to span ratio increases, this elementary theory of bending produces 

erroneous prediction about the stress and strain characteristics of the beam. This is due 

to the reason that the elementary theory does not take into account the effects of shear 

deformation across the depth of the beam. It is based on the assumption that the section 

normal to neutral axis remains so during bending and after bending, implying that the 

transverse shear strain is zero. 

As the depth to span ratio increases, the bending stress distribution across any 

transverse section deviates appreciably from straight line distribution used in the 

elementary theory of beams. Consequently, a transverse section which is plane before 

bending does not remain approximately plane after bending and neutral axis does not 

usually lie at the mid depth. Taking into account all these, Timoshenko [2] developed 

a first order shear deformation theory in which shear strain distribution is assumed to 

be constant through the thickness thus requires shear correction factor to appropriately 

represent the strain energy of deformation. Considering these discrepancies in the 

elementary theory of beam bending and first order shear deformation theory, several 

higher order shear deformation theories [3-11] were developed by researchers based 

on the assumed function for shearing stress distribution through the thickness of the 

beam. These theories are commonly used to predict the stress and strain characteristics 

of deep beams. 

According to NEN-EN-1992-1-1 cl. 5.3.1 (3) [12] a deep beam is a member 

for which the span to overall depth ratio is bigger or equal to 3. According to ACI 318-
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08: 2007 cl.10.7.1 [13] deep beams have a clear span to overall depth ratio equal to or 

less than 4. Dubey and Pathak [14] observed even at the span to depth ratio of 4, there 

is considerable influence of shear deformation on the beam.  

But when the higher order theories are used to solve the practical problems 

(e.g. Continuous beam with various support and loading conditions), obtaining the 

exact analytical solution to those governing differential equations becomes a difficult 

task. In such situation, finite element method (FEM) can be used as a powerful tool to 

analyse the problem and to get the approximate solutions. In this study, a higher order 

shear deformation beam theory is proposed to analyse the thick isotropic uniform beam 

and a displacement based finite element model is developed using the proposed beam 

theory. It should be noted that although there are number of versions of higher order 

theories, only few have worked on the finite element solution for this theory. An exact 

finite element formulation for the proposed higher order theory using the variational 

approach is a new aspect in this area of study which would make possible easy use of 

the higher order theory in analysing the practical beam problems.  

1.2. Overview of the finite element method (FEM) 

Concept of FEM dates back to 1696.  The  Brachistochrone  problem  was  one   

of   the  earliest   problems   in  Calculus  of   variations  posted  by   Johann   Bernoulli 

[15] in   Acta  Eroditorum  in   1696. The problem is to   find the   minimum time 

trajectory described by an object   moving from   one point   to another in a   constant   

uniform   gravitational   field. He  obtained  the solution by   dividing   the  plane  into  

strips  and  assumes  that   the  particle  follows a  straight   line in each   strip. 

The history of the modern development of the finite element method began in 

the 1940s in the field of structural engineering with the work by Hrennikoff [16] in 

1941.  McHenry [17] in 1943, used one-dimensional elements (bars and beams) to 

obtain the solution for stresses in continuous solids. In a paper published in 1943, 

Courant [18] proposed deriving the solution of stresses in a variational form but this 

had not been widely recognized for many years. Then he proposed piecewise 

interpolation (or shape) functions which can be used with triangular element as a 

method to obtain approximate numerical solutions over the region. In 1947 Levy [19] 
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developed the flexibility or force method of analysis, and in 1953 his work [20] 

suggested another method called stiffness or displacement method which was a 

promising alternative for analysing statically redundant structures. However, his 

equations were cumbersome for hand calculation, and thus the method became popular 

only after use of computers. 

In 1954 Argyris and Kelsey [21] used energy principle to develop matrix based 

structural analysis. This revealed the importance role of energy principle which would 

have in the finite element method. In 1956, Turner et al. [22] used two-dimensional 

elements for the first in their work. They derived stiffness matrices for several two-

dimensional elements using direct stiffness method. With the introduction of the high-

speed digital computer during 1950s, Turner et al. [22] looked for new and further 

development in finite element equations. 

Although the concepts finite element method were studied and developed by 

various researchers in the past, Clough [23] was the first to introduce the phrase finite 

element in 1960 when both triangular and rectangular elements were used for plane 

stress analysis. In 1961 Melosh [24] developed a flat rectangular-plate bending-

element stiffness matrix. Following this, in 1963 Grafton and Strome [25] developed 

a curved-shell bending element stiffness matrix for axisymmetric shells and pressure 

vessels. 

Martin [26], Gallagher et al. [27], and Melosh [28] extended the finite element 

method to three-dimensional problems with the development of a tetrahedral stiffness 

matrix. Further study on the three-dimensional elements were carried out by Argyris 

[29] in 1964. In 1965, Clough and Rashid [30] and Wilson [31] considered special case 

of axisymmetric solids. 

In 1965 Archer [32] considered dynamic analysis in the development of the 

consistent-mass matrix, which is applicable to analysis of distributed-mass systems 

such as bars and beams in structural analysis. In 1963 Melosh found out that the finite 

element method could be formulated in terms of a variational approach. It made 

possible that finite element method also could be used to solve non-structural 

applications. With the introduction of weighted residual method by by Szabo and Lee 
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[33] in 1969 to derive the previously known elasticity equations used in structural 

analysis and then by Zienkiewicz and Parekh [34] in 1970 for transient field problems 

made possible further extension of the method. It was then recognized that when direct 

formulations and variational formulations are difficult or not possible to use, the 

method of weighted residuals may at times be appropriate. 

From the early 1950s to the present, enormous advances have been made in the 

application of the finite element method to solve the complicated engineering 

problems. 

1.3. Objectives 

The main objective of  this study is to develop a higher order shear deformation 

theory for uniform isotropic beam and to develop an efficient beam element using the 

higher order beam theory. In addition to that this research focuses on studying stress 

and strain characteristics of beams having different aspect ratios. 

1.4. Methodology 

The research methodology includes the following tasks to achieve the research 

objectives. 

 Review of literatures which discuss about derivation of beam theories and 

beam element associated with those theories. 

 Establishing a displacement field which is more physical and describes 

deformation behaviour more accurately. 

 Finding the governing differential equations and boundary conditions of the 

proposed theory 

 Finding the general solutions for primary variables. 

 Validations of the proposed theory.  The proposed theory should be validated 

against the two dimensional elasticity solutions. 

 Selection of suitable interpolation functions and their order of approximation 

for the general displacement field.  

 Developing the Galerkin’s Weak form/Variational statement for the governing 

differential equations. 
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 Formulation of finite element by substituting the displacement variables using 

the approximate solutions. 

 Validations and checking the convergence of beam element. Finite element 

solutions should be compared with corresponding exact theoretical solutions. 

 Applications for practical problems (e.g Continuos beams and Frames) would 

be discussed and solutions should be compared with other finite element 

solutions. 

 A computer program would be developed to get the solutions using present 

beam element. 

 Conclusions based on the research study and recommendation for further work. 

 

1.5. Outline of this Thesis 

This thesis consists of six chapters which includes following contents. 

Chapter 2: This chapter reviews number of beam theories related to this study. 

Also it reviews the number of finite element model based on those theories. In addition 

this chapter discusses some theoretical aspects which are required for the theoretical 

and finite element formulation of the present study.  

Chapter 3: This Chapter includes the theoretical formulation of proposed shear 

deformation beam theory. Governing Equilibrium equations and boundary conditions 

are derived using variational principle. Stress resultant- displacement relationships are 

defined. General solutions for primary variables are obtained for uniform rectangular 

isotropic beam based on the governing equation of equilibrium. 

Chapter 4: This chapter presents a displacement based finite element model for 

the proposed beam theory. An exact beam element with two nodes having three degree 

freedom at each node is presented. Explicit terms of the stiffness matrix are derived. 

Chapter 5: This chapter present validation of the present theory and the finite 

element model of the present theory. The finite element solutions are checked for the 

convergence against the corresponding theoretical solutions. Several numerical 

examples are discussed using the present beam element and solutions are compared 
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with the solutions obtained using other beam elements and 2D and 3D models of 

‘ABAQUS’ 

Chapter 6: This chapter presents conclusions of the present study and future 

areas for consideration in relation to this study. 
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CHAPTER II 

2. LITERATURE REVIEW 

2.1. Review of beam theories 

Several beam theories are used to represent the kinematics of deformation. To 

describe the various beam theories, following coordinate system is introduced here. 

The x-coordinate is taken along the length of the beam, z-coordinate along the 

thickness (the height) of the beam, and the y-coordinate is taken along the width of the 

beam. In a general beam theory, all applied loads and geometry are such that the 

displacements (u,v,w) along the coordinates (x,y,z) are only functions of the x and z 

coordinates. Among these Euler beam theory (EBT) [1] is earliest and one of the well 

- known theories which has a major drawback of neglecting effects of transverse shear 

strain because of the assumption that the plane section is perpendicular to neutral axis 

of beam before bending, remains plane and perpendicular to axis after the deformation. 

This theory based on the displacement field; 

𝑢(𝑥, 𝑧)  =  −𝑧
𝑑𝑤

𝑑𝑥
 

𝑤(𝑥, 𝑧)  =  𝑤(𝑥) 

This theory provides excellent solution for the analysis of slender beams 

whereas for moderately short or thick beams, the solutions are not in the acceptable 

range. 

In the development of beam theories, Timoshenko was the first to include the 

influence of transverse shear strain and rotatory inertia into the newly developed first 

order shear deformation theory (FSBT) [2]. In the Timoshenko beam theory it is 

assumed that plane cross section remain plane but not normal to the neutral axis after 

deformation. . This theory based on the displacement field;  

𝑢(𝑥, 𝑧)  =  𝑧ф(𝑥) 

𝑤(𝑥, 𝑧)  =  𝑤(𝑥) 

Since Timoshenko beam theory assumes a constant transverse shear stress 

distribution through the beam depth, it is necessary to have shear correction factor for 

(2.1) 

(2.2) 
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the beam. Cowper [35, 36] analysed the accuracy of Timoshenko beam theory for 

transverse vibration of simply supported beam with respect to fundamental frequency 

and reported some values for shear correction factor of beams having various cross 

sections. 

The limitations on the Euler beam theory and the Timoshenko theory led to the 

development of higher order theory. Many higher order theories are available in the 

literature for static and dynamic analysis of the beams. Levinson [3] has developed 

new rectangular beam theory for static and dynamic analysis of the beam where he 

derived the governing equations of the beam using vector mechanics. He used 

following displacement field to develop his theory.  

𝑢(𝑥, 𝑧) =  𝑧ф(𝑥) − 
4

3ℎ2
z3 ( 

𝑑𝑤

𝑑𝑥
 + ф(𝑥)) 

𝑤(𝑥, 𝑧)  =  𝑤(𝑥) 

Bickford [4] used the same displacement function used by the Levinson and 

derived a variationally   consistent shear deformation theory for isotropic beams. Third 

order plate theory developed by Reddy [5] was specialized into beam theory by 

Heyliger and Reddy [6] to study the linear and non-linear bending and vibration of 

isotropic beams. These higher order shear deformation beam theories (HSBT) do not 

need the shear correction factor since shear stress free boundary condition in top and 

bottom of the beam are satisfied.  

There is another set of refined shear deformation theories using trigonometric 

and hyperbolic functions to define the displacement function. Touratier [7], Vlasov 

and Leont’ev [8] and Stein [9] presented trigonometric shear deformation theories. 

However, those theories do not satisfy shear stress free boundary condition. Ghugal 

and Shimpi [10] have developed variationaly consistent trigonometric shear 

deformation theory (TSBT) which satisfies the shear stress free function condition at 

top and bottom surfaces of the beam.  

(2.3) 



9 

 

Ghugal and Sharma [11] have developed variationally consistent hyperbolic 

shear deformation theory (HPSBT) for static and dynamic analysis of thick isotropic 

beams. 

The above mentioned beam deformation theories can be expressed in a unified 

mathematical forms as follows [37]  

𝑢(𝑥, 𝑧) = 𝑢(𝑥) − 𝑧
𝑑𝑤(𝑥)

𝑑𝑥
+(𝑧) (

𝑑𝑤(𝑥)

𝑑𝑥
− (𝑥)) ; 

𝑣(𝑥, 𝑧) = 0 ; 

𝑤(𝑥, 𝑧) = 𝑤(𝑥) 

Where u, w, and (𝑥) are three unknown functions, represent the axial displacement, 

transverse displacement and the total bending rotation of the cross section at any point 

on the neutral axis, respectively. Also (𝑧) describes the distribution of transverse 

shear stress along the thickness of the beam. The mathematical form of this function 

for the displacement field of the above mentioned theories is as follows [37]. 

𝐸𝐵𝑇 ∶  (𝑧) = 0  

𝐹𝑆𝐵𝑇 ∶  (𝑧) = 𝑧  

𝐻𝑆𝐵𝑇 ∶  (𝑧) = 𝑧 (1 −
4𝑧2

3ℎ2
) 

𝑇𝑆𝐵𝑇 ∶  (𝑧) =
ℎ

𝜋
sin (

𝜋𝑧

ℎ
)  

𝐻𝑃𝑆𝐵𝑇 ∶  (𝑧) = ℎ . sinh (
𝑧

ℎ
) − 𝑧. cosh (

1

2
) 

 

The Figure 2.1 below illustrates the difference between kinematic assumption 

of Euler-Bernoulli beam theory, Timoshenko beam theory and third order theories. 

(2.4) 
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EBT 

FSBT 

HSBT 

Figure 2.1-Kinematics of various beam theories 
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2.2. Review of finite element models 

The finite element models of Euler-Bernoulli beam theory (EBT) is most 

common and can be found in several books [38]. Since this finite element model uses 

Hermite cubic interpolation which is suggested by the general solution of the 

homogeneous equation, this models gives exact values for the deflection and slope at 

the nodes [39]. For constant EI and uniformly distributed load of q, the beam element 

becomes 

2𝐸𝐼

𝐿3
[

6 −3𝐿
−3𝐿 2𝐿2

−6 −3𝐿
3𝐿 𝐿2

6 3𝐿
−3𝐿 𝐿2

6 3𝐿
3𝐿 2𝐿2

] {

𝐷1
𝐷2
𝐷3
𝐷4

} =
𝑞𝐿

12
{

6
−𝐿
6
𝐿

} + {

𝐹1
𝐹2
𝐹3
𝐹4

} 

; Fi are the generalized nodal forces. 

There are several finite element models based on Timoshenko beam theory in 

the literature. They differ from each other in the choice of their interpolation function 

or in weak form used to develop finite element model [39]. These elements can be 

divided into two classes. According to the literature, a simple element is one which 

has a total of four degrees of freedom, two at each of the two nodes. A complex element 

is one which has more than four degrees of freedom, having more than two degrees of 

freedom at a node or more than two nodes. The first formulation of simple element for 

a uniform beam was given by McCalley [40].  

𝑆 =
𝐸𝐼

𝐿3(1 + )
[

     12  
      6𝐿            𝐿2(4 + )

 

   −12        −6𝐿
6𝐿       𝐿2(2 − )

12  
−6𝐿 2𝐿2   

]  ;   =
12𝐸𝐼

𝐺𝐾𝑠𝐴𝐿
2

 

This is an exact stiffness matrix developed based on direct flexibility approach. 

Detailed derivation of this exact stiffness matrix can be found in [37]. 

The above approach to exact stiffness matrix, has difficulties in developing 

consistent mass matrix and force matrix. Another approach which is based on the 

variational principle has been used by several researchers to formulate the element 

stiffness, mass and force matrices. Here assumed interpolation functions were used to 

describe the kinematic variables. But using the same order polynomial for both 

transverse deflection w and cross section rotation ф and integrating to get the exact 

(2.5) 

(2.6) 
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values resulted in shear locking. To reduce the effect of shear locking, earlier two 

methods were used by researchers namely reduced integration and consistent 

interpolation. But these methods to develop Timoshenko elements are not completely 

free of shear locking [39]. 

Hughes  et  al.  [41]  was  the  first  to  develop  a ‘low-order’  two-node  element  

based  upon  linear  polynomials  (2  DOF per node)  for  each  of  the  variables.  This 

element, which was formulated using selective reduced integration, produced 

reasonably accurate results over a broad range of beam thickness/length ratios. 

Bending stiffness and one-point and two-point quadrature shear stiffness are separately 

presented and it is verified that two-point quadrature overestimates the shear stiffness 

in the case thin beam element hence leads to shear locking. 

For linear interpolation of both w and ф and for constant values of El, and 

GAKs, the element equations (with reduced integration) are given in [39] by   

2𝐸𝐼

4𝐿3
[

4 −2𝐿
−2𝐿 𝐿2(1 + 4)

−4 −2𝐿
2𝐿 𝐿2(1 − 4)

−4 2𝐿
−2𝐿 𝐿2(1 − 4)

4 2𝐿
2𝐿 𝐿2(1 + 4)

] {

𝐷1
𝐷2
𝐷3
𝐷4

} = {

𝑓1
0
𝑓2
0

} + {

𝐹1
𝐹2
𝐹3
𝐹4

} ;  

 =
𝐸𝐼

𝐺𝐾𝑠𝐴𝐿
2
  

𝑎𝑛𝑑 𝑓𝑖 = ∫ 𝑞(𝑥)𝑁𝑖𝑑𝑥, 𝑖 = 1,2
𝐿

0

 

; Ni is linear interpolation functions. 

For quadratic interpolation of w and linear interpolation of ф and for constant 

values of El, and GAKs consistent interpolation element matrix is given in [39] by 

2𝐸𝐼

4𝐿3
[

4 −2𝐿
−2𝐿 𝐿2(1 + 4)

−4 −2𝐿
2𝐿 𝐿2(1 − 4)

−4 2𝐿
−2𝐿 𝐿2(1 − 4)

4 2𝐿
2𝐿 𝐿2(1 + 4)

] {

𝐷1
𝐷2
𝐷3
𝐷4

} =

{
 

 
𝑓1 + 0.5𝑓3
−0.125𝑓3𝐿
𝑓1 + 0.5𝑓32
0.125𝑓3𝐿 }

 

 
+ {

𝐹1
𝐹2
𝐹3
𝐹4

} ; 

  =
𝐸𝐼

𝐺𝐾𝑠𝐴𝐿
2
  

(2.7) 

(2.8) 
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𝑎𝑛𝑑 𝑓𝑖 = ∫ 𝑞(𝑥)𝑁𝑖𝑑𝑥, 𝑖 = 1,2,3
𝐿

0

 

; Ni is linear interpolation functions 

Completely shear locking free Timoshenko element was developed using inter 

dependent interpolation between transverse deflection w and cross section rotation ф. 

Derivation of this element can be found in [39]. For constant values of EI and GAKs 

and uniformly distributed transverse load q, the element equations are given by 

2𝐸𝐼

𝐿3
[

6 −3𝐿
−3𝐿 2𝐿2𝛼

−6 −3𝐿
3𝐿 𝛾𝐿2

 
 −6  3𝐿
 −3𝐿    𝛾𝐿2

        6 3𝐿
       3𝐿    2𝐿2𝛼   

] {

𝐷1
𝐷2
𝐷3
𝐷4

} =
𝑞𝐿

12
{

6
−𝐿
6
𝐿

} + {

𝐹1
𝐹2
𝐹3
𝐹4

} ;   =
𝐸𝐼

𝐺𝐾𝑠𝐴𝐿
2
  

𝛾 = 1 − 6  𝛼 = 1 + 3  = 1 + 12 

To obtain good results, one must use more than one element in each span of 

the span if the element is based on reduced integration or consistent interpolation 

whereas interdependent interpolation element gives the exact values of w and ф when 

only one element per member is used. Therefore to analyse a frame it is convenient to 

use interdependent interpolation element [39]. 

Reddy and Heyliger [6] presented higher order finite element based on higher 

order theory developed by Bickford [4]. In this derivation generalized displacements 

such as axial displacement (u), and rotation (ф) were approximated by linear Lagrange 

interpolation functions and transverse displacement was approximated by Hermite 

interpolation functions. For the static linear case with transverse loading only, stiffness 

matrix based on this higher order theory is given as 

 

(2.9) 

(2.10) 
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where  [ S1 ]  represents  the  bending  stiffness  matrix  and  [ S2 ] represents  

the  shear  stiffness matrix. 

Kant and Kupta [42] developed a higher order beam element using a higher 

order shear deformable theory which is based on the Taylor series expansion of the 

displacement components. In the derivation of the beam element linear shape function 

is used to define all the displacement components and it is only required to have C0 

continuity in the shape functions.  The size of the equation developed for stiffness 

matrix is 8x8. 

Petrolito [43] used Reddy and Bickford [4, 6] higher order shear deformation 

theory to perform exact stiffness analysis of thick beams. He derived the shape 

functions for the beam from the solution of the differential equations and then followed 

the usual finite element method procedure to formulate the beam element. The explicit 

stiffness terms were not given by Petrolito [43]. Eisenberger [44] derived an exact 

stiffness matrix analytically, together with the exact end-moment of two common 

cases, which are required for the exact analysis of structures. Liu [45] formulated a 

beam element for trigonometric shear deformation theory [7] following the method 

used by Petrolito [43]. 

Reddy et al [47, 48] presented common beam element called unified beam 

element covering elementary theory to higher order theory. The unified beam element 

was developed based on the relationship between the solution of classical theories and 

simplified Reddy-Bickford theory [39]. Since the relationships provide an 

interdependent interpolation of the deflection and rotation, it is required to use only 

the Hermite cubic interpolation function.  Hence element stiffness matrix with order 

4x4 is obtained and it gives exact nodal values of generalized displacements for Euler-

Bernoulli and Timoshenko beams with uniform cross section and homogeneous 

material properties. 

Reddy [39] suggested two different approaches to formulate the finite element 

for higher order beam thoery. One is consistent interpolation element where 

independent polynomial functions are used to define the displacement components. It 

is suggested to use Hermite cubic polynomial functions to define the transverse 
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displacement w and quadratic Lagrange polynomials to define the rotation. The 

obtained matrix would be having an order 7x7. The other method is using the 

interdependent interpolation based on the simplified polynomials solutions of the 

governing equilibrium equations. It is required to use only Hermite cubic polynomials 

to define the displacement components. The resulted stiffness matrix would be having 

an order of 4x4. 

 

2.3. Theoretical aspects related to formulation of finite element 

2.3.1. Strong forms Vs. Weak forms 

In solid mechanics each and every physical problem can be represented by 

system of governing partial differential equations (PDEs). These system of equations 

are strong forms of system equations. Obtaining the exact solution for a strong-form 

of the system equation is ideal, but in the case of practical engineering problems those 

governing equations are generally complex in nature and it is very difficult to get exact 

solution. Therefore numerical methods are used to get the approximate solution for the 

problems. Numerical methods for a problem could be formulated either from strong 

form or weak form of governing equations. In a strong-form numerical method 

formulation, it is assumed that the approximate unknown function should have 

sufficient degree of consistency, so that it is differentiable up to the order of the PDEs. 

On the other hand the weak-form requires a weaker consistency on the 

approximate function. We can derive the weak-form of the governing equations by 

applying an integral operation to the system equation based on a mathematical or 

physical principle. An approximate solution for a complex system can be obtained 

from various numerical formulation methods based on the weak-form of the system 

equation. Formulation based on weak-forms can usually produce a very stable set of 

discretized system equations that produces much more accurate results .Generally we 

can use two major principles for constructing weak forms: variational and weighted 

residual methods [49].  
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2.3.2. Variational methods and variational principle 

The phrase "direct variational methods" refers to methods that make use of 

variational principles such as the principles of virtual work and the principle of 

minimum total potential energy in solid and structural mechanics, to determine 

approximate solutions of problems [38]. In the classical sense a variational principle 

has to do with finding the extremum (i.e minimum or maximum) or stationary values 

of a functional with respect to the variables of the problem. The functional includes all 

the intrinsic features of the problem such as the governing equations boundary and/or 

initial conditions and constraint conditions if any. In solid, structural mechanics 

problems the functional represents the total energy of the system, and in other 

problems it is simply an integral representation of the governing equation. 

The principle of minimum total potential energy can be regarded as a substitute 

to the equations of equilibrium of an elastic body. Also it can be used for the 

development of displacement finite element models that can be used to determine 

approximate displacement and stress fields in the body [50]. 

2.3.3. Weighted residual method 

The weighted residual method is a more sophisticated mathematical tool that 

can be used to develop the weak-form of the system of equations for many types of 

engineering problems. This section describes general residual technique. Many 

numerical methods can be based on the general weighted residual method. Readers 

may refer [38, 49] to get more ideas about weighted residual method. 

Consider the following (partial) differential equation (2.11). 

 F (u) + b = 0 in problem domain (Ω).  

Where F is a differential (partial) operator that is defined as a process when F applied 

to the scalar function u produces a function -b. The boundary condition is given as 

G (u) = g on the boundary (Г)  

Where G is a differential (partial) operator G for the boundary condition 

Function u is first approximated by 

(2.11) 

(2.12) 

(2.13) 
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uh (x) = ∑ 𝛼𝑖𝑁𝑖 = 𝑁𝛼
𝑛
𝑖  

Where 𝑁𝑖 is the ith term trial function, 𝛼𝑖 is the unknown coefficient for the ith term 

basis function, and n is the number of basis functions used. 

Substituting (2.13) into (2.11) and (2.12), generally would give 

F (uh) + b ≠ 0 

G (uh) - g ≠ 0 

Hence, the following residual functions Rs and Rb can be obtained respectively, for the 

system equations defined in the problem domain and the boundary conditions defined 

on the boundaries. 

Rs = F (uh) + b  

Rb = G (uh) - g 

To make the residual in (2.14) as “small” as possible; it is required to force the 

residual to zero in an average sense by setting weighted integrals of residuals to zero.  

∫𝑊̅𝑖𝑅𝑠𝑑𝛺

 

𝛺

+∫𝑉̅𝑖𝑅𝑏𝑑Г

 

Г

= 0 

Where 𝑊̅𝑖 and 𝑉̅𝑖 are a set of given weight functions for the residuals Rs and Rb 

respectively. 

In the context of FEM the approximate solution, (2.12), can be chosen to satisfy the 

boundary conditions. In such cases, 𝑅𝑏 is zero, and Equation (2.15) becomes 

∫𝑊̅𝑖𝑅𝑠𝑑𝛺

 

𝛺

= 0 

This is the formulation of the weighted residual method that is often used in 

establishing numerical procedures like FEM. 

In the weighted residual method, there are several possible methods of using 

weight function such as collocation, subdomain, Least square, Moment and Galerkin 

(2.14) 

(2.16) 

(2.15) 
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Method. Different numerical approximation methods can be obtained by selecting 

different weight functions. Selection of weight functions will affect its performance.  

Although there are different versions of weighted residual method, Galerkin 

method is regarded so far as the most effective version of the weighted residual 

method, and is widely used in numerical methods, in particular the finite element 

method (FEM). There are some considerable advantages of using Galerkin method 

over other method. First the stiffness matrix derived by the Galerkin method is usually 

symmetric. In addition, in many cases, Galerkin method leads to the same formulations 

obtained by the energy principles, and hence has certain physical foundations [49]. 

In Galerkin method trial functions used for the approximation of the field 

function are also used as the weight functions. 

2.3.4. Euler - Lagrange equations and boundary conditions 

A Finite element analyst is interested in identifying suitable functional which 

gives Euler – Lagrange equations (i.e. Governing differential equations in solid 

mechanics) and the corresponding boundary conditions. The following section 

describes the procedure to establish those equations and boundary conditions. 

Let y be function of x. Then, 𝐺(𝑦, 𝑦′, 𝑦′′) is functional. It is required to find  

y = y(x), such that the first variance of  

𝐼 = ∫ 𝐺(𝑦, 𝑦′, 𝑦′′)𝑑𝑥
𝑥2

𝑥1

 

is made stationary satisfying the boundary conditions specified below. 

𝑦(𝑥1) = 𝑦1 

𝑦(𝑥2) = 𝑦2 

 

It is stated that the problem of finding y(x) that makes (2.17) stationary with 

respect to small, admissible variations in y(x) is equivalent to the problem of finding 

y(x) that satisfies the governing differential equations for this problem [51]. 

(2.17) 
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Figure 2.2 shows a typical function y = y(x). The continuous line shows the 

exact function and dotted line shows an approximate function.  

 

 

 

 

 

 

 

Then 𝛿𝑟 =  𝑦̅(𝑥) − 𝑦(𝑥) 

We are interested in finding the solutions with 

𝛿𝐼 = 0 

∴ ∫ (
𝜕𝐺

𝜕𝑦

𝑥2

𝑥1
𝛿𝑦 + 

𝜕𝐺

𝜕𝑦′
𝛿𝑦′ +

𝜕𝐺

𝜕𝑦′′
𝛿𝑦′′)𝑑𝑥 = 0   

By applying integration by parts to (2.17), 

∫ (
𝜕𝐺

𝜕𝑦′

𝑥2

𝑥1
𝛿𝑦′)𝑑𝑥 =  

𝜕𝐺

𝜕𝑦′
𝛿𝑦| 𝑥2

𝑥1
− ∫

𝑑

𝑑𝑥

𝑥2

𝑥1
(
𝜕𝐺

𝜕𝑦′
)𝛿𝑦  𝑑𝑥  

∫ (
𝜕𝐺

𝜕𝑦′

𝑥2

𝑥1
𝛿𝑦′)𝑑𝑥 =  

𝜕𝐺

𝜕𝑦′′
𝛿𝑦′| 𝑥2

𝑥1
−

𝑑

𝑑𝑥
(
𝜕𝐺

𝜕𝑦′′
)𝛿𝑦| 𝑥2

𝑥1
+ ∫

𝑑2

𝑑𝑥2

𝑥2

𝑥1
(
𝜕𝐺

𝜕𝑦′′
)𝛿𝑦  𝑑𝑥  

∫  
𝑥2

𝑥1
((

𝜕𝐺

𝜕𝑦′
) −

𝑑

𝑑𝑥
(
𝜕𝐺

𝜕𝑦′
) +

𝑑2

𝑑𝑥2
(
𝜕𝐺

𝜕𝑦′′
)) 𝛿𝑦 𝑑𝑥 + ((

𝜕𝐺

𝜕𝑦′
) −

𝑑

𝑑𝑥
(
𝜕𝐺

𝜕𝑦′′
)) 𝛿𝑦|𝑥2

𝑥1
+

 (
𝜕𝐺

𝜕𝑦′′
) 𝛿𝑦′| 𝑥2

𝑥1
 = 0  

 

Since 𝛿𝑦 is arbitrary, therefore all three terms in equation (2.18) should be 

zero. 

Y

(x) 

X 0 
Figure 2.2 - Typical function y(x) and the approximate solution  𝑦̅(𝑥) 

(2.17) 

(2.18) 
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(
𝜕𝐺

𝜕𝑦′
) −

𝑑

𝑑𝑥
(
𝜕𝐺

𝜕𝑦′
) +

𝑑2

𝑑𝑥2
(
𝜕𝐺

𝜕𝑦′′
) = 0  

((
𝜕𝐺

𝜕𝑦′
) −

𝑑

𝑑𝑥
(
𝜕𝐺

𝜕𝑦′′
)) 𝛿𝑦|𝑥2

𝑥1
= 0  

(
𝜕𝐺

𝜕𝑦′′
) 𝛿𝑦′|

𝑥2

𝑥1
 = 0 

Equation (2.19) known as Euler - Lagrange equations. Equations (2.20) and 

(2.21) are known as boundary conditions. To satisfy equation (2.20) 

𝛿𝑦(𝑥1) = 0 𝑜𝑟 ((
𝜕𝐺

𝜕𝑦′
) −

𝑑

𝑑𝑥
(
𝜕𝐺

𝜕𝑦′′
)) |

 

𝑥1
= 0 

𝛿𝑦(𝑥2) = 0 𝑜𝑟 ((
𝜕𝐺

𝜕𝑦′
) −

𝑑

𝑑𝑥
(
𝜕𝐺

𝜕𝑦′′
)) |

 

𝑥2
= 0 

To satisfy equation (2.21) 

𝛿𝑦′(𝑥1) = 0 𝑜𝑟 (
𝜕𝐺

𝜕𝑦′′
) |

 

𝑥1
 = 0 

𝛿𝑦′(𝑥1) = 0 𝑜𝑟 (
𝜕𝐺

𝜕𝑦′′
) |

 

𝑥2
 = 0 

Conditions like 𝛿𝑦(𝑥1) = 0, 𝛿𝑦(𝑥2) = 0, 𝛿𝑦′(𝑥1) = 0 𝑎𝑛𝑑 𝛿𝑦′(𝑥2) = 0 are 

known as kinematic (essential) boundary conditions. In solid mechanics they usually 

refer to the displacement requirement at support points. 

The conditions like ((
𝜕𝐺

𝜕𝑦′
) −

𝑑

𝑑𝑥
(
𝜕𝐺

𝜕𝑦′′
)) |  

𝑥1
= 0, ((

𝜕𝐺

𝜕𝑦′
) −

𝑑

𝑑𝑥
(
𝜕𝐺

𝜕𝑦′′
)) |  

𝑥2
= 0, 

  (
𝜕𝐺

𝜕𝑦′′
) |  

𝑥1
 = 0 𝑎𝑛𝑑  (

𝜕𝐺

𝜕𝑦′′
) |  

𝑥2
 = 0  are known as natural(force)  boundary 

conditions. In solid mechanics they usually refer to the conditions like moment and 

shear force at supports. 

Thus first variance of functional for stationary value yields Euler-Lagrange 

equation, kinematic boundary conditions and natural boundary conditions. 

(2.19) 

(2.20) 

(2.21) 
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In the case of solid mechanics problem, total potential energy is treated as 

suitable functional, minimization (first variance) of which yields equation of 

equilibrium satisfying the boundary conditions [51]. 

 

2.3.5. Finite element formulation using minimum total potential energy 

principle 

The principle of minimum potential energy in solid mechanics which may be 

stated as “Of all the possible displacement configurations a body can assume which 

satisfy compatibility and boundary conditions,  the configuration satisfying 

equilibrium makes potential energy assume a minimal value” [51]. This variational 

principle can be directly used to formulate the finite element equations in solid 

mechanics. This principle can be used in a straightforward manner in the following 

three simple steps [49]. 

 Approximating displacement functions in terms of the nodal variables using 

the interpolation or shape functions; Assume vector D consisting of all the 

nodal displacements in the problem domain. 

 Deriving the total potential energy,   in terms of the nodal variables D. For 

solids and structures of elastic materials, the total potential energy includes 

strain energy U and the work done by the external forces V. This can be 

expressed as 

 = U + V 

 Use the stationary conditions (minimization of total potential energy) to create 

a set of discretized system equations 

𝛿 =  
𝜕

𝜕𝑑1
𝛿𝐷1 +

𝜕

𝜕𝑑2
𝛿𝐷2+. . . . . . . +

𝜕

𝜕𝑑𝑛
𝛿𝐷𝑛 = 0   Which is equivalent to 

      
𝜕

𝜕𝐷𝑖
= 0 

The minimum total potential energy principle requires 𝛿 = 0,   

 hence U + V= 0. It can also be viewed as principle of virtual work which 

states “ if a solid body is in its equilibrium states, the total virtual work performed by 
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all the stresses in the body and all the external forces applied on the body vanishes, 

when the body is subjected to a virtual displacement” [49]. 
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CHAPTER III 

3. THEORETICAL FORMULATION 

Consider a uniform isotropic thick beam as shown in Figure 3.1, in which the 

deformed beam cross section neither stays normal to the deformed centroidal axis nor 

remains a plane. By using the Cartesian coordinate system (x; y; z) indicated in Figure 

3.1 where the x-axis is coincident with the centroidal axis of the unreformed beam, the 

y-axis is the neutral axis, and the z-axis is along the thickness of the beam. The beam 

is subjected to transverse load of intensity q(x) per unit length of the beam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1-The beam under consideration 



24 

 

3.1. Assumptions made in the theoretical formulation 

 The in-plane displacement u in x direction consists of two parts: 

a. Displacement due to the bending rotation 

b. Displacement due to shear rotation which is assumed to be 

hyperbolic in nature with respect thickness coordinate 

 The transverse displacement w in z direction is assumed to be a function of x 

coordinate. 

 Transverse normal displacement v is assumed to be identically zero 

 One-dimensional constitutive law is used.  

 The beam is subjected to lateral load only 

 Neutral axis is at the center line of the beam 

 

3.2. Displacement field 

Based on the above mentioned assumptions displacement field of the present 

theory is given as 

𝑢(𝑥, 𝑧) =  𝑧ф(𝑥) −  𝜇 ( ℎ 𝑠𝑖𝑛ℎ (
𝑧

ℎ
) −  𝑧) [ 

𝑑𝑤

𝑑𝑥
 + ф(𝑥)] ;  𝜇 =  

1

𝑐𝑜𝑠ℎ
1

2
 −1

                   

𝑤(𝑥, 𝑧)  =  𝑤(𝑥)   

Where u(x,z) is axial displacement at  any point on the line parallel to beam 

centroidal axis and also w(x) and ф(x) are two unknown functions named the 

transverse displacement and total rotation of the cross section at neutral axis 

respectively. 𝜃(𝑥) =  [ 
𝑑𝑤

𝑑𝑥
 + ф(𝑥)] ; 𝜃(𝑥) is rotation of cross section due to shear at 

neutral axis. 

Based on the displacement functions (3.1) above, normal strain and transverse 

shear strain are obtained using linear theory of elasticity. 

𝜀𝑥𝑥  =   
𝜕𝑢

𝜕𝑥
 =  𝑧 

𝑑ф(𝑥)

𝑑𝑥
– 𝜇( ℎ 𝑠𝑖𝑛ℎ (

𝑧

ℎ
) − 𝑧)[ 

𝑑2𝑤

𝑑𝑥2
 + ф(𝑥)]     

𝛾𝑥𝑧  =  
𝜕𝑢

𝜕𝑧
 +  

𝜕𝑤

𝜕𝑥
  =   [ 1 –  𝜇(𝑐𝑜𝑠ℎ (

𝑧

ℎ
) − 1)][ 

𝑑𝑤

𝑑𝑥
 + ф(𝑥)]     

(3.1) 

(3.2) 
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Based on the strains defined in (3.2) normal bending and transverse shear 

stresses are obtained using one-dimensional constitutive law. 

𝜎𝑥𝑥  =  𝐸𝑥𝜀𝑥𝑥            

𝜏𝑥𝑧  =  𝐺𝑥𝑧𝛾𝑥𝑧           

3.3. Governing equations and boundary conditions 

Using above stress and strain relations in (3.2) and (3.3), strain energy in the system 

U can be written as 

𝑈 =  ∫ ∫  
1

2
(𝜎𝑥𝑥 є𝑥𝑥 + 𝜏𝑥𝑧𝛾𝑥𝑧) 𝑑𝐴 𝑑𝑥

 

𝐴

𝐿

0
       

and the gravitational potential energy due to transverse load q is given by 

𝑉 =  −∫ 𝑞(𝑥)𝑤 𝑑𝑥
𝐿

0
        

Applying minimum total potential energy principle 

 𝛿 =  δU +  δV =  0,    

it becomes 

∫ ∫ (𝜎𝑥𝑥 𝛿є𝑥𝑥 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧) 
 

𝐴

𝐿

0
𝑑𝐴𝑑𝑥   − ∫ 𝑞(𝑥)𝛿𝑤 𝑑𝑥

𝐿

0
 = 0   

Substituting the strain functions defined in (3.2) into (3.6) will give the following 

integral statement, 

∫ ∫  
 

𝐴

𝐿

0
{𝜎𝑥𝑥 (𝑧 

𝑑δф

𝑑𝑥
– 𝜇 ( ℎ 𝑠𝑖𝑛ℎ (

𝑧

ℎ
) − 𝑧) ( 

𝑑2δ𝑤

𝑑𝑥2
 +

𝑑δф

𝑑𝑥
)) + 𝜏𝑥𝑧 ( 1 –  𝜇 (𝑐𝑜𝑠ℎ (

𝑧

ℎ
) −

1)) (
𝑑δ𝑤

𝑑𝑥
+ δф)}𝑑𝐴 𝑑𝑥 − ∫ 𝑞(𝑥)𝛿𝑤 𝑑𝑥

𝐿

0
= 0  

3.3.1. The stress resultant-displacement relations 

Here the stress resultants are defined as follows 

𝑀𝑥𝑥  =  ∫ 𝑧
 

𝐴
𝜎𝑥𝑥 𝑑𝐴        

𝑄𝑥   =   ∫  
 

𝐴
𝜏𝑥𝑧 𝑑𝐴        

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.8) 

(3.9) 

(3.10) 
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𝑀′𝑥𝑥 =   𝜇 ∫ [ℎ 𝑠𝑖𝑛ℎ(
𝑧

ℎ
)

 

𝐴
− 𝑧] 𝜎𝑥𝑥  𝑑𝐴     

𝑅𝑥   =   𝜇 ∫  
 

𝐴
[𝑐𝑜𝑠ℎ (

𝑧

ℎ
) − 1]𝜏𝑥𝑧 𝑑𝐴      

𝑉𝑥 =
𝑑𝑀𝑥𝑥

𝑑𝑥
= 𝑄𝑥 − 𝑅𝑥  +  

𝑑𝑀′𝑥𝑥

𝑑𝑥
       

𝑀̅ 𝑥𝑥 = 𝑀𝑥𝑥 −𝑀
′
𝑥𝑥        

Where 𝑀𝑥𝑥 and 𝑄𝑥 are the usual bending moment and shear force and 𝑀′
𝑥𝑥 

and Rx are the higher order stress resultant. 𝑉𝑥   is the effective shear force. 

𝑀𝑥𝑥  =  ∫ 𝑧
 

𝐴
 𝜎𝑥𝑥  𝑑𝐴  

 𝑀𝑥𝑥 = ∫ 𝑧
 

𝐴
𝐸 (𝑧 

𝑑ф

𝑑𝑥
– 𝜇 ( ℎ 𝑠𝑖𝑛ℎ (

𝑧

ℎ
) − 𝑧) ( 

𝑑2𝑤

𝑑𝑥2
 +

𝑑ф

𝑑𝑥
)) 𝑑𝐴 

𝑀𝑥𝑥 = −𝐸𝐼
𝑑2𝑤

𝑑𝑥2
+ 𝜇𝐸𝐼 (cosh (

1

2
) − 12 (cosh (

1

2
) − 2 sinh (

1

2
))) ( 

𝑑2𝑤

𝑑𝑥2
 +

𝑑ф

𝑑𝑥
)  

𝑀𝑥𝑥 = −𝐸𝐼
𝑑2𝑤

𝑑𝑥2
+ 𝐸𝐼𝐴0 ( 

𝑑2𝑤

𝑑𝑥2
 +

𝑑ф

𝑑𝑥
)  

 

𝑀′𝑥𝑥 =   𝜇 ∫ [ℎ 𝑠𝑖𝑛ℎ(
𝑧

ℎ
)

 

𝐴
− 𝑧]  𝜎𝑥𝑥  𝑑𝐴  

𝑀′𝑥𝑥 =   𝜇 ∫ (ℎ 𝑠𝑖𝑛ℎ(
𝑧

ℎ
)

 

𝐴
− 𝑧) 𝐸 (𝑧 

𝑑ф

𝑑𝑥
– 𝜇 ( ℎ𝑠𝑖𝑛ℎ (

𝑧

ℎ
) − 𝑧) ( 

𝑑2𝑤

𝑑𝑥2
 +

𝑑ф

𝑑𝑥
)) 𝑑𝐴  

𝑀′
𝑥𝑥 = 𝐸𝐼(𝐴0 − 1)

𝑑2𝑤

𝑑𝑥2
+ (𝐴0 − 𝐵0)𝐸𝐼 ( 

𝑑2𝑤

𝑑𝑥2
 +

𝑑ф

𝑑𝑥
)  

 

𝑄𝑥  =   ∫  
 

𝐴
𝜏𝑥𝑧 𝑑𝐴  

𝑄𝑥  =   ∫  
 

𝐴
𝐺 (1 –  𝜇 (𝑐𝑜𝑠ℎ (

𝑧

ℎ
) − 1)) (

𝑑𝑤

𝑑𝑥
 + ф) 𝑑𝐴  

𝑄𝑥 = 𝐺𝐴𝜇 (cosh (
1

2
) − 2 sinh (

1

2
)) (

𝑑𝑤

𝑑𝑥
 + ф)   

 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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𝑅𝑥   =   𝜇 ∫  
 

𝐴
(𝑐𝑜𝑠ℎ (

𝑧

ℎ
) − 1)𝐺 (1 –  𝜇 (𝑐𝑜𝑠ℎ (

𝑧

ℎ
) − 1)) (

𝑑𝑤

𝑑𝑥
 + ф)𝑑𝐴  

𝑅𝑥 = 𝐺𝐴𝜇
2 (

1

2
sinh(1) −

1

2
) (

𝑑𝑤

𝑑𝑥
 + ф) − 𝐺𝐴𝜇2 (cosh (

1

2
) − 2 sinh (

1

2
)) (

𝑑𝑤

𝑑𝑥
 + ф)  

            

 By substituting the stress resultants defined in (3.9) - (3.14) into (3.8), the 

following integral form can be obtained. 

∫  (−𝑀′
𝑥𝑥  

𝑑2𝛿𝑤

𝑑𝑥2
 +  𝑀𝑥𝑥

𝑑𝛿𝛷

𝑑𝑥
 −  𝑀′

𝑥𝑥
𝑑𝛿𝛷

𝑑𝑥
 +  𝑄𝑥 ( 

𝑑𝛿𝑤

𝑑𝑥
 + 𝛿ф) − 𝑅𝑥 ( 

𝑑𝛿𝑤

𝑑𝑥
 +

𝐿

0

𝛿ф) −  𝑞(𝑥)𝛿𝑤)  dx =  0          

By applying integration by parts to (3.19), we obtain the coupled Euler–

Lagrange equations which are the governing differential equations of equilibrium and 

associated boundary conditions of the beam.  

[−𝑀′
𝑥𝑥

𝑑𝛿𝑤

𝑑𝑥
 +  (𝑀

𝑥𝑥
− 𝑀′

𝑥𝑥)𝛿ф]0
𝐿
 + ∫   

𝐿

0
(
𝑑𝑀𝑥𝑥

𝑑𝑥

𝑑𝛿𝑤

𝑑𝑥
 − ( 

𝑑𝑀𝑥𝑥

𝑑𝑥
−

 
𝑑𝑀′

𝑥𝑥

𝑑𝑥
) ( 

𝑑𝛿𝑤

𝑑𝑥
 + 𝛿ф) + (𝑄

𝑥
 −  𝑅𝑥) ( 

𝑑𝛿𝑤

𝑑𝑥
 + 𝛿ф) −  𝑞(𝑥)𝛿𝑤) 𝑑𝑥 =  0   

[−𝑀′
𝑥𝑥

𝑑𝛿𝑤

𝑑𝑥
 +  (𝑀𝑥𝑥 − 𝑀

′
𝑥𝑥)𝛿ф +

𝑑𝑀𝑥𝑥

𝑑𝑥
𝛿𝑤 ]0

𝐿  +  ∫   
𝐿

0
((−

𝑑2𝑀𝑥𝑥

𝑑𝑥2
 𝛿𝑤 −

𝑞(𝑥)𝛿𝑤 ) − (  
𝑑𝑀𝑥𝑥
𝑑𝑥

 −  
𝑑𝑀′𝑥𝑥
𝑑𝑥

  −  𝑄𝑥 +  𝑅𝑥) ( 
𝑑𝛿𝑤

𝑑𝑥
 + 𝛿ф))𝑑𝑥 =  0  

Since 𝛿𝑤, 
𝑑𝛿𝑤 

𝑑𝑥
  and 𝛿ф are arbitrary in 0 < 𝑥 < 𝐿, coefficients of those functions 

should be zero in (3.20). Setting the coefficients to zero, will give governing equations 

of equilibrium (3.21) and (3.22) for the problem. Further, at boundary, the conditions 

given in (3.23) should be satisfied. 

Equations of Equilibrium 

𝑑2𝑀𝑥𝑥

𝑑𝑥2
= −𝑞(𝑥)         

𝑑(𝑀𝑥𝑥−𝑀
′
𝑥𝑥)

𝑑𝑥
− (𝑄

𝑥
− 𝑅𝑥) = 0         

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.18) 
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Boundary conditions 

𝑑𝑀𝑥𝑥

𝑑𝑥
 = 0  or   𝑤 is prescribed     

𝑀̅ 𝑥𝑥 = 0  or   ф is prescribed     

𝑀′𝑥𝑥 = 0 or   −
𝑑𝑤

𝑑𝑥
  is prescribed     

         

For a uniform rectangular isotropic beam, the equations of equilibrium can be 

obtained in terms of the displacements w and θ using the stress resultant-displacement 

relations given in (3.15)-(3.18).  

𝐸𝐼
𝑑4𝑤

𝑑𝑥4
  −  𝐴0𝐸𝐼(

𝑑4𝑤

𝑑𝑥4
+
𝑑3ф

𝑑𝑥3
) =  𝑞(𝑥)    

 𝐸𝐼𝐴𝑜
𝑑3𝑤

𝑑𝑥3
  − 𝐸𝐼𝐵0(

𝑑3𝑤

𝑑𝑥3
+
𝑑2ф

𝑑𝑥2
)  + 𝐶0𝐺𝐴( 

𝑑𝑤

𝑑𝑥
 + ф)  =  0   

Where 

Ao = μ {cosh (
1

2
) − 12 [cosh (

1

2
) − 2 sinh (

1

2
)]} ≈ 8.0234 × 10−1 

Bo = 𝜇
2 {cosh (

1

2
)2 − 24 cosh (

1

2
) [cosh (

1

2
) − 2 sinh (

1

2
)] + 6[sinh(1) − 1]}

≈ 6.5138 × 10−1 

Co = 𝜇
2 {cosh (

1

2
) [cosh (

1

2
) − 2 sinh (

1

2
)] −

1

2
[sinh(1) − 1]} ≈ 5.3649 × 10−1  

3.4. General solutions for static flexure of beams 

By integrating and rearranging (3.24) and (3.25), the following differential 

forms are obtained 

𝑑3𝑤

𝑑𝑥3
 – A0(

𝑑3𝑤

𝑑𝑥2
+
𝑑2ф

𝑑𝑥2
) + V(x) = 0      

 𝑉𝑥 = −(∫ 𝑞(𝑥)𝑑𝑥 + 𝐶1)  ; 𝑉𝑥 is effective shear force at section x. 

𝑑3𝑤

𝑑𝑥3
 – 
𝐴0

𝐵0
   (

𝑑3𝑤

𝑑𝑥3
+
𝑑2ф

𝑑𝑥2
)  + k( 

𝑑𝑤

𝑑𝑥
 + ф)  = 0      

 k= 
𝐺𝐴𝐶0

𝐸𝐼𝐴0
 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 
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Using (3.26) and (3.27), following differential equation can be obtained in 

terms of  θ = ( 
𝑑𝑤

𝑑𝑥
 + ф)  only. 

𝑑2𝜃

𝑑𝑥2
 – λ2θ + 

V(x)

E I m
 = 0        

𝑚 =
𝐵𝑜
𝐴𝑜
− 𝐴𝑜 

λ2 =
k

m
=

GACo

E I (Bo−Ao
2)

  

 

Solving the (3.28) for θ and substituting the result into (3.26) will give 

following general solutions for displacements 

θ = C2 cosh(λx) + C3 sinh(λx) + 
Vx

E I m
     

𝐸𝐼𝑤 = ∫∫∫∫𝑞(𝑥) 𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥  +  𝐸𝐼
𝐴0

𝜆
 [𝐶2 𝑠𝑖𝑛ℎ(𝜆𝑥) + 𝐶2 cosh (𝜆𝑥) ]  + C1

𝑥3

6
 +

 C4
𝑥2

2
 + C5𝑥 + C6        

Where Ci for i = 1,2, … . .6 are unknown parameters.   

Since six boundary conditions are available, those six unknown constants can be 

determined for the specific problems. Numerical examples are discussed in chapter V 

to validate the present beam theory. Solution obtained using present theory are 

compared with the solutions available from the other beam theories and two 

dimensional elasticity solutions. 

 

 

 

 

(3.28) 

(3.29) 

(3.30) 
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CHAPTER IV 

4. FINITE ELEMENT FORMULATION 

4.1. Derivation of shape functions  

In traditional formulation of the finite element, the displacement variables are 

approximated using polynomials which should satisfy certain requirements in order to 

converge to the actual solution as the number of elements is increased [38]. The 

approximation function for the variable should be  

 continuous over the element and differentiable, as required by the weak form. 

 a complete polynomial (i.e:  all lower order terms up to the highest order term 

used) and 

 an interpolant of the primary variables at the nodes of the finite element ( i.e: 

imposing the continuity of the solution across the inter-element boundary) 

However, later a new approach was followed by researchers for the choice of 

approximation function in certain finite element formulation which makes possible to 

get the exact finite element solutions of the differential equations at nodal points. In 

this approach primary variables are approximated by the solution of the adjoint 

differential equation [52]. IIE beam element using FSBT in [39] follows same 

approach which gives exact nodal values. 

Assuming that there is no applied transverse load in (3.24) and (3.25), adjoint 

differential equation can be obtained. These coupled equations are uncoupled in order 

to get the homogeneous solutions for the equations. The uncoupled equations of 

equilibrium are 

d6w

dx6
− λ2

d4w

dx4
  =  0 

d5Φ

dx5
− λ2

d3Φ

dx3
  =  0 

 

λ2 =
GACo

EI(Bo − Ao
2)

 

(4.1) 

(4.2) 
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The solutions for the differentials equations (4.1) and (4.2) can be written as follows 

w(x) = 𝐶1 sinh(𝜆𝑥) + 𝐶2  cosh(𝜆𝑥) + 𝐶3𝑥
3 + 𝐶4 𝑥

2 + 𝐶5𝑥 + 𝐶6   

Φ(x) = 𝐶7 sinh(𝜆𝑥) + 𝐶8 cosh(𝜆𝑥) + 𝐶9𝑥
2 + 𝐶10𝑥 + 𝐶11  

Where  𝐶𝑖  𝑓𝑜𝑟 𝑖 = 1,2……11 are unknown parameters . 

 

Since  the  theory  is  only having six boundary conditions,  only  six  of  the  parameters  

can  be  independent.  Substituting (4.3) and (4.4) into (3.25), gives   the following 

relationships between the parameters: 

 

𝑑𝑤

𝑑𝑥
= 𝐶1 𝜆 cosh(𝜆𝑥) + 𝐶2 𝜆 sinh(𝜆𝑥) + 3𝐶3𝑥

2 + 2𝐶4𝑥 + 𝐶5  

 

𝑑3𝑤

𝑑𝑥3
 =  𝐶1 𝜆

3 cosh(𝜆𝑥) + 𝐶2 𝜆
3 sinh(𝜆𝑥) + 6𝐶3   

 

𝑑2ф

𝑑𝑥2
= 𝐶7 𝜆

2 sinh(𝜆𝑥) + 𝐶8 𝜆
2 cosh(𝜆𝑥) + 2𝐶9  

 

𝐸𝐼𝐴𝑜
𝑑3𝑤

𝑑𝑥3
  − 𝐸𝐼𝐵0 (

𝑑3𝑤

𝑑𝑥3
+
𝑑2ф

𝑑𝑥2
) + 𝐶0𝐺𝐴 ( 

𝑑𝑤

𝑑𝑥
 + ф) =  0     

 

Substituting (4.4), (4.5) and (4.6), into above equations gives the following 

relationships between the unknown parameters: 

 

(𝐸𝐼𝐴𝑜 − 𝐸𝐼𝐵0)  (𝐶1 𝜆
3 cosh(𝜆𝑥) + 𝐶2 𝜆

3 sinh(𝜆𝑥) + 6𝐶3  ) + 𝐶0𝐺𝐴(𝐶1 𝜆 cosh(𝜆𝑥) +

𝐶2 𝜆 sinhh(𝜆𝑥) + 3𝐶3𝑥
2 + 2𝐶4𝑥 + 𝐶5) =  𝐸𝐼𝐵0(𝐶7 𝜆

2 sinh(𝜆𝑥) + 𝐶8 𝜆
2 cosh(𝜆𝑥) + 2𝐶9 ) −

𝐶0𝐺𝐴(𝐶7 sinh(𝜆𝑥) + 𝐶8 cosh(𝜆𝑥) + 𝐶9𝑥
2 + 𝐶10𝑥 + 𝐶11)  

Equating the coefficient of each term, gives relationship between those unknown 

parameters. 

cosh(𝜆𝑥) ∶  

(𝜆3(𝐸𝐼𝐴𝑜 − 𝐸𝐼𝐵0) + 𝐶0𝐺𝐴𝜆)𝐶1 = (𝐸𝐼𝐵0𝜆
2 − 𝐶0𝐺𝐴𝜆)𝐶8 

𝐶8 =  𝜆 (
1

𝐴0
− 1)𝐶1  

(4.3) 

(4.4) 

(4.4) 

(4.5) 

(4.6) 
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𝐶8 =  0.2463𝜆𝐶1  

sinhh(𝜆𝑥) ∶  

𝐶7 =  0.2463𝜆𝐶2  

𝑥2 ∶  

3𝐶0𝐺𝐴𝐶3 = −𝐶0𝐺𝐴𝐶9  

𝐶9 = −3𝐶3  

 𝑥 ∶ 

2𝐶0𝐺𝐴𝐶4 = −𝐶0𝐺𝐴𝐶10  

𝐶10 = −2𝐶4  

Constant: 

(𝐸𝐼𝐴𝑜 − 𝐸𝐼𝐵0)6𝐶3 + 𝐶0𝐺𝐴𝐶5 = 2𝐸𝐼𝐵0𝐶9 − 𝐶0𝐺𝐴𝐶11    

𝐶11 = − (
𝐸𝐼𝐴𝑜

𝐶0𝐺𝐴
𝐶3 + 𝐶5)  

𝐶11 = − (8.9728
𝐸𝐼

𝐺𝐴
𝐶3 + 𝐶5) = 𝐶11 = −(8.9728 𝑅 𝐶3 + 𝐶5) ; 𝑅 =

𝐸𝐼

𝐺𝐴
 

 Substituting these relations between these parameters into (4.4), gives 

following interpolation functions having six unknown parameters. Here interpolation 

functions are inter-dependant on each other (inter-dependent interpolation-IIE) which 

makes the size of the stiffness matrix smaller with higher accuracy in solutions 

comparing to the independent approximation for primary variables [52]. 

w(x) = 𝐶1sinh(𝜆𝑥) + 𝐶2  cosh(𝜆𝑥) + 𝐶3𝑥
3 + 𝐶4 𝑥

2 + 𝐶5𝑥 + 𝐶6  

Φ(x) =  0.2463𝜆𝐶1 cosh(𝜆𝑥) + 0.2463𝜆𝐶2sinh(𝜆𝑥) − 3𝐶3𝑥
2 − 2𝐶4𝑥 −

(8.9728 𝑅 𝐶3 + 𝐶5)  

 

 

(4.7) 

(4.8) 
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Therefore within the element shown in Figure 4.1, the interpolation can be 

written as 

𝑤(𝑥) = {𝐴1}. {𝐶} 

𝛷(𝑥) = {𝐴2}. {𝐶} 

 

Where 

{𝐴1} = {sinh(𝜆𝑥) , cosh(𝜆𝑥) , 𝑥
3, 𝑥2, 𝑥, 1} 

{𝐴2} = {0.2463𝜆 cosh(𝜆𝑥) , 0.2463𝜆 sinh(𝜆𝑥),

− (3𝑥2 + 8.9728 𝑅), −2𝑥,−1,0} 

{𝐶} = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6}
T 

 

The element has two nodes each with three degrees of freedom, one 

displacement (transverse displacement) and two rotations (total rotation and bending 

rotation of the cross section).  The element nodal degrees of freedom are taken as  

{𝐷} = {𝑤(0), − 𝑤′(0), 𝛷(0), 𝑤(𝐿), − 𝑤′(𝐿), 𝛷(𝐿)}𝑇 

Using (4.9) and (4.10), {D} can be written as  

{
 
 

 
 
𝑤(0)

− 𝑤′(0)

𝛷(0)

 𝑤(𝐿)

− 𝑤′(𝐿)

𝛷(𝐿) }
 
 

 
 

  

=

[
 
 
 
 
 

0                            1
−𝜆                            0

            0                     0
             0                     0

  0 1
−1 0

0.2463𝜆                 0
sinh(𝜆𝐿)                   cosh(𝜆𝐿)

−8.9728 𝑅                0
         𝐿3                𝐿2

 
−1 0
  𝐿 1

−𝜆 cosh(𝜆𝐿) −𝜆 sinh(𝜆𝐿),
0.2463𝜆 cosh(𝜆𝐿) 0.2463𝜆 sinh(𝜆𝐿)

−3𝐿2 −2𝐿
−(3𝐿2 + 8.9728 𝑅) −2𝐿

−1 0
−1 0]

 
 
 
 
 

{
 
 

 
 
𝐶1
𝐶2
𝐶3
 𝐶4
𝐶5
𝐶5}
 
 

 
 

 

{D} = [B]. {C} 
Where 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
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[𝐵] = [𝐴1(0), 𝐴
′
1(0), 𝐴2(0), 𝐴1(𝐿), 𝐴

′
1(𝐿), 𝐴2(𝐿)]

𝑇 

Solving (4.15) for C 

{𝐶} = [𝐵]−1{𝐷} 

Substituting (4.17) into equations (4.9) and (4.10), gives 

𝑤(𝑥) = [𝑁1]. {𝐷} 

𝛷(𝑥) = [𝑁2]. {𝐷} 

Where 

[𝑁1] = {𝐴1}. [𝐵]
−1 

[𝑁2] = {𝐴2}. [𝐵]
−1 

are shape function matrices. 

4.2. Construction of weak form 

The weak forms of the governing equations are developed using Galerkin 

method. Assume that 𝑊1 𝑎𝑛𝑑 𝑊2 and are two weight functions used to form the 

weighted integral form of the differential equations. 

Considering the differerential equation (3.11 );  

∫  𝑊1 
𝐿

0
(
𝑑2𝑀𝑥𝑥

𝑑𝑥2
+ 𝑞(𝑥)) 𝑑𝑥 = 0  

∫  
𝐿

0
(−

𝑑𝑊1 

𝑑𝑥

𝑑 𝑀𝑥𝑥

𝑑𝑥 
+𝑊1 𝑞(𝑥)) 𝑑𝑥 + (𝑊1 

𝑑 𝑀 

𝑑𝑥 
) |
𝐿
0
= 0  

∫  
𝐿

0
(
𝑑2𝑊1 

𝑑𝑥2
𝑀𝑥𝑥 +𝑊1 𝑞(𝑥)) 𝑑𝑥 + (𝑊1 

𝑑 𝑀 

𝑑𝑥 
) |
𝐿
0
− (

𝑑𝑊1 

𝑑𝑥
𝑀) |

𝐿
0
= 0  

∫  
𝐿

0
(
𝑑2𝑊1 

𝑑𝑥2
(−𝐸𝐼

𝑑2𝑤

𝑑𝑥2
+ 𝐸𝐼𝐴0 ( 

𝑑2𝑤

𝑑𝑥2
 +

𝑑ф

𝑑𝑥
)) +𝑊1 𝑞(𝑥))𝑑𝑥 + (𝑊1 

𝑑 𝑀 

𝑑𝑥 
) |
𝐿
0
−

(
𝑑𝑊1 

𝑑𝑥
𝑀) |

𝐿
0
= 0  

 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.25) 
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Considering the differerential equation (3.12 ); 

∫  𝑊2 
𝐿

0
(
𝑑𝑀̅ 𝑥𝑥

𝑑𝑥
− (𝑄𝑥 − 𝑅𝑥)) 𝑑𝑥 = 0  

∫  
𝐿

0
(−

𝑑𝑊2 

𝑑𝑥
𝑀̅ 𝑥𝑥 −𝑊2 (𝑄𝑥 − 𝑅𝑥)) 𝑑𝑥 + (𝑊2 𝑀̅) |

𝐿
0
= 0  

∫  
𝐿

0
(−

𝑑𝑊2 

𝑑𝑥
𝑀̅ 𝑥𝑥 −𝑊2 (𝑄𝑥 − 𝑅𝑥)) 𝑑𝑥 + (𝑊2 𝑀̅) |

𝐿
0
= 0  

 

∫  
𝐿

0
(−

𝑑𝑊2 

𝑑𝑥
(−𝐸𝐼𝐴0

𝑑2𝑤

𝑑𝑥2
+ 𝐸𝐼𝐵0 ( 

𝑑2𝑤

𝑑𝑥2
 +

𝑑ф

𝑑𝑥
)) −𝑊2 𝐺𝐴𝐶0 (

𝑑𝑤

𝑑𝑥
 + ф) ) 𝑑𝑥 +

(𝑊2 𝑀̅) |
𝐿
0
= 0  

Equations (4.25) and (4.27) are weak form of governing differential equations 

(3.11) and (3.12) respectively. 

4.3. Finite element model 

General finite element model for this beam problem is developed by substituting 

approximations of primary variables into the weak forms (4.25) and (4.27). In Galerkin 

based finite element model, the weight functions in the weak form are equal to 

interpolation functions which are used to approximate the primary variables. 

Here the weight functions 𝑊1  and 𝑊2 should be equal to [𝑁1]
𝑇 and 

[𝑁2]
𝑇respectively. Substituting all these into the weak forms (4.25) and (4.27), gives;  

∫  
𝐿

0
(
𝑑2[𝑁1]

𝑇 

𝑑𝑥2
(−𝐸𝐼

𝑑2𝑁1.𝐷

𝑑𝑥2
+ 𝐸𝐼𝐴0 ( 

𝑑2𝑁1.𝐷

𝑑𝑥2
 +

𝑑𝑁2.𝐷

𝑑𝑥
)) + [𝑁1]

𝑇𝑞(𝑥))𝑑𝑥 +

([𝑁1]
𝑇  
𝑑 𝑀 

𝑑𝑥 
) |
𝐿
0
− (

𝑑[𝑁1]
𝑇 

𝑑𝑥
𝑀) |

𝐿
0
= 0  

 

∫  
𝐿

0
(
𝑑2𝑁1

𝑇 

𝑑𝑥2
(−𝐸𝐼

𝑑2𝑁1.𝐷

𝑑𝑥2
+ 𝐸𝐼𝐴0 ( 

𝑑2𝑁1.𝐷

𝑑𝑥2
 +

𝑑𝑁2.𝐷

𝑑𝑥
)) + 𝑁1

𝑇𝑞(𝑥)) 𝑑𝑥 + (𝑁1
𝑇  
𝑑 𝑀 

𝑑𝑥 
) |
𝐿
0
−

(
𝑑𝑁1

𝑇 

𝑑𝑥
𝑀) |

𝐿
0
= 0  

(4.26) 

(4.27) 

(4.28) 
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∫  
𝐿

0
(𝐸𝐼(1 − 𝐴0)

𝑑2𝑁1
𝑇 

𝑑𝑥2
𝑑2𝑁1.𝐷

𝑑𝑥2
− 𝐸𝐼𝐴0

𝑑2𝑁1
𝑇 

𝑑𝑥2
𝑑𝑁2.𝐷

𝑑𝑥
) 𝑑𝑥 = ∫ 𝑁1

𝑇𝑞(𝑥)𝑑𝑥
𝐿

0
+

(𝑁1
𝑇  
𝑑 𝑀 

𝑑𝑥 
) |
𝐿
0
− (

𝑑𝑁1
𝑇 

𝑑𝑥
𝑀) |

𝐿
0

  

 

∫  
𝐿

0
(−

𝑑𝑁2
𝑇 

𝑑𝑥
(−𝐸𝐼𝐴0

𝑑2𝑁1.𝐷

𝑑𝑥2
+ 𝐸𝐼𝐵0 ( 

𝑑2𝑁1.𝐷

𝑑𝑥2
 +

𝑑𝑁2.𝐷

𝑑𝑥
)) −

                      𝑁2
𝑇𝐺𝐴𝐶0 (

𝑑𝑁1.𝐷

𝑑𝑥
 + 𝑁2. 𝐷) ) 𝑑𝑥 + (𝑁2

𝑇𝑀̅) |
𝐿
0
= 0  

 

∫  
𝐿

0
(−𝐸𝐼𝐴0

𝑑𝑁2
𝑇 

𝑑𝑥

𝑑2𝑁1.𝐷

𝑑𝑥2
+ 𝐸𝐼𝐵0

𝑑𝑁2
𝑇 

𝑑𝑥

𝑑2𝑁1.𝐷

𝑑𝑥2
+ 𝐸𝐼𝐵0

𝑑𝑁2
𝑇 

𝑑𝑥

𝑑𝑁2.𝐷

𝑑𝑥
+ 𝐺𝐴𝐶0𝑁2

𝑇 𝑑𝑁1.𝐷

𝑑𝑥
+

𝐺𝐴𝐶0𝑁2
𝑇𝑁2. 𝐷) 𝑑𝑥 = (𝑁2

𝑇𝑀̅) |
𝐿
0

  

Combining (4.30) and (4.31) will give the required set of algebraic equations. 

∫  
𝐿

0
(𝐸𝐼(1 − 𝐴0)

𝑑2𝑁1
𝑇 

𝑑𝑥2
𝑑2𝑁1.𝐷

𝑑𝑥2
− 𝐸𝐼𝐴0

𝑑2𝑁1
𝑇 

𝑑𝑥2
𝑑𝑁2.𝐷

𝑑𝑥
− 𝐸𝐼𝐴0

𝑑𝑁2
𝑇 

𝑑𝑥

𝑑2𝑁1.𝐷

𝑑𝑥2
+

𝐸𝐼𝐵0
𝑑𝑁2

𝑇 

𝑑𝑥

𝑑2𝑁1.𝐷

𝑑𝑥2
+ 𝐸𝐼𝐵0

𝑑𝑁2
𝑇 

𝑑𝑥

𝑑𝑁2.𝐷

𝑑𝑥
+ 𝐺𝐴𝐶0𝑁2

𝑇 𝑑𝑁1.𝐷

𝑑𝑥
+ 𝐺𝐴𝐶0𝑁2

𝑇𝑁2. 𝐷) 𝑑𝑥 =

∫ 𝑁1
𝑇𝑞(𝑥)𝑑𝑥

𝐿

0
+ (𝑁1

𝑇  
𝑑 𝑀 

𝑑𝑥 
) |
𝐿
0
− (

𝑑𝑁1
𝑇 

𝑑𝑥
𝑀) |

𝐿
0
+ (𝑁2

𝑇𝑀̅) |
𝐿
0

  

Equation (4.32) can be expressed as the following finite element model form; 

[𝑆]{𝐷} = {𝑓} + {𝐹} 

Where 

𝑆𝑖𝑗 = ∫  

𝐿

0

(𝐸𝐼(1 − 𝐴0)
𝑑2𝑁1𝑖

𝑇  

𝑑𝑥2
𝑑2𝑁1𝑗

𝑑𝑥2
− 𝐸𝐼𝐴0

𝑑2𝑁1𝑖
𝑇  

𝑑𝑥2
𝑑𝑁2𝑗

𝑑𝑥
− 𝐸𝐼(𝐴0 − 𝐵0)

𝑑𝑁2𝑖
𝑇  

𝑑𝑥

𝑑2𝑁1𝑗

𝑑𝑥2

+ 𝐸𝐼𝐵0
𝑑𝑁2𝑖

𝑇  

𝑑𝑥

𝑑𝑁2𝑗

𝑑𝑥
+ 𝐺𝐴𝐶0𝑁2𝑖

𝑇
𝑑𝑁1𝑗

𝑑𝑥
+ 𝐺𝐴𝐶0𝑁2𝑖

𝑇𝑁2𝑗) 

𝑓𝑖 = ∫ 𝑁1𝑖
𝑇  𝑞(𝑥)𝑑𝑥

𝐿

0

 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 
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𝐹𝑖 = {−𝑉(0),𝑀
′(0), −𝑀̅(0), −𝑉(𝐿),𝑀′(𝐿), −𝑀̅(𝐿)}𝑇 

This gives a 6x6 symmetric stiffness matrix. The element stiffness depends on 

parameters such as Poisson’s ratio (υ) and aspect ratio (L/h). 

 

 

4.3.1. Stiffness matrix terms 

S11 =
2∗E∗I

K2
∗ (9.3196 ∗ λ2 ∗ L3 +  9.4384 ∗ 103 ∗ L −  1.8877 ∗

104

λ
)  

 

S12 = −
2∗E∗I

K2
∗ (9.2103 ∗ 10−1 ∗ λ2 ∗ L4 + 7.4775 ∗ λ ∗ L3 + 9.3278 ∗ 102 ∗ L2 +

5.7074 ∗ 103 ∗
L

λ
− 1.5146 ∗

104

λ2
)  

 

S23 =
2∗E∗I

K2∗L
∗ (−5.92380 ∗ 10−3 ∗ λ3 ∗ L7 + 4.9266 ∗ 10−1 ∗ λ2 ∗ L6 − 9.7381 ∗ λ ∗

L5 +  6.4168 ∗ 102 ∗ L4 − 5.0338 ∗ 103 ∗
L3

λ
+ 1.39980 ∗ 105 ∗

L2

λ2
− 5.17480 ∗

105 ∗
L

λ3
+ 5.05330 ∗

105

𝜆4
)  

 

S13 =
2∗E∗I

K2
∗ (−3.7388 ∗ λ2 ∗ L4 + 7.4775 ∗ λ ∗ L3 − 3.7864 ∗ 103 ∗ L2 + 1.5146 ∗

104 ∗
L

λ
− 1.5146 ∗

104

λ2
)  

 

Figure 4.1-Genralized displacements and generalised forces on a typical element 
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S22 =
2∗E∗I

K2∗L
∗ (5.9238 ∗ 10−3 ∗ λ3 ∗ L7 +  1.2136 ∗ 10−1 ∗ λ2 ∗ L6 + 1.3477 ∗ 101 ∗

λ ∗ L5 + 1.3564 ∗ 102 ∗ L4 +  7.2656 ∗ 103 ∗
L3

λ
+  9.8995 ∗ 103 ∗

L2

λ2
− 1.1233 ∗

105 ∗
L

λ3
+  1.2449 ∗

105

λ4
)  

S25 =
2∗E∗I

K2∗L
∗ (6.0682 ∗ 10−2 ∗ λ2 ∗ L6 +  1.478 ∗ λ ∗ L5 + 36.727 ∗ L4 +  1.4354 ∗

103 ∗
L3

λ
− 2.8039 ∗ 104 ∗

L2

λ2
+ 1.1233 ∗ 105 ∗

L

λ3
− 1.2449 ∗

105

λ4
)  

S26 =
2∗E∗I

K2∗L
∗ (2.4633 ∗ 10−1 ∗ λ2 ∗ L6 + 2.2608 ∗ λ ∗ L5 + 1.1873 ∗ 102 ∗ L4 +

 2.0402 ∗ 103 ∗
L3

λ
− 1.3699 ∗ 105 ∗

L2

λ2
+ 5.17480 ∗ 105 ∗

L

λ3
− 5.0533 ∗

105

λ4
)  

S33 =
2∗E∗I

K2∗L
∗ (5.9238 ∗ 10−3 ∗ λ3 ∗ L7 + 1.9998 ∗ λ2 ∗ L6 + 5.9993 ∗ λ ∗ L5 +

 2.5137 ∗ 103 ∗ L4 − 5.0634 ∗ 103 ∗
L3

λ
+  5.0674 ∗ 105 ∗

L2

λ2
− 2.0391 ∗ 106 ∗

L

λ3
+

2.0513 ∗
106

λ4
)  

S36 = −
2∗E∗I

K2∗L
∗ (–  9.9992 ∗ 10−1 ∗ λ2 ∗ L6 + 5.9996 ∗ λ ∗ L5–  5.1232 ∗ 102 ∗ L4 +

 7.0887 ∗ 103 ∗
L3

λ
+  4.9459 ∗ 105 ∗

L2

λ2
−  2.0391 ∗ 106 ∗

L

λ3
+ 2.0513 ∗

106

λ4
)  

 

 K =  (1.2463 ∗ λ ∗ L3 +  1.2623 ∗ 103 ∗
L

λ
− 2.5246 ∗

103

λ2
) 

S11 = ⎼ S14 = S44   S12 = S15 =    ̶S24 =   ̶ S45 S13 = S16 =   ̶ S34 =   ̶ S46 

S23 = S56 S22 = K55    S26 = S35 S33 = S66 

 

Although the stiffness terms look complex and longer, substitution of Poisson’s 

ratio (υ) and aspect ratio (L/h) gives a simple 6x6 matrix.  
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 For L/h =1 and υ =0.3 

 For L/h =10 and υ =0.3 

 

There is a significant difference in the stiffness value estimated when the 

aspect ratio is different for the element.  Therefore when the classical Euler-

Bernoulli beam element is used for the thick or short beam analysis, it tends to 

estimate higher stiffness value and lower deformation. 

 

4.3.2. Load vector 

For uniform distributed load of q, the load vector f is given by, 

𝑓𝑖 =

{
 
 
 
 
 

 
 
 
 
 

0.5 ∗ q ∗ L

−q ∗
821 ∗ λ2 ∗ L2 + 20000 ∗ λ ∗ L − 40000

49852 ∗ λ2

−q ∗
2500 ∗ λ2 ∗ L2 − 15000 ∗ λ ∗ L + 30000

37389 ∗ λ2

0.5 ∗ q ∗ L

q ∗
821 ∗ λ2 ∗ L2 + 20000 ∗ λ ∗ L − 40000

49852 ∗ λ2

q ∗
2500 ∗ λ2 ∗ L2 − 15000 ∗ λ ∗ L + 30000

37389 ∗ λ2 }
 
 
 
 
 

 
 
 
 
 

 

 

4.4. Using the finite element model for 2D frame analysis. 

When the finite element model is used for the 2D frame analysis, axial 

displacement due to axial force also need to be included. The displaced field (3.1) is 

extended to take into account the effect of axial force as follows; 

S 

S 
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𝑢(𝑥, 𝑧) =  𝑢 (𝑥) +  𝑧 ф(𝑥) −  𝜇 ( ℎ 𝑠𝑖𝑛ℎ (
𝑧

ℎ
) −  𝑧) [ 

𝑑𝑤

𝑑𝑥
 + ф(𝑥)] ;  𝜇 =  

1

𝑐𝑜𝑠ℎ
1

2
 −1

                 

𝑤(𝑥, 𝑧)  =  𝑤(𝑥)  

Where; 

 𝑢0 is axial displacement due to axial force at the centre line. Other terms are defined 

same as before. 

With same procedure followed in the previous section (3.3), set of governing equations 

of equilibrium and boundary conditions can be obtained. 

In addition to equation of equilibrium obtained section (3.3), there is one more 

governing equation  

𝑑𝑃

𝑑𝑥
=  −𝑝(𝑥) 

Where; 

𝑝(𝑥) is distributed axial load acting on the beam. P is resultant axial force in an 

arbitrary section of the beam. 

The additional boundary condition becomes 

𝑃 = 0  or   ф is prescribed 

The stress resultant P is defined as 

𝑃 =  ∫𝜎𝑥𝑥𝑑𝐴
 

𝐴

 

𝑃 =  ∫ 𝐸𝑏 (
𝑑 𝑢(𝑥)

𝑑𝑥
+  𝑧 

𝑑ф

𝑑𝑥
– 𝜇 ( ℎ 𝑠𝑖𝑛ℎ (

𝑧

ℎ
) − 𝑧) ( 

𝑑2𝑤

𝑑𝑥2
 +
𝑑ф

𝑑𝑥
))𝑑𝑧

ℎ/2 

−
ℎ
2

 

𝑃 = 𝐸𝐴
𝑑 𝑢(𝑥)

𝑑𝑥
 

Other stress resultants are same as defined in section (3.4). 

Linear Lagrangian interpolation can be used to approximate the displacement variable 

𝑢0. Since the approximation also represents homogeneous solution of the governing 

equations of equilibrium, the formulation based on this approximation also will give 

(4.33) 

(4.34) 

(4.35) 

(4.36) 
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exact nodal displacement. Additional stiffness terms due to axial displacement is same 

as in the classical finite elements. The final stiffness matrix is 8x8 matrix. For 

uniformly distributed axial load the finite element model can be written as follows 

[
 
 
 
 
 
 
 
𝐸𝐴/𝐿      0
   0      ∗

 0   0
  ∗    ∗

      0       ∗
      0        ∗

  
∗    ∗
∗    ∗

−𝐸𝐴/𝐿 0
0 ∗

0 0
∗ ∗

    
  0       ∗
   0       ∗

∗ ∗
∗ ∗

−𝐸𝐴/𝐿 0
0 ∗

  0     0
 ∗   ∗

     
0        ∗
0       ∗

  ∗    ∗
  ∗    ∗

  𝐸𝐴/𝐿     0
    0    ∗

0 0
∗ ∗

 
      ∗        ∗
      ∗        ∗

∗ ∗
∗ ∗]

 
 
 
 
 
 
 

{
  
 

  
 
𝑢0 (0)
∗
∗
∗

𝑢0 (𝐿)
∗
∗
∗ }

  
 

  
 

=

{
  
 

  
 
𝑝𝐿/2
∗
∗
∗

𝑝𝐿/2
∗
∗
∗ }
  
 

  
 

+

{
 
 

 
 
𝑃(0)
∗
∗
∗
∗
∗
∗

𝑃(𝐿)}
 
 

 
 

 

*these refer to similar terms derived in the previous sections (4.3.1) 

4.4.1. Transformation from local system to global system 

Analysis of 2D frame for displacements and stresses requires, setting of global 

coordinate system and referring all quantities of individual elements to common global 

coordinate system in order to assemble the element and impose boundary conditions 

on the whole structure. 

The local coordinates (𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒) of a typical element are related to the global 

coordinates (𝑥, 𝑦, 𝑧) by 

{

𝑥𝑒
𝑦𝑒
𝑧𝑒
} = [

𝑐𝑜𝑠𝛼 0 𝑠𝑖𝑛𝛼
0 1 1

−𝑠𝑖𝑛𝛼 0 𝑐𝑜𝑠𝛼
] {
𝑥
𝑦
𝑧
} 

Where 𝛼 angle is measured clockwise from the global 𝑥 - axis to the element 𝑥𝑒- axis 

and 𝑦 and 𝑦𝑒, axes are parallel to each other and they are out of the plane of the paper 

(see Figure 4.2). 

Figure 4.2-Generalised displacements in the local and global coordinates 

(4.37) 
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The nodal degrees of freedom in the local coordinate system are related to nodal 

degrees of freedom in the global coordinate system using the following transformation 

matrix [T]. 

{
 
 
 
 
 

 
 
 
 
 
𝑢0,1
𝑒

𝑤1
𝑒

−𝑑𝑤1
𝑒

𝑑𝑥

1
𝑒

𝑢0,2
𝑒

𝑤2
𝑒

−𝑑𝑤2
𝑒

𝑑𝑥

2
𝑒
}
 
 
 
 
 

 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼
−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

0 0
0 0

0      0
0      0

1 0
0 1

0

0

𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼
−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

0 0
0 0

 
 0       0
0       0

1 0
0 1]

 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 
𝑢0,1
 

𝑤1
 

−𝑑𝑤1
 

𝑑𝑥

1
 

𝑢0,2
 

𝑤2
 

−𝑑𝑤2
 

𝑑𝑥

2
 
}
 
 
 
 

 
 
 
 

 

{𝐷𝑒} = [𝑇]. {𝐷} 

Similarly the element force vectors in the local and global system are related by 

{𝑓𝑒} + {𝐹𝑒} = [𝑇]({𝑓} + {𝐹}) 

Substituting (4.38) and (4.39) into the finite element relations [𝑆𝑒]{𝑑𝑒} = {𝑓
𝑒} + {𝐹𝑒} 

in the local coordinate system, gives;  

[𝑆𝑒][𝑇]. {𝐷} = [𝑇]({𝑓} + {𝐹}) 

Pre multiplying (4.40) both sides by [𝑇]𝑇 = [𝑇]−1, gives; 

[𝑆]. {𝐷} = {𝑓} + {𝐹} 

Where [𝑆] = [𝑇]𝑇[𝑆𝑒][𝑇] 

 

 

  

 

 

(4.38) 

(4.39) 

(4.40) 

(4.41) 
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CHAPTER V 

5. RESULTS AND DISCUSSION 

5.1. Validation of the proposed theory 

The following numerical examples are considered for the validation of the 

present theory. A simply supported beam problem and a cantilever beam problem with 

different aspect ratios are solved for displacements and stresses and results are 

compared with solutions predicted by other beam theories and two dimensional 

elasticity solution.  

5.1.1. Numerical examples I 

Example 1 

The first problem is of a simply supported beam of different aspect ratios (L/h) 

carrying an uniformly distributed load of qkN/m (see Figure 5.1). 

 

The numerical data for this example are:  

a) q = 5kN/m , E = 2*108 N/m2,  L = 2m, h = 1m, b = 0.3m and Poisson’s 

ratio υ = 0.3. 

b) q = 3kN/m , E = 2*108 N/m2, L = 2m, h = 0.5m, b = 0.3m and 

Poisson’s ratio υ = 0.3. 

c) q = 2kN/m , E = 2*108 N/m2,  L = 2m, h = 0.2m, b = 0.2m and 

Poisson’s ratio υ = 0.3. 

 

The boundary conditions associated with simply supported beam for the 

present beam theory are as follows: 

𝑀𝑥𝑥
′ = 𝑀̅ 𝑥𝑥 = 𝑤 = 0 at x = 0 and x = L      

Figure 5.1-simply supported beam problem 
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𝑀𝑥𝑥
′ = 𝑀̅ 𝑥𝑥 = 0 →  

𝑑ф

𝑑𝑥
 = 

𝑑2𝑤

𝑑𝑥2
 = 0 at x = 0 and x = L 

From the general solutions of the present beam theory, expression for 𝑤 and ф 

as follows: 

𝑤(𝑥) =  
𝑞𝐿4

24𝐸𝐼
(
𝑥2

𝐿2
−
𝑥3

𝐿3
+ 
𝑥4

𝐿4
) + 

𝑞𝐴0
2𝐿2

2𝐶0𝐺𝐴
( 
𝑥

𝐿
−
𝑥2

𝐿2
−

2

(𝜆𝐿)2
(1 −

𝑐𝑜𝑠ℎ λ(𝐿 2−𝑥)⁄

cosh (λL 2)⁄
)) 

𝜃(𝑥) =  
𝐴0
 𝑞𝐿

2𝐶0𝐺𝐴
((1 −

𝑥

𝐿
 ) −

2𝑠𝑖𝑛ℎ λ(𝐿 2−𝑥)⁄

(λL)cosh (λL 2)⁄
) 

Other theoretical solutions are from [1] and [53] 

Euler Beam theory (EBT): 

𝑤(𝑥) =  
𝑞𝐿4

24𝐸𝐼
(
𝑥2

𝐿2
− 2

𝑥3

𝐿3
+ 

𝑥4

𝐿4
)  

First order shear deformation beam theory (FSBT): 

𝑤(𝑥) =  
𝑞𝐿4

24𝐸𝐼
(
𝑥2

𝐿2
−
𝑥3

𝐿3
+ 

𝑥4

𝐿4
) +

𝑞𝐿2

2𝐾𝑠𝐺𝐴
(
𝑥

𝐿
−
𝑥2

𝐿2
)  

𝜃(𝑥) =  
𝑞𝐿 

2𝐾𝑠𝐺𝐴
(1 − 2

𝑥 

𝐿 
)  

Higher order shear deformation beam theory (HSBT): 

𝑤(𝑥) =  
𝑞𝐿4

24𝐸𝐼
(
𝑥2

𝐿2
−
𝑥3

𝐿3
+ 

𝑥4

𝐿4
) + 

6𝑞𝐿2

10𝐺𝐴
( 
𝑥

𝐿
−
𝑥2

𝐿2
− 2

(𝜆𝐿)2
(1 − cosh  λ(𝐿 2−𝑥)⁄

cosh (λL 2)⁄
))  

𝜃(𝑥) =  
3𝑞𝐿

4𝐺𝐴
((1 −

𝑥

𝐿
 ) −

2 sinh  λ(𝐿 2−𝑥)⁄

(λL)cosh (λL 2)⁄
) 

2D Elasticity solution: 

𝑤(𝑥, 𝑦) =  −
𝑞

2𝐸𝐼
{
𝑦4

12
−
ℎ2𝑦2

8
+
ℎ3𝑦

12
+  𝜐 (

(𝑙2−𝑥2)𝑦2

2
+
𝑦4

6
−
ℎ2𝑦2

20
)} −

𝑞

2𝐸𝐼
{
𝑙2𝑥2

2
−
𝑥4

12
−

ℎ2𝑥2

20
+
(1+

1

2
𝜐)ℎ2𝑥2

4
} +

5𝑞𝑙4

24𝐸𝐼
{1 +

3ℎ2

20𝑙2
(
4

5
+
𝜐

2
)}  

𝜃(𝑥, 𝑦) = −
𝑞

2𝐺𝐼
(
ℎ2

4
− 𝑦2) 𝑥  Figure 5.2 -The coordinate system for 

2D elasticity solution for example 1(a) 
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Solutions are represented in the graphical forms from Figure 5.3 to Figure 5.12 

 For part (a)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3-Transverse displacement along centre line for example 1(a) 

Figure 5.4-Shear strain along centre line for example 1(a) 
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Figure 5.5-Shear stress variation across the depth at x = 0 for example 1(a) 

Figure 5.6-Axial stress variation across the depth at x = 0.5L for example 1(a) 
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For part (b)  

 

 

 

 

 

 

 

 

 

 

Figure 5.7-Transverse displacement along centre line for example 1(b) 

Figure 5.8-Shear strain variation along centre line for example 1(b) 
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For part (c)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9-Transverse displacement along centre line for example 1(c) 

Figure 5.10-Shear strain variation along centre line for example 1(c) 
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Figure 5.11-Shear stress variation across the depth at x = 0 for example 1(c) 

Figure 5.12-Axial stress variation across the depth at x = 0.5L for example 1(c) 
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The tables 1-3 below give the maximum value of transverse displacement (𝒘), axial 

stress (𝝈𝒙𝒙), shear rotation of cross section (𝛉) and transverse shear stress (𝝉𝒙𝒛) for 

each aspect ratios of the beam. 

 

 

 

 

 

 

 

 

 

 

 

Model 𝒘(𝟏𝟎−𝟒𝒎) 𝝈𝒙𝒙(𝟏𝟎
𝟒𝑵𝒎−𝟐) 𝛉(𝟏𝟎−𝟒) 𝝉𝒙𝒛(𝟏𝟎

𝟒𝑵𝒎−𝟐 ) 

EBT 2.0833 5.0000 - - 

FSBT 3.3833 5.0000 2.6000 2.0000 

Present 3.3833 5.4310 3.0602 2.3538 

HSBT 3.3833 5.4333 3.0692 2.3609 

Exact 3.2708 5.3333 3.2500 2.5000 

Model 𝒘(𝟏𝟎−𝟑𝒎) 𝝈𝒙𝒙(𝟏𝟎
𝟓𝑵𝒎−𝟐) 𝛉(𝟏𝟎−𝟒) 𝝉𝒙𝒛(𝟏𝟎

𝟒𝑵𝒎−𝟐 ) 

EBT 1.0000 1.2000 - - 

FSBT 1.1560 1.2000 3.1200 2.4000 

Present 1.1560 1.2259 3.7801 2.9077 

HSBT 1.1560 1.2260 3.7915 2.9165 

Exact 1.1425 1.2220 3.9000 3.0000 

Model 𝒘(𝟏𝟎−𝟑𝒎) 𝝈𝒙𝒙(𝟏𝟎
𝟓𝑵𝒎−𝟐) 𝛉(𝟏𝟎−𝟒) 𝝉𝒙𝒛(𝟏𝟎

𝟒𝑵𝒎−𝟐 ) 

EBT 15.625 7.5000 - - 

FSBT 16.015 7.5000 7.8000 6.0000 

Present 16.015 7.2586 9.6122 7.3940 

HSBT 16.015 7.2600 9.6415 7.4165 

Exact 15.981 7.5200 9.7500 7.5000 

Table 5.2. Maximum value for displacements and stresses for 

example 1(b) 

Table 5.3. Maximum value for displacements and stresses for 

example 1(c) 

Table 5.1. Maximum value for displacements and stresses for 

example 1(a) 
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Example 2: 

This problem is of a cantilever beam of different aspect ratios (L/h) carrying a 

tip load of P. 

 

The numerical data for this example are:  

a) P = 5kN, E = 2*108 N/m2, L = 2m, h = 1m, b = 0.3m and Poisson’s 

ratio υ = 0.3. 

b) P = 100N, E = 2*108 N/m2, L = 2m, h = 0.2m, b = 0.2m and Poisson’s 

ratio υ = 0.3. 

 

The boundary conditions associated with cantilever beam for present beam theory as 

follows: 

𝑤 = 
𝑑 𝑤

𝑑𝑥 
  = ф at x = 0      

𝑀𝑥𝑥
′ = 𝑀̅ 𝑥𝑥= 

𝑑𝑀𝑥𝑥

𝑑𝑥
= 0 at x = L 

From the general solutions of the present beam theory, expression for 𝑤 and ф as 

follows: 

𝑤(𝑥) =  
𝑃𝐿3

6𝐸𝐼
(3
𝑥2

𝐿2
−
𝑥3

𝐿3
) + 

𝑃𝐴0
2𝐿 

𝐶0𝐺𝐴
( 
𝑥

𝐿
+

1

(𝜆𝐿) 
(
sinh  λ(L−x)

cosh (𝜆𝐿) 
− tanh (𝜆𝐿) )) 

𝜃(𝑥) =  
𝐴0
 𝑃

5𝐶0𝐺𝐴
(1 −

cosh  λ(L−x)

cosh (𝜆𝐿) 
) 

 

Other theoretical solutions are from [1] and [53] 

Euler Beam theory (EBT): 

𝑤(𝑥) =  
𝑃𝐿3

6𝐸𝐼
(3

𝑥2

𝐿2
−
𝑥3

𝐿3
)  

First order shear deformation beam theory (FSBT): 

Figure 5.13-Cantilever beam problem 
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𝑤(𝑥) =  
𝑃𝐿3

6𝐸𝐼
(3

𝑥2

𝐿2
−
𝑥3

𝐿3
) +

𝑃𝑥

𝐾𝑠𝐺𝐴
  

𝜃(𝑥) =  
𝑃

𝐾𝑠𝐺𝐴
  

Higher order shear deformation beam theory (HSBT): 

𝑤(𝑥) =  
𝑃𝐿3

6𝐸𝐼
(3

𝑥2

𝐿2
−
𝑥3

𝐿3
) + 

6𝑃𝐿 

5𝐺𝐴
( 
𝑥

𝐿
+ 1

(𝜆𝐿) 
(sinh  λ(L−x)

cosh (𝜆𝐿) 
− tanh (𝜆𝐿) ))  

𝜃(𝑥) =  
3𝑃

10𝐺𝐴
(1 −

𝑐𝑜𝑠ℎλ(L−x)

cosh (𝜆𝐿) 
) 

2D Elasticity solution: 

𝑤(𝑥, 𝑦) =  
𝜐𝑃𝑥𝑦2

2𝐸𝐼
+

𝑃𝑙3

6𝐸𝐼
(2 − 3

𝑃𝑥

𝑙
+
𝑥3

𝑙3
) +

𝑃ℎ2

8𝐺𝐼
(𝑙 − 𝑥) 

𝜃(𝑥, 𝑦) =
−𝑃

2𝐼𝐺
(
ℎ2

4
− 𝑦2)  

 

For part (a): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.14-Transverse displacement along centre line for example 2(a) 
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For part (b): 

 

 

 

 

 

 

 

 

 

 

Figure 5.15-Shear strain along centre line for example 2(a) 

Figure 5.16-Transverse displacement along centre line for example 2(b) 
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5.1.2. Comparisons and findings of the theoretical solutions 

From the above numerical examples (1) and (2), it can be clearly seen from the Figure 

5.3 and Figure 5.7 that classical Euler-beam theory predicts significantly different 

values than other theoretical values for transverse displacement when the beam 

becomes thick. But the values are closer to other theoretical values when the aspect 

ratio (L/h) becomes larger (Figure 5.9). In example (1.a) (aspect ratio 2), it under 

estimates the maximum value for transverse displacement (see Table 5.1) by 36%  and 

in example (1.b) and (1.c), it underestimates the maximum value by 12.5% and 2.2% 

(see Table 5.2 and Table 5.3) respectively compared to 2D elasticity solution. From 

the second example also (Figure 5.14 and Figure 5.16), same behaviour can be 

observed. 

In the case of  present theory, HSBT  and FSBT, all these theories predicts almost same 

values to each other and much closer value to two dimensional elasticity solution for 

transverse displacement. In example 1, all these theories (i.e present theory, HSBT and 

FSBT) over estimates the maximum transverse displacement by 3.4%, 1.2% and 0.2% 

in 1(a), 1(b) and 1(c) respectively. In the second example, present theory, HSBT, and 

Figure 5.17-Shear strain along centre line for example 2(b) 
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FSBT under estimate the tip deflection by 4% and 0.2% in example 2(a) and 2(b) 

respectively when it is compared to two dimensional elasticity solution.   It should be 

noted that in all these cases, FSBT uses a shear correction factor (𝐾𝑠 ) of  5/6. 

It can be seen from Figure 5.5 and Figure 5.11 that present theory and HSBT gives the 

parabolic shear variation while satisfying the shear boundary conditions at top and 

bottom of the beam. However in example 1(a), both present theory and HSBT under-

estimate the maximum shear rotation (Table 1) by 5.8% and (5.6%) respectively 

compared to 2D elasticity solution. This error percentage reduces with increase in the 

aspect ratio of the beam. When the aspect ratio of the beam is four (example 1(b) & 

Table 2), these percentage are 3.1% and 2.8% respectively. In the second example both 

in part 2(a) and part 2(b), these theories predict almost same shear rotation along the 

beam as predicted by 2D elasticity theory.  

It can be noted from maximum values for stresses given in Table 5.1, Table 5.2 and 

Table 5.3 that shear stress starts to dominate when the beam becomes thicker. When 

the aspect ratio of the beam is two, (example1 part (a)),the ratio between the maximum 

shear stress and maximum flexural stress is around 48% but when the aspect  ratios 

are four (Table 5.2) and ten (Table 5.3), these percentages are 25% and 10% 

respectively. Also it can be noted from Figure 5.6 that when the beam becomes deeper, 

the axial stress distribution across the section of the beam becomes nonlinear even in 

the linear elastic analysis. But this behaviour couldn’t be captured by EBT and FSBT. 

In brief, among those one dimensional beam theories discussed here, present theory 

and HSBT are most suitable to analyse the deep beams since they give more close 

values to the solutions predicted by two dimensional elastic theory for deformations 

and stresses. But in the most of the cases, it is not possible to get the analytical 

solutions, a suitable finite element model is required to get the solutions using this 

theory. 

5.2. Validation of the finite element model 

Number of numerical examples are considered to illustrate the different 

scenarios and the finite element solutions for those problems are obtained using the 

proposed finite element model. Convergence of finite element solutions are checked 
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against corresponding analytical solutions of theory where it is obtainable. In the cases 

where the analytical  solutions are not available, finite element solutions of the problem 

compared  against   the solutions obtained using other beam elements and two and 

three dimensional model of ‘ABAQUS’ software (version 14.1). However, 

‘ABAQUS’ program solutions are validated against two dimensional elasticity 

solution for simple beam problem. The problems are discretized into different number 

of elements to get some ideas on the convergent rate and performance of the present 

finite element model.  

MATLAB program is used to get the finite element solutions of the present 

finite element model. First stiffness matrix and load vectors were calculated in the 

symbolic form using “symbolic tool box” of MATLAB.  These matrices were 

developed using exact integration. The stiffness values defined in the section 4.3.1 

derived after some simplifications to the matrices obtained from exact integration. 

Then a program developed to analyse a general beam problem. The MATLAB 

program consists of several user-defined functions created in different M-Files to 

handle different tasks. This program includes a main function which calls several other 

built-in functions and user-defined functions to complete different tasks. This program 

includes functions to get the input data from user, to calculate local stiffness matrix, to 

assemble the global stiffness matrix, to calculate local load vector, to assemble global 

load vector and to interpolate and plot the variables. 
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5.2.1. Numerical examples II 

 Example 03 

Consider the example 1(a) in section (5.1.1), the finite element solution of this 

problem obtained using different number of elements (number of elements are 

indicated within the bracket). Also, the beam is analysed using an exact finite element 

model (2.9) (finite element based on the interdependent interpolation) of the FSBT. 

 

Figure 5.18 -Transverse displacement along centre line using present FE 

for example 1(a) 



58 

 

  

Figure 5.20 -Transverse displacement along centre line using present 

FE for example 1(a) 

Figure 5.19 -Transverse displacement along centre line using  

FSBT-FE for example 1(a) 
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Finite element solution and corresponding analytical solution for transverse 

displacement are very close to each other with four elements. But when the number of 

element is eight, finite element solution for transverse displacement is almost same as 

the corresponding theoretical solution. But this improvement in the results is very 

small compare to improvement obtained in the results by increasing the element from 

two to four (Figure 5.18). However in the case of shear rotation, the finite element 

solution of the present theory converges to corresponding analytical solution when the 

number of the element used is eight (Figure 5.19).  On the other hand, by comparison 

of Figure 5.18 and Figure 5.20, it can be noted that the finite element solution of FSBT 

for transverse displacement doesn’t differ very much in terms of convergent rate and 

accuracy from the finite element solution of the present theory. Both the finite element 

models follows same pattern in the convergence of the solution for transverse 

displacement since they have same order of approximation. But in the case of shear 

rotation, it can be seen from Figure 5.19 and Figure 5.21 that present finite element 

model converges to corresponding theoretical solution much faster than finite element 

Figure 5.21-Shear strain along centre line using  

FSBT-FE for example 1(a) 
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model of the FSBT. This could be due to use of hyperbolic function in the 

approximation of the finite element solution of the present theory and also due to  the 

additional degrees of freedom of rotation which makes possible that  the shear rotations 

estimated at the nodal points are also to be  exact to the theoretical solution. 

In addition, following points also can be noted related to the finite element 

solutions. Both the finite element models gives exact nodal values for transverse 

displacement regardless of discretisation of the member. But only the present finite 

element model gives the exact nodal values for shear rotation due to additional degree 

of freedom used for rotations. 

The Figure 5.22 below show finite element solution for transverse 

displacement of thin beam (Example 1(c) ) using the present finite element model. 

 

Even with only two elements, finite element solution converges to exact 

analytical solutions of the corresponding theory. Since the approximations for primary 

Figure 5.22-Transverse displacement along centre line using 

present FE for example 1(c) 
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variables are interdependent and they represent homogeneous solution of the 

governing equations, here we do not have the problem of ‘Shear Locking’ when the 

beam becomes thin which was earlier found in the traditional formulation of the finite 

element models using FSBT [39]. However, since finite element model of EBT 

performs very well for the thin beams and it is much easier in applying to the thin beam 

problems, the present finite element model may not be desired in these instances.  

In the following problems, solutions are compared against solution obtained 

from ‘ABAQUS’ software since the analytical solutions for this problems are not 

available. But before this comparison, the solutions from the ‘ABAQUS’ software is 

validated against analytical solutions of simply supported beam problems in example 

1(a) and 1(b). 

 

 

Figure 5.23- Transverse displacement along 

centre line using ABAQUS for example 1(a) 
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Figure 5.25- Shear strain along centre line using 

ABAQUS for example 1(a) 

Figure 5.24- Transverse displacement along 

centre line using ABAQUS for example 1(b) 
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The comparison of displacements in Figure 5.23 to Figure 5.26, shows that 

solutions obtained from ‘ABAQUS’ are reasonable predictions. Therefore ABAQUS 

can be used for comparison against present beam element when the analytical solutions 

are not available. 

 

 

 

 

 

 

 

Figure 5.26- Shear strain along centre line 

using ABAQUS for example 1(b) 
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Example 04 

This problem is of a stepped beam shown in the Figure 5.23 below. The 

numerical data for this example are:  E = 2*108N/m2 and Poisson’s ratio υ = 0.3. The 

beam discretised into 4, 6 and 14 elements in following manner. 

Placing nodes at 0, 0.75m, 1.5m, 2.5m, 3.5m (4 elements) 

Placing the nodes at 0, .75m, 1.5m, 2m, 2.5m, 3m and 3.5m distance from the 

fixed support (6 elements) and  

Placing the nodes at 0.25m regular interval (14 elements) 

 

Solutions obtained using the present finite element model is compared against the 

solutions obtained using the two dimensional solid model (CPS3 -3 node linear plane 

stress triangle) of ‘ABAQUS’. This model uses approximately 2100 elements with the 

approximate element size of 0.05m (Figure 5.26). The results obtained for transverse 

displacement and shear rotation are presented in the Figure 5.24 and Figure 5.25 

 

 

 

 

 

Figure 5.27-Stepped beam problem 
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Figure 5.28 - Shear strain along centre line for example 4 

Figure 5.29 - Transverse displacement along centre line for example 4 
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Predicted results using the present finite element show close agreement with 

the results obtained using two dimensional model of ‘ABAQUS’.  As in the previous 

cases, there is no much improvement in the predicted transverse displacement when 

the number of elements are increased (Figure 5.24). But predicted shear strain variation 

converges to predicted results using 2D model when the number of elements is 14 

(Figure 5.25).  2D model predicts maximum transverse displacement of 3.52mm at 

about 2.28m from the fixed support, whereas the present finite element predicts the 

maximum transverse displacement as 3.42mm at about 2.25m from the fixed support. 

However, predicted shear strain using the present finite element has the same trend 

with the predicted results from 2D model.  

 

 Example 05 

This problem is of a thick isotropic continuous beam shown in Figure 5.27. 

The numerical data for this example are E = 2x108 N/m2, b = 0.3m, h = 1m and υ = 

0.3. The beam is analysed using the present beam element and with a 3D solid model 

developed using ‘ABAQUS’ software. The 3D solid model uses 19212 number of 8-

node linear brick elements (C3D8R) with the approximate mesh size of 0.05m. The 

beam is discretised into two different ways using the present finite element as follows 

Figure 5.30 - Results for tranverse diplacement and shear strain uisng ‘ABAQUS’ 

2D model 
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Placing the nodes at 0, 2m, 4m, 5.5m, 7m and 8m distance from the fixed 

support (5 elements). 

Placing the nodes at 0.5m interval (16 elements) 

 

 

The results are shown in Figure 5.28 and Figure 5.29. It can be observed a good 

agreement between the results obtained using present finite element and 3D solid 

model. Although there is an improvement in the predicted transverse displacement 

when the number of present finite element is increased from 5 to 16, this doesn’t make 

great impact on the results. The overall trend is the same as in both the discretizations. 

Predicted maximum transverse displacement between the spans and at tip of the 

cantilever are very close to each other. Predicted transverse displacements using the 

present finite element with 16 elements  are 0.53mm, 0.61mm and 0.69mm at about 

1.8m, 5.5m, and 8m respectively from the fixed support whereas 3D model predicts 

0.56mm, 0.625mm and 0.706mm at about 1.8m, 5.45m and 8m respectively. It can be 

seen from Figure 5.30 that at the centre line above the supports, transverse 

displacements are not zero, while at the bottom fibres of the beam above the supports, 

displacements are zero. But it can’t be captured by the present theory which assumes 

that transverse deflection of every coordinate in a cross section is equal to the 

transverse deflection at neutral axis. However it can be seen from the displacement 

contour map of 3D model in Figure 5.30, that this assumption is valid to a great extent. 

Predicted shear strain values using present element with 16 elements has close 

agreement with the results of 3D model. Present finite element gives some ideas on 

effect of the shear in the isotropic beam which may be useful in the preliminary study. 

Figure 5.31- Continuos beam probelem 
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However the 3D model in Figure 5.30, gives clear insight of shear effect in the beam. 

It clearly indicates the critical areas which are susceptible to shear concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.33 - Shear strain along centre line for example 5 

 

Figure 5.32 -Transverse displacement along centre line for 

example 5 



69 

 

 

The Figure 5.32 below shows the axial stress variation of the deep beam. It can 

be seen from the figure that the neutral surface does not remain at centroidal axis. 

Comparing this with the result of thin beam in the Figure 5.31, the differences in the 

stress variation of the deep beam can be clearly identified. In elastic range of loading 

there could be multiple neutral axis in deep beam [55]. Also development compression 

strut between loading and support can also be seen from the Figure 5.32. 

Figure 5.34 - Results for tranverse diplacement and shear strain uisng 

‘ABAQUS’ 3D model 
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Figure 5.35 - Axial stress variation for thin beam 

Figure 5.36 - Axial stress variation for deep beam 
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CHAPTER VI 

6. CONCLUSIONS AND FUTURE WORKS 

6.1. Conclusions 

A hyperbolic shear deformation beam theory for analysing thick isotropic beam 

is presented here which gives parabolic shear stress variation across the thickness of 

the beam while satisfying shear boundary conditions at top and bottom of the beam. 

Also this theory does not need a shear correction factor. It can be observed from the 

study of beams with several aspect ratios using this theory that effect of shear rotation 

greatly contributes to transverse displacement of deep beams. Also this makes the 

shear stress to dominate over axial stress and the axial stress variation across depth of 

beam becomes nonlinear at lower aspect ratios although this is a linear elastic analysis. 

But these effects are diminished when the aspect ratio increases.  

The characteristics of the present hyperbolic shear deformation theory are 

similar to that of HSBT and also this theory produces almost same values in the case 

of deformations and stresses. Also the present theory gives very close values to the 

solutions of two dimensional elastic theory. 

The displacement based finite element model for this theory is obtained by 

approximating the primary variable using the homogeneous solution of the governing 

equilibrium equations. This enables the finite element model to give exact nodal 

displacement regardless of the discretization of the member. Also this exact 

formulation enables that finite element solutions converge much quicker to the 

corresponding analytical solutions of the proposed theory. 

The solutions of  the present finite element model for thick isotropic beam are 

compared with the solutions of 2D and 3D model of ‘ABAQUS’ software when the 

analytical solutions are not available for the problems. Present finite element solutions 

show good agreement with solutions of 2D and 3D models. This assures that present 

finite element is suitable for the preliminary analysis of deep isotropic beam. 

The element stiffness of this beam element depends on number of additional 

parameters such as (L/h) ratio and Poisson’s ratio (υ) compare to other beam elements 
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but these effects can be ignored for slender beams. Although this element is most 

suitable for analysing thick beams, it can be also used to analyse the thin beams without 

having the problem of shear locking. But in the case of very thin beams, stiffness 

matrix tends to be singular since the shear rotation is negligible. (i.e total rotation of 

the cross section is equal to the bending rotation of the cross section) 

6.2. Future work 

Present finite model is can only be used for uniform isotropic beam. However, 

in practice, we encounter various problems which have varying parameters. Extending 

this element to handle the axially varying parameters will provide more scope for this 

finite element in practical beam problems. 

One of theoretical assumption of the present theory is neutral axis passes 

through the centroid of the section. But in the case of deep beams the assumption is 

not completely valid. This reduces the accuracy of stress distribution across the depth 

of the beam. More realistic way is to have arbitrary neutral surface in the case of deep 

beams.  

This present finite element model is only applicable to linear elastic analysis. 

But for large displacement and rotations, geometric nonlinearities should be 

considered.  Further, here material is assumed to be linear, but   material could be non-

linear elastic. 
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APPENDIX  A 

A.1. MATLAB program for stiffness matrix 

 

syms A L D  E I G h W v V R q; % symbolic variables 
syms x; 

  

  
IM=eye(6,6); 
IM2=eye(3,3); 

  
U=1/(cosh(0.5)-1); 
Ao=0.1024*U; 
Bo=0.01061*U^2; 
Co=(8.7385*10^-3)*U^2; 

  
V=W*h; %V-cross sectional area, W-width, h-depth 
R=(E*I)/(G*V); %elastic modulus, I-second moment of area, G-shear 

modulus 
A = (71.3945/R)^0.5; 

  
W=12*I/h^3; 

  
G=E/(2*(1+v)); 

  
B=[0,1,0,0,0,1; 
    -A 0 0 0 -1 0; 
    0.2463*A,0,-8.9728*R,0,-1,0; 
    sinh(A*L),cosh(A*L),L^3,L^2,L,1; 
    -A*cosh(A*L),-A*sinh(A*L),-3*L^2,-2*L,-1,0; 
    0.2463*A*cosh(A*L),0.2463*A*sinh(A*L),-8.9728*R-3*L^2,-2*L,-

1,0];  

  
D=(12463*A*L^3*sinh(A*L) + 179456*A*R*L*sinh(A*L) + 358912*R- 

358912*R*cosh(A*L)); 

  
C=B\IM;                            

  
%display(C); 

  
A1=[sinh(A*x),cosh(A*x),x^3,x^2,x,1]; 
A2= [0.2463*A*cosh(A*x),0.2463*A*sinh(A*x),-8.9728*R-3*x^2,-2*x,-

1,0]; 

  
N1= A1*C;% N1 & N2 are shape functtion matrices 
N2= A2*C; 
%display(N1); 
%display(N2); 

  

  
dN1 =diff(N1,x); 
%display(dN1); 
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dN2 = diff(N2,x); 
%display(dN2); 
ddN1=diff(dN1,x); 
%display(ddN1); 
K1=sym('K1',6);K2=sym('K2',6);K=sym('K',6);K4=sym('K4',6); 
%K(1,1)=1; 
for i= 1:1:6 
    for j=1:1:6 
K1(i,j) = int((E*I/R*Co*dN1(i)*dN1(j)+(Bo+1-

2*Ao)*E*I*ddN1(i)*ddN1(j)),x,0,L); 
   end; 
end; 
for i= 1:1:6 
   for j=1:1:6 

  
K2(i,j) = int((E*I/R*Co*dN1(i)*N2(j)-(Ao-

Bo)*E*I*ddN1(i)*dN2(j)),x,0,L); 
   end; 
end; 
%for i= 1:1:6 
    %for j=1:1:6 
%K3(i,j) = int((G*V*Co*dN1(i)*N2(j)-(Ao-

Bo)*E*I*ddN1(i)*dN2(j)),x,0,L); 
  %end; 
%end; 
for i= 1:1:6 
   for j=1:1:6 
K4(i,j) = int((E*I/R*Co*N2(i)*N2(j)+ Bo*E*I*dN2(i)*dN2(j)),x,0,L); 
   end; 
end; 
K=(K1+K2+transpose(K2)+K4); 
simplify(K); 
display(K); 

  
for r=1:1:6 
Q(r)= q*int(N1(r),x,0,L); %Q is load vestor for uniformly distriuted 

load q 
end; 
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A.2. MATLAB program to analyse the general beam problem 

beam_main.m   

 
% beam_main.m 
% 
% LINEAR STATIC ANALYSIS OF A CONTINUOUS BEAM 
% 
clc % Clear screen 
clear % Clear all variables in memory 
% 
% variables are declared as global so that they can be shared 
% by other functions in the same project 
% 
global nond noel none nodof eldof n geomco connect F q ... 
propt nf El_loads Jt_loads force nd_disp 
% 
display('Executing beam program.m'); 
% 
% Open file for output of results 
% 
display('Results printed to file : beam_results.txt ');  
fid_r=fopen('beam_results.txt','w'); 
% 
% 
% Choosing the data for analysis 
% 
beam_data % load beam data from the input file  
% 
% 
KK =zeros(n) ; % Initialize global stiffness 
% matrix to zero  
% 
F=zeros(n,1); % Initialize global force vector to zero 
F = form_beamF(F); % Form global force vector 

  
% 

% 
for i=1:nel 
 kl=beamk(i); % Form element matrix 
% 
g=beamg(i) ; % Retrieve the element steering 
% vector 
% 
KK =formKK(KK, kl,g); % assemble global stiffness 
% matrix 
% 
end 
display(KK); 
% 
%%%%%%%%%%%% End of assembly %%%%%%%%%%% 
% 
% 
 delta = KK\F ; % solve for unknown primary variables 
% 
% Get nodal displacements at each node 
% 
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for i=1:nond 
    for j=1:nodof 
        nd_disp(i,j) = 0; 
        if nf(i,j)~= 0; 
            nd_disp(i,j) = delta(nf(i,j)) ; 
        end 
    end 
end 
% 
% Calculate the forces acting on each element 
% in local coordinates, and store them in the 
% vector force(). 
% 
display(nd_disp); 
for i=1:noel 
    kl=beamk(i); % Form element stiffness matrix 
    g=beamg(i) ; % Retrieve the element steering vector 
    for j=1:eldof 
            if g(j)==0 
                ed(j)= 0.; % displacement = 0.for restrained freedom 
            else 
                ed(j) = delta(g(j)); 
            end 
    end 
    fl=kl*ed';% Element force vector in global XY 
    f0 = El_loads(i,:); 
    force(:,i) = fl-f0'; 

     
end 
% 
print_beam_results; 
% 
fclose(fid_r); 
%deformed_shape; 
%shearstrain; 

 

 

 

beam_data.m 

% File: beam_data.m 
% 
% 
global nond noel none nodof eldof n geomco connect F q ... 
propt nf El_loads Jt_loads force nd_disp % 
 

format short e 
% 
%%%%%%%%%%%%%% Beginning of data input %%%%%%%%%%%%%%%% 
nond = 17; % Number of nodes in the member: 
noel = 16; % Number of elements in the member: 
none=2;%Number of nodes per element: 
nodof =3 ; % Number of degrees of freedom per node 
eldof = none*nodof; % calculate  degrees of freedom per element 
% 
q=zeros(nel,2); %uniformly distributed load 
q=[-2500/2,5000;.... 
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    -2500/2,4375;... 
    -2500/2,3750;.... 
    -2500/2,3125; 
    -2500/2,2500;.... 
    -2500/2,1875; 
    -2500/2,1250;.... 
    -2500/2,625; 
    0 3000;.... 
    0 3000;.... 
    0 3000;.... 
    0 3000;.... 
    0 3000;.... 
    0 3000;.... 
    0 0;... 
    0 0]; 
% Nodes coordinates X  
geomco=zeros(nnd,1); 
geomco= [ 0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7,7.5,8]; ... %  

  
% 
% Element connectivity 
% 
connect=zeros(nel,2); 
connect = [1 2;2 3;3 4;4 5;5 6;6 7;7 8;8 9;9 10;10 11;11 12;12 13;13 

14;14 15;15 16;16 17] ;   

  
% 
% properties of the element <Elastic Modulus,Width of beam,Depth of 

%beam> 
% 
% 
propt=zeros(nel,3); 
propt = [2*10^8 0.3 1;.... 
    2*10^8 0.3 1;.... 
    2*10^8 0.3 1;... 
    2*10^8 0.3 1;.... 
    2*10^8 0.3 1;.... 
    2*10^8 0.3 1;.... 
    2*10^8 0.3 1;... 
    2*10^8 0.3 1;.... 
    2*10^8 0.3 1;.... 
    2*10^8 0.3 1;.... 
    2*10^8 0.3 1;... 
    2*10^8 0.3 1;.... 
    2*10^8 0.3 1;.... 
    2*10^8 0.3 1;.... 
    2*10^8 0.3 1;... 
    2*10^8 0.3 1]; 

% 

%Applying the boundary conditions 
% 
nf = ones(nond, nodof); % Initialize the matrix nf to 1 
nf(1,1) = 0;nf(1,2)=0;nf(1,3)=0; % Prescribed nodal freedom of node  
nf(9,1) = 0; 
nf(15,1)=0; 
% 
% Counting of the free degrees of freedom 
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% 
n=0; 
for i=1:nond 
    for j=1:nodof 
        if nf(i,j) ~= 0 
            n=n+1; 
            nf(i,j)=n; 
        end 
    end 
end 
% 
% 
%% 
% loading 
% 
Jt_loads= zeros(nond, 3); 
Jt_loads=[0,0,0;0,0,0;0,0,0;0,0,0;0,0,0;0,0,0;0,0,0;0,0,0;0,0,0;0,0,

0;0,0,0;5000,0,0;0,0,0;0,0,0;0,0,0;0,0,0;20000,0,0]; 

 
%Enter the external Moment components and Loads applied on the nodes 

  
El_loads= zeros(nel,6); 
for i=1:nel 
    El_loads(i,:)= beaml(i); 
end 

  

  
% 
%%%%%%%%%%%%%%%%% End of data input for member %%%%%%%%%%%% 

 

function[g] = beamg(i) 
% 
% This function forms the steering vector for element i 
% 
global connect nf 
% 
% get the nodes of element i 
% 
node1=connect(i,1); 
node2=connect(i,2); 
% 
% 
g=[nf(node1,1); nf(node1,2);nf(node1,3); 

nf(node2,1);nf(node2,2);nf(node2,3)]; 

 
%%%%%%%%%%%%% end function beamg %%%%%%%%%% 

 

 

beamk 

 
function[kl] = beamk(i) 
% 
% Creating the element stiffness matrix in local coordinates 
% 
global nond noel none nodof eldof 
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global geomco connect propt nf load  
% 
% retrieve the nodes of element i 
% 
node1=connect(i,1); 
node2=connect(i,2); 
% 
% 
% Retrieve the x and y coordinates of nodes 1 and 2 
% 
x1=geomco(node1); x2=geomco(node2); 
% 
% calculate length of element i from the coordinates 
% 
L = abs(x2-x1); 
% 

  
% Get section properties of element i 
% 
b=propt(i,2); 
h=propt(i,3); 
A=18.0166/h; 
I=b*h^3/12; 
E = propt(i,1); 
% 
%Get numerical value for stiffness terms  
% 
D =(1.2463*A*L^3 + 1.2623*10^3*L/A-2.5246*10^3/A^2); 
S11 = (2*E*I*(9.3196*A^2*L^3 + 9.4384*10^3*L - 1.8877*10^4/A))/D^2 ; 
S12 = -(2*E*I*(9.2103*10^-

1*A^2*L^4+7.4775*A*L^3+9.3278*10^2*L^2+5.7074*10^3*L/A -

1.5146*10^4/A^2))/D^2 ; 

  
S23 = (2*E*I*(-5.92380*10^-3*A^3*L^7+4.9266*10^-1*A^2*L^6 -

9.7381*A*L^5+ 6.4168*10^2*L^4-(5.0338*10^3*L^3)/A +(1.39980*10^5 

*L^2)/A^2 -(5.17480*10^5*L)/A^3 +5.05330*10^5/A^4 ))/(D^2*L) ; 

  
S13 = (2*E*I*(-3.7388*A^2*L^4 +7.4775*A*L^3-

3.7864*10^3*L^2+1.5146*10^4*L/A-1.5146*10^4/A^2))/D^2 ; 

  
S22 = (2*E*I*(5.9238*10^-3*A^3*L^7+ 1.2136*10^-1*A^2*L^6 

+1.3477*10^1*A*L^5 +1.3564*10^2*L^4+ (7.2656*10^3*L^3)/A+ 

(9.8995*10^3*L^2)/A^2-(1.1233*10^5*L)/A^3 + 

1.2449*10^5/A^4))/(D^2*L) ; 

  
S25 = (2*E*I*(6.0682*10^-2*A^2*L^6 + 1.478*A*L^5+36.727*L^4+ 

(1.4354*10^3*L^3)/A -(2.8039*10^4*L^2)/A^2 +(1.1233*10^5*L)/A^3 -

1.2449*10^5/A^4))/(D^2*L) ; 

  
S26 = (2*E*I*(2.4633*10^-1*A^2*L^6 +2.2608*A*L^5 +1.1873*10^2*L^4+ 

(2.0402*10^3*L^3)/A -1.3699*10^5*L^2/A^2+5.17480*10^5*L/A^3-

5.0533*10^5/A^4))/(D^2*L); 

  
S33 = (2*E*I*(5.9238*10^-3*A^3*L^7+1.9998*A^2*L^6 +5.9993*A*L^5 + 

2.5137*10^3*L^4-5.0634*10^3*L^3/A + (5.0674*10^5*L^2)/A^2 -

(2.0391*10^6*L)/A^3+2.0513*10^6/A^4))/(D^2*L);  



xix 

 

  
S36= - (2*E*I*(-9.9992*10^-1*A^2*L^6 +5.9996*A*L^5-5.1232*10^2*L^4+ 

(7.0887*L^3*10^3)/A + (4.9459*10^5*L^2)/A^2 - 

(2.0391*10^6*L)/A^3+2.0513*10^6/A^4))/(D^2*L); 

   
S44=S11; 
S14=-S11; 
S41=-S11; 

  
S15=S12; 
S24=-S12; 
S45=-S12; 
S21=S12; 
S51=S12; 
S42=-S12; 
S54=-S12; 

  
S16=S13; 
S34=-S13; 
S46=-S13; 
S31=S13; 
S61=S13; 
S43=-S13; 
S64=-S13;    

  
S56=S23; 
S32=S23; 
S65=S23; 

  
S55=S22; 

  
S52=S25; 

  
S35=S26; 
S62=S26; 
S53=S26; 

  
S66=S33; 

  
S63=S36; 

 

%Element stiffness matrix for element i 
kl=[S11,S12,S13,S14,S15,S16; 
    S21,S22,S23,S24,S25,S26; 
    S31,S32,S33,S34,S35,S36; 
    S41,S42,S43,S44,S45,S46; 
    S51,S52,S53,S54,S55,S56; 
    S61,S62,S63,S64,S65,S66]; 
% 
% Endfunction beamk 
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beaml 

function[Ele_loads] = beaml(i) 

% get the nodes of element i 
% 
global connect geomco propt q 
syms x 
node1=connect(i,1); 
node2=connect(i,2); 
% 
% 
x1=geomco(node1); x2=geomco(node2); 
% 
% Calculating  length of element i from the coordinate 
% 
L = abs(x2-x1); 
% 

  
% get section properties of element i 
% 
h=propt(i,3); 
A=18.0166/h; 
T=q(i,1); 
LD1=[T/A^2 + (L^2*T)/4 - (26983223*A^3*L^3*T + 

(62315*A^5*L^5*T)/2)/(- 640119552*A^2*coth(A*L) + 311575*A^5*L^3 + 

320059776*A^3*L),..... 
    -(L*T*(- 1576614456576*coth(A*L) + 65692269024*A^3*L^3 + 

51160615*A^5*L^5 - 2412290531712*A*L + 

797865343904*A^2*L^2*coth(A*L) + 

934725000*A^4*L^4*coth(A*L)))/(24926*A^2*(311575*A^3*L^3- 

640119552*coth(A*L) + 320059776*A*L )),..... 
    (2500*L*T*(3840717312*coth(A*L) - 160029888*A^3*L^3 - 

124630*A^5*L^5 - 3840717312*A*L + 1276500204*A^2*L^2*coth(A*L) + 

560835*A^4*L^4*coth(A*L)))/(37389*A^2*(311575*A^3*L^3 - 

640119552*coth(A*L) + 320059776*A*L)),..... 
    (L^2*T)/4 - T/A^2 + (26983223*A^3*L^3*T + (62315*A^5*L^5*T)/2)/( 

- 640119552*A^2*coth(A*L) + 311575*A^5*L^3 + 320059776*A^3*L),.... 
    (L*T*(28758010993152*coth(A*L)+ 118921538048*A^3*L^3 + 

153481845*A^5*L^5 - 20780201016576*A*L + 

4279926680000*A^2*L^2*coth(A*L) + 

4362050000*A^4*L^4*coth(A*L)))/(49852*A^2*(311575*A^3*L^3 - 

640119552*coth(A*L) + 320059776*A*L)),..... 
    -(2500*L*T*(1280239104*coth(A*L)  - 54589596*A^3*L^3 - 

62315*A^5*L^5 - 1280239104*A*L + 427992668*A^2*L^2*coth(A*L) + 

436205*A^4*L^4*coth(A*L)))/(12463*A^2*(311575*A^3*L^3 - 

640119552*coth(A*L) + 320059776*A*L))]; 

 
LD2=[ (L*q(i,2))/2,-q(i,2)*((821*A^2*L^2 + 20000*A*L - 

40000)/(49852*A^2) ),-q(i,2)*((2500*A^2*L^2 - 15000*A*L + 

30000)/(37389*A^2)),(L*q(i,2))/2,q(i,2)*((821*A^2*L^2 + 20000*A*L - 

40000)/(49852*A^2)),q(i,2)*((2500*A^2*L^2 - 15000*A*L + 

30000)/(37389*A^2))]; 

  
El_loads=LD1+LD2; 
display(El_loads); 
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% End of function beaml 

 

 

form_beamF 

 
function[F] = form_beamF(F) 
% 
% Getting  the global force vector 
% 
global nond nodof noel eldof 
global nf El_loads Jt_loads 
% 
for i=1:nond 
    for j=1:nodof 
        if nf(i,j)~= 0 
        F(nf(i,j)) = Jt_loads(i,j); 
        end 
    end 
end 
%  
% 
for i=1:noel 
    g=beamg(i) ; % Get element steering vector 
        for j=1:eldof 
            if g(j)~= 0 
            F(g(j))= F(g(j)) + El_loads(i,j); 
            end 
        end 
end 
%%%%%%%% End of function form_beamF %%%%%%%% 

 

formKK 
 
function[KK]= formKK(KK, kg, g) 
% 
% assembling the global stiffness matrix 
% 
global eldof 
% 
% 
for i=1:eldof 
    if g(i) ~= 0 
     for j=1: eldof 
         if g(j) ~= 0 
             KK(g(i),g(j))= KK(g(i),g(j)) + kg(i,j); 
         end 
     end 
    end 
end 
% 
%%%%%%%%%%%% end function form_KK %%%%%%%%%%%% 

 

% 
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deflection.m 

global nond noel none nodof eldof n geomco connect F q ... 
propt nf El_loads Jt_loads force nd_disp 
syms x; 
fid3=fopen('deflection.txt','w'); 

% 
% 

for i=1:1:noel 
    node1=i;node2=i+1; 
    x1=geomco(node1); x2=geomco(node2); 
% 
% calculating the length of element i 
% 
    L = abs(x2-x1); 
    h=propt(i,3); 
    R=0.2167*h^2; 
    A=18.0166/h; 
    IM=eye(6,6); 

  

  
  B=[0,1,0,0,0,1; 
    -A 0 0 0 -1 0; 
    0.2463*A,0,-8.9728*R,0,-1,0; 

sinh(A*L),cosh(A*L),L^3,L^2,L,1; 
-A*cosh(A*L),-A*sinh(A*L),-3*L^2,-2*L,-1,0; 
0.2463*A*cosh(A*L),0.2463*A*sinh(A*L),-8.9728*R-3*L^2,-2*L,-

1,0]; 
C1=B\IM; 

  
C=simplify(C1); 
   format long  
     y=0:0.1:L; 
    A1=[sinh(A*y),cosh(A*y),y.^3,y.^2,y,1]; 
    A2= [0.2463*A*cosh(A*y),0.2463*A*sinh(A*y),-8.9728*R-3*y.^2,-

2*y,-1,0]; 
    A3=[A*cosh(A*y),A*sinh(A*y),3*y.^2,2*y,1,0]; 
    N1= 

sinh(A*y)*C(1,1)+cosh(A*y)*C(2,1)+y.^3*C(3,1)+y.^2*C(4,1)+y*C(5,1)+C

(6,1); 
    N2= 

sinh(A*y)*C(1,2)+cosh(A*y)*C(2,2)+y.^3*C(3,2)+y.^2*C(4,2)+y*C(5,2)+C

(6,2); 
    N3= 

sinh(A*y)*C(1,3)+cosh(A*y)*C(2,3)+y.^3*C(3,3)+y.^2*C(4,3)+y*C(5,3)+C

(6,3); 
    N4= 

sinh(A*y)*C(1,4)+cosh(A*y)*C(2,4)+y.^3*C(3,4)+y.^2*C(4,4)+y*C(5,4)+C

(6,4); 
    N5= 

sinh(A*y)*C(1,5)+cosh(A*y)*C(2,5)+y.^3*C(3,5)+y.^2*C(4,5)+y*C(5,5)+C

(6,5); 
    N6= 

sinh(A*y)*C(1,6)+cosh(A*y)*C(2,6)+y.^3*C(3,6)+y.^2*C(4,6)+y*C(5,6)+C

(6,6); 
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    fn = -

(nd_disp(i,1)*N1+nd_disp(i,2)*N2+nd_disp(i,3)*N3+nd_disp(i+1,1)*N4+n

d_disp(i+1,2)*N5+nd_disp(i+1,3)*N6); 
    %display(fn); 

 
       x=x1+y; 
  for i=1:1:6 
    fprintf(fid3,' %8.8f\t %8.8f\r\n',x(i),fn(i)); 
  end  
    plot(x,fn); 
    hold on; 
end 
hold off; 

 
%%%%End of deflection.m %%%%%% 

 

shearstrain.m 

global nond noel none nodof eldof n geomco connect F q ... 
propt nf El_loads Jt_loads force nd_disp 
syms x; 
fid2=fopen('shearstrain.txt','w'); 
%fprintf(fid2, 'Disatance\t\t strain\r\n'); 
for i=1:1:noel 
    node1=i;node2=i+1; 
    x1=geomco(node1); x2=geomco(node2); 
% 
% calculating the length of element i 
% 
    L = abs(x2-x1); 
    h=propt(i,3); 
    R=0.2167*h^2; 
    A=18.0166/h; 
    %D=(12463*A*L^3*sinh(A*L) + 179456*A*R*L*sinh(A*L) + 358912*R- 

358912*R*cosh(A*L)); 
    IM=eye(6,6); 

  

  
 B=[0,1,0,0,0,1; 
    -A 0 0 0 -1 0; 
    0.2463*A,0,-8.9728*R,0,-1,0; 
sinh(A*L),cosh(A*L),L^3,L^2,L,1; 
-A*cosh(A*L),-A*sinh(A*L),-3*L^2,-2*L,-1,0; 
0.2463*A*cosh(A*L),0.2463*A*sinh(A*L),-8.9728*R-3*L^2,-2*L,-1,0]; 
C1=B\IM; 

  
C=simplify(C1); 
   format long  
     y=0:0.1:L; 
    A1=[sinh(A*y),cosh(A*y),y.^3,y.^2,y,1]; 
    A2= [0.2463*A*cosh(A*y),0.2463*A*sinh(A*y),-8.9728*R-3*y.^2,-

2*y,-1,0]; 
    A3=[A*cosh(A*y),A*sinh(A*y),3*y.^2,2*y,1,0]; 

 



xxiv 

 

    N1= 

A*cosh(A*y)*C(1,1)+A*sinh(A*y)*C(2,1)+3*y.^2*C(3,1)+2*y*C(4,1)+C(5,1

); 
    N2= 

A*cosh(A*y)*C(1,2)+A*sinh(A*y)*C(2,2)+3*y.^2*C(3,2)+2*y*C(4,2)+C(5,2

); 
    

N3=A*cosh(A*y)*C(1,3)+A*sinh(A*y)*C(2,3)+3*y.^2*C(3,3)+2*y*C(4,3)+C(

5,3); 
    N4= 

A*cosh(A*y)*C(1,4)+A*sinh(A*y)*C(2,4)+3*y.^2*C(3,4)+2*y*C(4,4)+C(5,4

); 
    

N5=A*cosh(A*y)*C(1,5)+A*sinh(A*y)*C(2,5)+3*y.^2*C(3,5)+2*y*C(4,5)+C(

5,5); 
    

N6=A*cosh(A*y)*C(1,6)+A*sinh(A*y)*C(2,6)+3*y.^2*C(3,6)+2*y*C(4,6)+C(

5,6); 

     
    fn1 = 

(nd_disp(i,1)*N1+nd_disp(i,2)*N2+nd_disp(i,3)*N3+nd_disp(i+1,1)*N4+n

d_disp(i+1,2)*N5+nd_disp(i+1,3)*N6); 

 
     M1= 0.2463*A*cosh(A*y)*C(1,1)+0.2463*A*sinh(A*y)*C(2,1)+(-

8.9728*R-3*y.^2)*C(3,1)-2*y*C(4,1)-C(5,1); 
    M2= 0.2463*A*cosh(A*y)*C(1,2)+0.2463*A*sinh(A*y)*C(2,2)+(-

8.9728*R-3*y.^2)*C(3,2)-2*y*C(4,2)-C(5,2); 
    M3=0.2463*A*cosh(A*y)*C(1,3)+0.2463*A*sinh(A*y)*C(2,3)+(-

8.9728*R-3*y.^2)*C(3,3)-2*y*C(4,3)-C(5,3); 
    M4= 0.2463*A*cosh(A*y)*C(1,4)+0.2463*A*sinh(A*y)*C(2,4)+(-

8.9728*R-3*y.^2)*C(3,4)-2*y*C(4,4)-C(5,4); 
    M5=0.2463*A*cosh(A*y)*C(1,5)+0.2463*A*sinh(A*y)*C(2,5)+(-

8.9728*R-3*y.^2)*C(3,5)-2*y*C(4,5)-C(5,5); 
    M6=0.2463*A*cosh(A*y)*C(1,6)+0.2463*A*sinh(A*y)*C(2,6)+(-

8.9728*R-3*y.^2)*C(3,6)-2*y*C(4,6)-C(5,6); 
     fn2 = 

(nd_disp(i,1)*M1+nd_disp(i,2)*M2+nd_disp(i,3)*M3+nd_disp(i+1,1)*M4+n

d_disp(i+1,2)*M5+nd_disp(i+1,3)*M6); 
    %display(fn); 
   % 

display(N1);display(N2);display(N3);display(N4);display(N5);display(

N6); 
    x=x1+y; 
    fn=-fn2-fn1; 
  for i=1:1:6 
    fprintf(fid2,' %8.8f\t %8.8f\r\n',x(i),fn(i)); 
  end  
    plot(x,fn); 
    hold on; 
end 
hold off; 
fclose(fid2); 

 

 




